10 Reducibility

10.1 What is reducibility?

Reading: Sipser 5 (pp. 187-188)

We say that problem A reduces (or is reducible) to problem B, if we can use a solution to B to solve A (i.e., if B is decidable/solvable, so is A).

We may use reducibility to prove undecidability as follows: Assume we wish to prove problem B to be undecidable and we know a problem A that has already been proved undecidable. We use contradiction. Assume B is decidable. Then there exists a TM M_B that decides B. If we can use M_B as a sub-routine to construct a TM M_A that decides A, we have a contradiction. The construction of TM M_A using TM M_B establishes that A is reducible to B.

10.2 Another proof that A_{TM} is not decidable

Recall $A_{TM} = \{ < M, w > \mid w \in L(M) \}$. Thus $\overline{A_{TM}} = \{ < M, w > \mid w \notin L(M) \}$. Recall $A_D = \{ w \mid w \notin L(M) \}$.

Proof: Assume that A_{TM} is decidable. Then $\overline{A_{TM}}$ must be decidable. Let \overline{M} be the TM that decides $\overline{A_{TM}}$. We will construct a TM M_D that would decide A_D, an undecidable language. M_D works as follows: For input w_i (the ith binary string in the lexicographic sequence of all binary strings), it first makes a string w_i11w_i and then feed it to \overline{M}. We notice that $w_i11w_i \in L(M)$ iff $w_i11w_i \notin \overline{A_{TM}}$ iff $w_i11w_i \notin A_{TM}$ iff $w_i \notin L(M_i)$ (recall that M_i is the TM with code w_i) iff $w_i \in L(M_D)$. So M_D accepts w_i iff \overline{M} accepts w_i11w_i.

We just proved that A_D is reducible to $\overline{A_{TM}}$.

10.3 The halting problem

Reading: Sipser 5.1 (pp. 188-189)

Let $HALT_{TM} = \{ < M, w > \mid M$ is a TM and M halts on string $w \}$. $HALT_{TM}$ is Turing-recognizable since it can be recognized by TM U.

$HALT_{TM}$ is not Turing-decidable.

Proof: We will reduce A_{TM} to $HALT_{TM}$. Assume TM R decides $HALT_{TM}$. We construct TM S that decides A_{TM} as follows: On input $< M, w >$ where M is a TM and w is a string, S first run TM R on $< M, w >$, if R rejects, rejects. If R accepts, simulate M on w until it halts. If M accepts, accept; if M rejects, reject.

10.4 Undecidable problems about Turing machines

Reading: Sipser 5.1 (pp. 189-192)

- The following problems about Turing machines are not decidable:
 - Whether $L(M) = \emptyset$ for any TM M. (See proofs below.)
 - Whether $L(M_1) = L(M_2)$ for any two TMs M_1 and M_2.
 - Whether $L(M)$ is finite for any TM M.
 - Whether $\epsilon \in L(M)$ for any TM M.
 - Whether $L(M) = \Sigma^*$ for any TM M.
- $E_{TM} = \{ < M > \mid M$ is a TM and $L(M) = \emptyset \}$ is undecidable.
 Proof: Reduce A_{TM} to E_{TM}. Assume that E_{TM} is decidable. Let R be the TM that decides E_{TM}. We use R to construct TM S that decides A_{TM} as follows: On input $< M, w >$,
 - Construct TM M_1 which on input x, rejects if $x \neq w$ and simulates M on w if $x = w$.
 - Run R on $< M_1 >$.
 - If R accepts, reject and if R rejects, accept.
- $NE_{TM} = \{ < M > \mid M$ is a TM and $L(M) \neq \emptyset \}$ is Turing-recognizable but not decidable.
 Proof: To prove that NE_{TM} is Turing-recognizable, we design a TM M_{NE} to recognize NE_{TM}. On input $< M >$,
– M_{NE} systematically generates strings w: $\varepsilon, 0, 1, 00, 01, \ldots$ and use the universal TM U to test whether M accepts w. (What if M never halts on w? Run M on w_1, \ldots, w_i for i steps for $i = 1, \ldots$)

– If M accepts some w, then M_{NE} accepts its own input M.

We next prove that NE_{TM} is not decidable. Assume that there is a TM M_{NE} that decides NE_{TM}, i.e., TM M_{NE} determines whether $L(M) \neq \emptyset$ for any TM M. We will use M_{NE} to construct a TM M_μ that would decides the undecidable A_{TM}. On input $<M, w>$,

– M_μ constructs a new TM M', which rejects if its input is not w and mimics M if its input is w.

– M' is then fed to M_{NE}.

– M_{NE} accepts its input M' iff $L(M') \neq \emptyset$ iff M accepts w.

• E_{TM} is not Turing-recognizable.

• Rice’s Theorem: Every nontrivial property of the Turing-recognizable languages is undecidable.

10.5 Other undecidable problems

Reading: Sipser 5.2 (pp. 199-205)

• Post’s correspondence problem is undecidable.

 We formulate the Post’s Correspondence Problem as a puzzle.

 Post’s Correspondence Problem (PCP)

 INSTANCE: $P = \{ \frac{a}{b_1}, \frac{a}{b_2}, \ldots, \frac{a}{b_k} \}$, where t_1, t_2, \ldots, t_k and b_1, b_2, \ldots, b_k are strings over alphabet Σ. (P can be regarded as a collection of dominos, each containing two strings, with one stacked on top of the other.)

 QUESTION: Does P contain a match, i.e., $i_1, i_2, \ldots, i_l \in \{1, 2, \ldots, k\}$ with $l \geq 1$ such that $t_{i_1}t_{i_2}\ldots t_{i_l} = b_{i_1}b_{i_2}\ldots b_{i_l}$?

 Equivalently, defined as a language, we have $L_{PCP} = \{ <P> | \text{P is an instance of PCP with a match} \}$.

 For example, for $P_1 = \{ \frac{b}{ca}, \frac{a}{db}, \frac{abc}{e} \}$, sequence 2, 1, 3, 2, 4 indicates a match. For $P_2 = \{ \frac{abc}{da}, \frac{ca}{db}, \frac{acc}{eb} \}$, there is no match.

• Any nontrivial property that involves what a program does is undecidable. For example, whether a program prints a certain message, whether it terminates, or whether it calls a certain function.

• It is undecidable whether a CFG is ambiguous.

• Let G_1 and G_2 be CFG’s and let R be a regular expression. It is undecidable whether

 – $L(G_1) \cap L(G_2) = \emptyset$.

 – $L(G_1) = L(G_2)$.

 – $L(G_1) = L(R)$.

 – $L(G_1) = \Sigma^*$.

 – $L(G_1) \subseteq L(G_2)$.

 – $L(R) \subseteq L(G_1)$.