9 Decidability

9.1 Hilbert’s tenth problem

- The Hilbert’s tenth problem (proposed in 1900 among a list of 23 open problems for the new century): Devise a procedure with a finite number of operations that tests whether a polynomial has an integral root. What Hilbert meant by “a process with a finite number of operations” is an algorithm.
- Formulating Hilbert’s problem with today’s terminology: Is there an algorithm to test whether a polynomial has an integral root? (If yes, give the algorithm.) Or, define a language $D = \{ p | p$ is a polynomial with integral root}. Is there a Turing machine to decide D? Here p, although a polynomial, is treated as a string.
 Note: In 1970, it was proved that D is not Turing-decidable (or undecidable).

9.2 A binary encoding scheme for TMs

- TM \leftrightarrow binary number.
 $Q = \{q_1, q_2, \ldots, q_{|Q|} \}$ with q_1 to be the start state, q_2 to be the accept state, and q_3 to be the reject state.
 $\Gamma = \{X_1, X_2, \ldots, X_{|\Gamma|}\}$.
 $D = \{D_1, D_2\}$ with D_1 to be L and D_2 to be R.
 A transition $\delta(q_i, X_j) = (q_k, X_m, D_m)$ is coded as $0^i10^j10^k10^m$. A TM is coded as $C_111C_211\cdots11C_n$, where each C is the code for a transition.
- TM M with input w is represented by $< M, w >$ and coded as $M111w$.
- Using similar schemes, we can encode DFA, NFA, PDA, RE, and CFG.

9.3 Decidable languages

Reading Sipser 4.1 (pp. 166-173)
The following languages are decidable by TMs.
- $A_{DFA} = \{ < B, w > | B$ is a DFA that accepts string $w \}$.
- $A_{NFA} = \{ < B, w > | B$ is an NFA that accepts string $w \}$.
- $A_{REX} = \{ < R, w > | R$ is a regular expression that generates string $w \}$.
- $E_{DFA} = \{ < B > | B$ is a DFA and $L(B) = \emptyset \}$.
- $E_{Q_{DFA}} = \{ < B_1, B_2 > | B_1$ and B_2 are DFAs and $L(B_1) = L(B_2) \}$.
- $A_{CFG} = \{ < G, w > | G$ is a CFG that generates string $w \}$.
- $E_{CFG} = \{ < G > | G$ is a CFG and $L(G) = \emptyset \}$.
- Every CFL is decidable.

9.4 Diagonalization

Reading: Sipser 4.2 (pp. 174-179)
- The size of an infinite set: Countably infinite and uncountably infinite.
- Diagonalization to prove a set to be uncountably infinite.
 Example (Sipser p. 175): \mathbb{Q}, the set of positive rational numbers, is countably infinite.
 Example (Sipser p. 177): \mathbb{R}, the set of real numbers, is uncountably infinite.
- Some languages are not Turing-recognizable. (Or equivalently, there are more languages than Turing machines. Since the number of Turing machines is countable, we wish to prove that the number of languages over an alphabet is uncountable.)
9.5 A language that is not Turing-recognizable

- Enumerating binary strings: \(\epsilon, 0, 1, 00, 01, 10, 11, \cdots \). The \(i \)th string, \(w_i \), is the \(i \)th string in the above lexicographic ordering.

- Let the \(i \)th TM, \(M_i \), be the TM whose code is \(w_i \), the \(i \)th binary string. If \(w_i \) is not a valid TM code, then let \(M_i \) be the TM that immediately rejects any input, i.e., \(L(M_i) = \emptyset \).

- Define the diagonalization language \(A_D = \{ w_i | w_i \not\in L(M_i) \} \). A boolean table where the \((i, j)\) entry indicates whether TM \(M_i \) accepts string \(w_j \). Language \(A_D \) is made by complementing the diagonal.

- \(A_D \) is not Turing-recognizable.

 Proof: Suppose, by contradiction, there is a TM \(M \) such that \(A_D = L(M) \). Then \(M = M_i \) with code \(w_i \) for some \(i \). \(w_i \in A_D \) iff \(w_i \not\in L(M_i) \) by definition of \(A_D \). \(w_i \in A_D \) iff \(w_i \in L(M_i) \) by \(A_D = L(M_i) \). A contradiction.

9.6 A language that is Turing-recognizable but not Turing-decidable

Reading: Sipser 4.2 (pp. 173-174 and 179-182)

- A universal TM:
 - Each TM (among those discussed) can only solve a single problem, however, a computer can run arbitrary algorithms. Can we design a general-purposed TM that can solve a wide variety of problems?
 - Theorem: There is a universal TM \(U \) which simulates an arbitrary TM \(M \) with input \(w \) and produces the same output.
 - TM \(U \) is an abstract model for computers just as TM \(M \) is a formal notion for algorithms.

- Let \(A_{TM} = \{ < M, w > | M \text{ is a TM and } M \text{ accepts string } w \} \)

 \(A_{TM} \) is Turing-recognizable since it can be recognized by TM \(U \). \(A_{TM} \) is called the universal language.

- \(A_{TM} \) is not Turing-decidable.

 Proof: Assume that \(A_{TM} \) is decided by TM \(T \). Then on input \(< M, w > \), \(T \) accepts iff \(M \) accepts \(w \).

 Define TM \(D \), which on input \(< M > \), runs \(T \) on input \(< M, < M > > \) and accepts iff \(T \) rejects \(< M, < M > > \).

 Feed \(< D > \) to \(D \). We see that \(D \) accepts \(< D > \) iff \(T \) rejects \(< D, < D > > \) iff \(D \) does not accept \(< D > \). A contradiction.

 Diagonalization is used in this proof. Why?