1. Describe an algorithm that uses a stack to determine whether a string is in the language L, where

 (a) $L = \{w \in \{A,B\}^* : w \text{ contains equal numbers of } A\text{'s and } B\text{'s}\}$

 (b) $L = \{w \in \{A,B\}^* : w \text{ is of form } A^nB^n \text{ for some } n \geq 0\}$

2. A deque is a data structure consisting of a list of items, on which the following operations are possible:

 - $\text{push}(x)$: Insert x on the front end of the deque.
 - $\text{pop}()$: Remove the front item from the deque and return it.
 - $\text{inject}(x)$: Insert x on the rear end of the deque.
 - $\text{eject}()$: Remove the rear item from the deque and return it.

 Describe routines to support the deque that take constant number of steps for each operation. You may use array-based or pointer-based implementation.

3. Solve the following recursive function by iterating, assuming $n = 4^k$ (i.e., $k = \log_4 n$) for some k.

 $$f(n) = \begin{cases}
 1 & \text{if } n = 1 \\
 3f\left(\frac{n}{4}\right) + n & \text{if } n \geq 2
 \end{cases}$$

4. Consider palindromes that consist only of lowercase letters from $\{a, b, \ldots, z\}$. Let $C(n)$ be the number of palindromes of length n. Write a recursive definition of $C(n)$.