CSCI 312 Principles of Programming Languages

Chapter 2
Syntax

Xu Liu
Review

Principles of PL
 syntax, naming, types, semantics

Paradigms of PL design
 imperative, OO, functional, logic

What makes a successful PL
 simplicity and readability
 clarity about binding
 reliability
 support
 abstraction
 orthogonality
 efficient implementation
Contents

2.1 Grammars
 2.1.1 Backus-Naur Form
 2.1.2 Derivations
 2.1.3 Parse Trees
 2.1.4 Associativity and Precedence
 2.1.5 Ambiguous Grammars

2.2 Extended BNF

2.3 Syntax of a Small Language: Clite
 2.3.1 Lexical Syntax
 2.3.2 Concrete Syntax

2.4 Compilers and Interpreters

2.5 Linking Syntax and Semantics
 2.5.1 Abstract Syntax
 2.5.2 Abstract Syntax Trees
 2.5.3 Abstract Syntax of Clite
Thinking about Syntax

The syntax of a programming language is a precise description of all its grammatically correct programs.

Precise syntax was first used with Algol 60, and has been used ever since.

Three levels:

– Lexical syntax
– Concrete syntax
– Abstract syntax
Levels of Syntax

Lexical syntax = all the basic symbols of the language (names, values, operators, etc.)
Concrete syntax = rules for writing expressions, statements and programs.
Abstract syntax = internal representation of the program, favoring content over form. E.g.,

- C: \(\text{if (expr) ... discard ()} \)
- Ada: \(\text{if (expr) then discard then} \)
2.1 Grammars

A *metalanguage* is a language used to define other languages.

A *grammar* is a metalanguage used to define the syntax of a language.

Our interest: using grammars to define the syntax of a programming language.
2.1.1 Backus-Naur Form (BNF)

• Stylized version of a context-free grammar (cf. Chomsky hierarchy)
• Sometimes called Backus Normal Form
• First used to define syntax of Algol 60
• Now used to define syntax of most major languages
BNF Grammar

Set of *productions*: \(P \)
- *terminal* symbols: \(T \)
- *nonterminal* symbols: \(N \)
- *start* symbol: \(S \in N \)

A *production* has the form
\[A \rightarrow \omega \]
where \(A \in N \) and \(\omega \in (N \cup T)^* \)
Example: Binary Digits

Consider the grammar:

\[
\textit{binaryDigit} \rightarrow 0 \\
\textit{binaryDigit} \rightarrow 1
\]

or equivalently:

\[
\textit{binaryDigit} \rightarrow 0 \mid 1
\]

Here, \(\mid\) is a metacharacter that separates alternatives.
2.1.2 Derivations

Consider the grammar:

\[
\begin{align*}
\text{Integer} & \rightarrow \text{Digit} \mid \text{Integer Digit} \\
\text{Digit} & \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9
\end{align*}
\]

We can derive any unsigned integer, like 352, from this grammar.
Derivation of 352 as an *Integer*

A 6-step process, starting with:

Integer
Derivation of 352 (step 1)

Use a grammar rule to enable each step:

\[\text{Integer} \rightarrow \text{Integer Digit} \]
Derivation of 352 (steps 1-2)

Replace a nonterminal by a right-hand side of one of its rules:

\[
\text{Integer} \Rightarrow \text{Integer Digit} \\
\Rightarrow \text{Integer 2}
\]
Derivation of 352 (steps 1-3)

Each step follows from the one before it.

\[
\text{Integer} \Rightarrow \text{Integer Digit} \\
\Rightarrow \text{Integer 2} \\
\Rightarrow \text{Integer Digit 2}
\]
Derivation of 352 (steps 1-4)

\[\text{Integer} \rightarrow \text{Integer Digit} \]
\[\rightarrow \text{Integer } 2 \]
\[\rightarrow \text{Integer Digit } 2 \]
\[\rightarrow \text{Integer } 5 \ 2 \]
Derivation of 352 (steps 1-5)

\[
\text{Integer} \Rightarrow \text{Integer Digit} \\
\Rightarrow \text{Integer 2} \\
\Rightarrow \text{Integer Digit 2} \\
\Rightarrow \text{Integer 5 2} \\
\Rightarrow \text{Digit 5 2}
\]
Derivation of 352 (steps 1-6)

You know you’re finished when there are only terminal symbols remaining.

\[Integer \Rightarrow Integer \ Digit \]
\[\Rightarrow Integer \ 2 \]
\[\Rightarrow Integer \ Digit \ 2 \]
\[\Rightarrow Integer \ 5 \ 2 \]
\[\Rightarrow Digit \ 5 \ 2 \]
\[\Rightarrow 3 \ 5 \ 2 \]
A Different Derivation of 352

\[\text{Integer} \Rightarrow \text{Integer Digit} \]
\[\Rightarrow \text{Integer Digit Digit} \]
\[\Rightarrow \text{Digit Digit Digit} \]
\[\Rightarrow 3 \text{ Digit Digit} \]
\[\Rightarrow 3 5 \text{ Digit} \]
\[\Rightarrow 3 5 2 \]

This is called a \textit{leftmost derivation}, since at each step the leftmost nonterminal is replaced.
(The first one was a \textit{rightmost derivation}.)
Notation for Derivations

Integer $\Rightarrow^* 352$

Means that 352 can be derived in a finite number of steps using the grammar for Integer.

$352 \in L(G)$

Means that 352 is a member of the language defined by grammar G.

$L(G) = \{ \omega \in T^* | \text{Integer} \Rightarrow^* \omega \}$

Means that the language defined by grammar G is the set of all symbol strings ω that can be derived as an Integer.
Problem in this Grammar

Consider the grammar:

\[
\begin{align*}
\text{Integer} & \rightarrow \text{Digit} \mid \text{Integer Digit} \\
\text{Digit} & \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \\
\text{Integer} & \rightarrow \text{Digit} \mid \text{SDigit AInteger} \\
\text{AInteger} & \rightarrow \text{Digit} \mid \text{AInteger Digit} \\
\text{Digit} & \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \\
\text{SDigit} & \rightarrow 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9
\end{align*}
\]

We can derive 031, 0003, 0000
2.1.3 Parse Trees

A *parse tree* is a graphical representation of a derivation.

Each internal node of the tree corresponds to a step in the derivation.

The children of a node represents a right-hand side of a production.

Each leaf node represents a symbol of the derived string, reading from left to right.
E.g., The step $Integer \Rightarrow Integer\ Digit$ appears in the parse tree as:
Parse Tree for 352 as an Integer

Figure 2.1
Arithmetic Expression Grammar

The following grammar defines the language of arithmetic expressions with 1-digit integers, addition, and subtraction.

\[\text{Expr} \rightarrow \text{Expr} + \text{Term} \mid \text{Expr} - \text{Term} \mid \text{Term} \]

\[\text{Term} \rightarrow 0 \mid \ldots \mid 9 \mid (\text{Expr}) \]
Parse of the String 5-4+3

Figure 2.2
2.1.4 Associativity and Precedence

A grammar can be used to define associativity and precedence among the operators in an expression.

E.g., + and - are left-associative operators in mathematics; * and / have higher precedence than + and -.

Consider the more interesting grammar G_1:

$$Expr \rightarrow Expr + Term \mid Expr – Term \mid Term$$

$$Term \rightarrow Term * Factor \mid Term / Factor \mid Term \% Factor \mid Factor$$

$$Factor \rightarrow Primary ** Factor \mid Primary$$

$$Primary \rightarrow 0 \mid \ldots \mid 9 \mid (Expr)$$
Parse of $4^{2}^{3}+5\times6+7$ for Grammar G_1

Figure 2.3
Associativity and Precedence for Grammar G_1

Table 2.1

<table>
<thead>
<tr>
<th>Precedence</th>
<th>Associativity</th>
<th>Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>right</td>
<td>**</td>
</tr>
<tr>
<td>2</td>
<td>left</td>
<td>* / %</td>
</tr>
<tr>
<td>1</td>
<td>left</td>
<td>+ -</td>
</tr>
</tbody>
</table>

Note: These relationships are shown by the structure of the parse tree: highest precedence at the bottom, and left-associativity on the left at each level.
2.1.5 Ambiguous Grammars

A grammar is *ambiguous* if one of its strings has two or more different parse trees.

E.g., Grammar G_1 above is unambiguous.

C, C++, and Java have a large number of

- operators and
- precedence levels

Instead of using a large grammar, we can:

- Write a smaller ambiguous grammar, and
- Give separate precedence and associativity (e.g., Table 2.1)
An Ambiguous Expression Grammar G_2

$$Expr \rightarrow Expr \ Op \ Expr \ | \ (\ Expr \) \ | \ Integer$$
$$Op \rightarrow + \ | \ - \ | \ * \ | \ / \ | \ % \ | \ **$$

Notes:

- G_2 is equivalent to G_1. I.e., its language is the same.
- G_2 has fewer productions and nonterminals than G_1.
- However, G_2 is ambiguous.
Ambiguous Parse of 5-4+3
Using Grammar G_2

Figure 2.4
The Dangling Else

\[
\text{IfStatement} \rightarrow \text{if (Expression) Statement} \mid \text{if (Expression) Statement else Statement}
\]

\[
\text{Statement} \rightarrow \text{Assignment} \mid \text{IfStatement} \mid \text{Block}
\]

\[
\text{Block} \rightarrow \{ \text{Statements} \}
\]

\[
\text{Statements} \rightarrow \text{Statements Statement} \mid \text{Statement}
\]
Example

With which ‘if’ does the following ‘else’ associate

if (x < 0)
 if (y < 0) y = y - 1;
 else y = 0;

Answer: either one!
The *Dangling Else* Ambiguity

Figure 2.5
Solving the dangling else ambiguity

1. Algol 60, C, C++: associate each `else` with closest `if`; use `{}` or `begin...end` to override.

2. Algol 68, Modula, Ada: use explicit delimiter to end every conditional (e.g., `if...fi`)

3. Java: rewrite the grammar to limit what can appear in a conditional:

 \[
 \text{IfThenStatement} \rightarrow \text{if } (\text{Expression}) \text{ Statement}
 \]

 \[
 \text{IfThenElseStatement} \rightarrow \text{if } (\text{Expression}) \text{ StatementNoShortIf}
 \]

 \[
 \text{else Statement}
 \]

 The category `StatementNoShortIf` includes all except `IfThenStatement`.
2.2 Extended BNF (EBNF)

BNF:

- recursion for iteration
- nonterminals for grouping

EBNF: additional metacharacters

- \{ \} for a series of zero or more
- () for a list, must pick one
- [] for an optional list; pick none or one
EBNF Examples

Expression is a list of one or more Terms separated by operators + and -

Expression -> Term { (+ | -) Term }

IfStatement -> if (Expression) Statement [else Statement]

C-style EBNF lists alternatives vertically and uses opt to signify optional parts. E.g.,

IfStatement:

if (Expression) Statement ElsePart opt

ElsePart:

else Statement
EBNF to BNF

We can always rewrite an EBNF grammar as a BNF grammar. E.g.,

\[A \rightarrow x \{ y \} z \]

can be rewritten:

\[A \rightarrow x A' z \]
\[A' \rightarrow | \ y A' \]

(Rewriting EBNF rules with (), [] is left as an exercise.)

While EBNF is no more powerful than BNF, its rules are often simpler and clearer.