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1 Introduction

Over the last two decades, considerable effort has been put into the development of matriz analytic techniques
[8, 9] for the exact analysis of a general and frequently encountered class of queuing models. In these models,
the embedded Markov chains are two-dimensional generalizations of elementary GI/M/1 and M/G/1 queues and
their intersection, i.e., quasi-birth-death (QBD) processes. Matrix analytic techniques have been successfully
used for modeling of complex computer systems [14]. Representative classes of Markov chains that can be solved
using matrix analytic techniques are the BMAP/PH/1 and MAP/PH/1 queues which can be used for modeling
queuing systems that experience both correlation and high variability, distinct characteristics of Internet traffic.
MAMSolver is a collection of the most efficient solution methodologies for M/G/1, GI/M/1 and QBD processes.
In distinction to existing tools such as MAGIC [13] and MGMTool [4] which provide solutions only for QBD
processes, MAMSolver provides implementations of the classical and the most efficient recent algorithms that
solve M/G/1, GI/M/1 and QBD processes. MAMSolver computes the stationary probability vector for the
process under study, simple measures of interest such as the average system queue length and response time,
and probabilistic indicators such as the caudal characteristic [5].

2 MAMSolver framework

MAMSolver deals with the solution of M/G/1, GI/M/1, and QBD processes. Throughout this exposition, we
refer to continuous time Markov processes. However MAMSolver provides solution for both continuous and
discrete time Markov processes. The formal representation of the processes under study is given by the block
partitioned infinitesimal generator:
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Block partitioning the infinitesimal generator defines a partition of the infinite state space in an infinite number
of sets S for i > 0, and the corresponding stationary probability vector in sub-vectors 7(® for i > 0.

2.1 M/G/1-type Processes

For the class of M/G/1-type continuous Markov chains, the infinitesimal generator is of the form Qus/q/1. Key
to all algorithms that solve M/G/1-type processes is the computation of the matrix G, which is given by the
solution of the matrix equation:
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Matrix G has important probabilistic interpretation: an entry (k,l) in G expresses the conditional probability
of the process first entering SU—1) through state I, given that it starts from state k of SU)[9, page 81]. Recent
advances show that the computation of G is more efficient when displacement structures are used based on the
representation of M/G/1-type processes by means of QBD processes [1, 5]. The most efficient algorithm for
the computation of G is cyclic-reduction [1]. The calculation of the stationary probability vector is based on
Ramaswami’s recursive formula [10], which defines the following recursive relation among stationary probability
vectors 7 (® for i > 0:
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Given the above definition of (/) and the normalization condition, a unique vector w(®) can be obtained by
solving the following system of linear equations:
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where the symbol “°” indicates that we discard one (any) column of the corresponding matrix, since we added a
column representing the normalization condition. Once 7(%) is known, we can then iteratively compute 7(#) for
i > 1, stopping when the accumulated probability mass is close to one. After this point, measures of interest can
be computed. [7] gives an improved version of Ramaswami’s formula, where the stationary probability vector
is computed using matrix-generating functions associated with triangular Toeplitz matrices. These matrix-
generating functions are computed efficiently by using fast Fourier transforms (FFT). This algorithm is outlined
as follows:
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where the following definitions hold:
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where p is a constant that defines how many of matrices S and S are computed. In the above representation,
the matrix Y is a lower block triangular Toeplitz matrix and the matrix Z is an upper block triangular Toeplitz
matrix.

2.2 GI/M/1-type Processes

The continuous GI/M/1-type Markov processes, with infinitesimal generator of the form Qg /1 admit the very-
elegant matrix-geometric solutions proposed by Neuts [8]. In matrix-geometric solutions the relation between
the stationary probability vectors () is:
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where R is the solution of the matrix equation
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The matrix R has an important probabilistic interpretation: R records the expected number of visits to each
state in S, starting from each state in S, before reentering S¢~1) [5]. R can be obtained using iterative
methods. Eq.(8) together with the normalization condition are then used to obtain w(®) and 7(!) by solving the
following system of linear equations:
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For i > 1, (¥ can be obtained numerically from Eq.(7). More importantly, closed form formulas exist for the
calculation of many useful performance metrics, such as the expected number of jobs in the service node (i.e.,
the system queue length) which is given by 7()(I — R)~2.

2.3 QBD Processes

The intersection of GI/M/1 and M/G/1 type processes result on quasi birth-death process, whose infinitesimal
generator is of the form Qgpp. Although QBDs can be solved using the algorithm for either the M/G/1-type or
GI/M/1-type process, they are usually solved using the very elegant matrix-geometric approach for GI/M/1-type
processes [8]. In this case, Eq.(8) reduces to the matrix quadratic equation
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The most efficient solution of Eq.(10) is provided by the logarithmic reduction algorithm [5]. 7(®) and w1 are
obtained by solving the following system of linear equations:
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Similarly to GI/M/1 processes, several measures of interest have closed form formulas that are based on 7(®),
7 and R only.

2.4 ETAQA Methodology

[12, 2, 3] propose a methodology to compute only aggregate probabilities instead of the whole stationary proba-
bility vector for M/G/1 and QBD processes. This aggregate methodology, known as ETAQA is exact, numerically
stable and most importantly very efficient with respect to both its time and space complexity. For an ergodic
CTMG, it requires only the knowledge of matrix G. The aggregate solution of an M/G/1 process is obtained as
the solution of the following system of linear equations:
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where 7®*) is the aggregate probability and is defined as 7 = Doy ™Y,

As a special case of M/G/1 processes, QBDs can be solved using this aggregate approach by solving the following
simplified system of linear equations:
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[12, 2, 3] provide algorithms for computation of measures of interests based on the computed aggregate probability
7@, 71 7],

3 MAMSolver

MAMSolver is a tool that provides implementation of the algorithms highlighted in Section 2. The tool provides
solutions for both DTMCs and CTMCs. The matrix-analytic algorithms that we take under consideration are
defined in terms of matrices, making matrix manipulations and operations the basic elements of the tool. The
input to MAMSolver, in the form of a structured text file, is the finite set of matrices that accurately describe
the process to be solved. Since there are different algorithms that provide solution for the same process, the user
specifies the method to be used. However, several tests are performed within the tool to insure that special cases
are treated separately and therefore more efficiently. MAMSolver is implemented in C++, and classes define the
basic components of the type of processes under consideration.

Matrix is the module that implements all the basic matrix operations such as matrix assignments, additions,
subtractions, multiplications, and inversions. For computational efficiency, we use well known and heavily tested
routines provided by the Lapack and BLAS packages?. Since solving a finite system of linear equations is a
core function in matrix-analytic algorithms, MAMSolver provides several numerical methods depending on the
size of the problem, i.e., the size of the coefficient matrices. For small-size problems exact methods such as
LU-decomposition are used, otherwise the Lapack implementation of iterative methods such as GMRES and
BiCGSTAB, are chosen.

Matrix-analytic modules handle both CTMC and DTMC processes. First these modules provide storage for
the input matrices. In addition, these modules provide all the routines necessary for the implementation of the
algorithms outlined in Section 2. Both the data structures and routines of the matrix-analytic modules are based
on the data-structures and routines provided by the matrix module.

The solution of QBD processes, requires computation of R (and sometimes of G depending on the solution
algorithm). First matrix R is computed using the logarithmic reduction algorithm[5]. For completeness we
provide also the classical numerical algorithm. To guarantee that there is no expensive (and unnecessary)
iterative computation of G (and R), the tool first checks if the conditions for explicit computation hold [11].
The available solution methods for QBD processes are matrix-geometric and ETAQA.

GI/M/1 processes require the computation of matrix R. The classic matrix geometric solution is implemented
to solve this type of processes. First the algorithm goes through a classic iterative algorithm to compute R (to
our knowledge, there is no alternative more efficient than the classic algorithm). Then, the tool computes the
boundary part of the stationary probability vector. Since a geometric relation exist between vectors (%) for
1 > 1, there is no need to compute the whole stationary probability vector.

M/G /1 processes require the computation of matrix G which is calculated using the classic iterative algorithm
or the cyclic-reduction algorithm or the explicit one (if applied). The stationary probability vector is computed
recursively using either the recursive Ramaswami formula or its fast FFT version. ETAQA is also implemented
as an alternative for the solution of M/G/1 processes.

MAMsolver computes and stores the stationary probability vector, allowing the user to compute any measures
of interest. Momentarily MAMSolver computes a customized first moment of the form:
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All the coefficient vectors p(@, p) al® alll are to be read from a text file with default values: p(® =0, p(1) =1,
al% = 0, al'l = 1. Computation of higher moments can be achieved by introducing additional coefficient vectors
all in the above formula.

More details and the whole source code for MAMSolver is available at http://www.cs.wm.edu/~riska/MAMSolver.html.

2 Available from http://www.netlib.org.



4 Future directions

We aim to extend the set of measures of interest that are computed by MAMSolver and increase the level of
abstraction such that the user can define them based on their needs. Further, we plan to link this tool with
another set of modules that we have on fitting data into distributions such as BMAP, MAP, PH. These type of
distributions accurately capture the characteristics of network and Internet traffic and the corresponding queuing
system fall into the cases of M/G/1, GI/M/1 and QBD processes. We plan to provide a framework that uses
Markovian modeling and additional analytic methods to analyse network and telecommunication traffic.
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