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Abstract

We extend the ETAQA approach, initially proposed for the efficient numerical solution of a
class of quasi birth-death processes, to the more complex case of M/G/1-type Markov processes.
The proposed technique can be used for the exact solution of a class of M/G/1-type models by
simply computing the solution of a finite linear system. We further demonstrate the utility of
the method by describing the exact computation of an extensive set of Markov reward functions
such as the expected queue length or its higher moments. We illustrate the method, discuss its
complexity, present comparisons with other traditional techniques, and illustrate its applicability
in the area of computer system modeling.

1 Introduction

In this paper, we consider Markov chains on an infinite state space having a M/G/1-type structure.
Such processes often serve as the modeling tool of choice for modern computer and communication
systems [7]. As a consequence, considerable effort has been placed into the development of exact
analysis techniques for M/G/1-type processes. The infinitesimal generator of such processes (for
the case of continuous time Markov chains) is upper block Hessenberg and follows a repetitive
structure. Matrix-analytic methods have been proposed for their solution with most prominent
the one developed by Neuts [9]. The key in the matrix-analytic solution is the computation of
an auxiliary matrix called G. Similarly, for Markov chains the of GI/M/1-type, which have a
lower block Hessenberg form, matrix-geometric solutions have been proposed [8]. Again, the key in
the matrix-geometric solution is the computation of an auxiliary matrix, called R. Traditionally,
iterative procedures are used for the determination of both matrices. Alternative algorithms for the
computation of G (and R) have been proposed. We note here the work of Latouche [4] for efficient
algorithms for determining the matrix R. The same algorithms can be used to compute the matrix
G [4]. Other methods for the computation of G (and R) using a recursive descent method have
been proposed [14] and compared with the traditional methods [5].

The primary distinction between our research and the above works is that we restrict our
attention to a family of M/G/1-type processes with a specific form, for which “returns” from a
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higher level of states to the immediate lower level are always directed toward a single state (for
such a subclass, the computation of the matrix G is trivial, but the remaining solution steps using
standard methods are still expensive). We instead recast the problem to the one of solving a finite
linear system of m + 2n equations where m is the number of states in the boundary portion of the
process and n is the number of states in each of the repetitive “levels” of the state space, and are
able to obtain “exact” results.

Our approach is an extension of the ETAQA method that was initially proposed for the efficient
solution of quasi-birth-death processes with matrix-geometric form [2]. The proposed methodology
uses basic well-known results for Markov chains. We exploit the structure of the repetitive portion
of the chain and instead of evaluating the probability distribution of all states in the chain, we
calculate the aggregate probability distribution of n equivalence classes, appropriately defined. The
extended ETAQA approach is both efficient and exact, allowing us to compute the probabilities
of the boundary states as well as the aggregate probability of the n equivalence classes; it also
provides the ability to efficiently compute reward rates of interests such as the k" moment of the
queue length.

This paper is organized as follows. Section 2 presents initial terminology and summarizes the
utility of using ETAQA for the solution of quasi-birth-death processes. In Section 3 we present the
basic theorem that extends ETAQA to M/G/1-type processes. We demonstrate how the method-
ology can be used for the computation of Markov reward functions in Section 4. We continue by
showing the applicability of extended ETAQA to bounded bulk arrivals in Section 5. In Section 6 we
compare the computation and storage complexity of the extended ETAQA with Neuts’s algorithm
[9] for the analysis of M/G/1 processes. Section 7 presents two applications from the computer
systems area that can be analyzed using the extended ETAQA. Finally, Section 8 summarizes our
findings and outlines future work.

2 Background: using ETAQA for the solution of QBD processes

In this section, we briefly review the basic terminology used to describe the class of processes we
consider, as well as our previous results on ETAQA. In our exposition, we restrict ourselves to the
case of continuous-time Markov chains (hence we refer to the infinitesimal generator matrix Q),
but the theory can just as well be applied to the discrete case.

2.1 Markov chains with repetitive structure

Neuts [8] defines various classes of infinite-state Markov chains with a repetitive structure. In all
cases, the state space is partitioned into the boundary states SO = {sgo), ey 352)} and the sets of
states SU) = {sgj),...,sgj)}, for j > 1:
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e and quasi-birth-death (QBD) Markov chains, essentially the intersection of the two previous
cases, whose infinitesimal generator can be block-partitioned as:
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(we use the letter “L”, “F”, and “B” according to whether the matrices describe “local”, ‘forward”,
and “backward” transition rates, respectively, and we use a “*” for matrices related to S (0)).

The matriz-geometric approach [8] can be used to study GI/M/1-type processes. If () is the
stationary probability vector for states in SU9), j > 0, we can write

vi>1, 7l =71 . RIL (1)
where R is the solution of the matrix equation

[o.¢]
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Iterative numerical algorithms can be used to compute R. Then, we can write
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Figure 1: Aggregation of an infinite S into a finite number of states.

yields a unique solution for 7(® and 7w(). For j > 2, #() can be obtained numerically from (1).
More importantly, though, many useful performance metrics, such as expected system utilization,
throughput, or queue length, can be computed exactly in explicit form from 7(®, 7#(), and R
alone.

2.2 ETAQA

The matrix-geometric approach is directly applicable to QBD processes as well, since QBD processes
are a special case of GI/M/1-type processes. In [2] we presented ETAQA, an alternative approach
that can be used to solve a subclass of QBD processes more efficiently than the classic matrix
geometric technique.

To apply ETAQA, B must contain nonzero entries in only one of its columns (which by conven-
tion we number last, n). This effectively means that all transitions from S) to SU~1) are restricted
to go to s(nj =Y. When this condition holds, it is possible to derive a system of m + 2n independent
linear equations in 7@, #(1), and #*), a new vector of n unknowns representing the stationary
probability of being in the sets of states 7; = {sz(-j) cj>2h, fori=1,...,n, ie., wt* =32, (@),
Fig. 1 illustrates how this approach can be thought of as aggregating the states of 7; into a single
macro-state.

Any stationary measure expressed as the expected reward rate can then be computed, as long
as the reward rate of state sgj )is a polynomial of finite degree k in j, with coefficients that can
depend on i. Then, the computation of the expected reward rate requires the solution of k£ linear
systems in n unknowns. In practice, simple measures such as average queue length (or its variance)
require only one (or two) linear system solutions, in addition to the solution of the initial linear
system in m + 2n unknowns. The matrix Q is highly sparse in practical problems, and so are the
matrices describing the linear systems solved by ETAQA, with beneficial implications to the overall
computational and storage complexity.

We stress that the special structure of B required by ETAQA does not enforce any special
structure in R itself: R can still be completely full and, since L and F are completely general,
there is no simple relation between its entries. The fact that B contains only a single nonzero
column does reduce the computational requirements of the matrix-geometric method from O(I-n?)

[4] to O(n® + I -n?) [2], where I is the number of iterations needed to achieve convergence to a



Figure 2: State repartitioning and merging.

given tolerance for R. However, for large values of n, the computational cost is still high and, even
more importantly, the storage requirements of the matrix-geometric method are still O(n?).

2.3 Limitations of ETAQA

The approach we introduced in [2] is very efficient, but its applicability is limited by the requirement
that B has only one nonzero column. There are models where this condition on B is not immediately
satisfied yet it can be achieved through an appropriate repartitioning of the states. However, a
repartitioning might in turn destroy the QBD structure.

For example, Fig. 2 (top) shows a QBD process where the transitions from S¥) to S&~1 can have
two destinations, sY™ and sgj ~Y. This would appear to prevent us from applying ETAQA. Fig. 2
(middle) shows instead that, by redefining the sets ) in such a way that S() = {sgz),sgl), 39)},

s = {3513), 322), 3&2)}, etc., the transitions from S to SU~Y now go to a single state, sgjfl). The



condition on B is then satisfied, but, in this case, the resulting a process is not QBD anymore, and
therefore we cannot apply ETAQA as defined in [2], since transitions from s((lj ) to SI()j 1) now span
two levels (i.e., from SU~D to SUF).

However, if a process has a repeated structure with forward jumps from S up to SU*P) for
a finite p > 1, it can still be treated as a QBD process provided that we merge p levels at a time
into a new larger single level. For example, in Fig. 2 (bottom), we merge the old S() and S®
into a new S, the old 8@ and S into a new S, and so on. Then, again, transitions are only
between adjacent levels. Note that this merging technique can be applied even if the multi-level
forward jumps are not created by a state repartitioning but are already present in the initial model,
as in the case of a queue with bulk arrivals of maximum size p.

The price paid for these state space manipulations has two components. First, the cost of
repartitioning the classes to ensure that B contains a single column: at the moment, we perform
this step “by hand”, so this is clearly a topic for future work. Second, merging p classes into one
has the effect of increasing the complexity of ETAQA by a factor p: a linear system in m + 2pn
variables has to be solved, and the k£ linear systems that must be solved to compute the expected
reward rates have now pn variables.

In this paper, we extend ETAQA so that it applies to M/G/1-type processes, still subject to the
restriction that B is a matrix with a single nonzero column. This allows us to study systems with
unbounded bulk arrivals. In addition, we also extend ETAQA to bounded bulk arrivals, without
having to merge classes of states; this effectively eliminates the additional complexity factor p just
discussed.

3 Extending ETAQA to M/G/1-type processes

The processes we consider have the following structure in the infinitesimal generator matrix Q:

FLO) RO RO G RO RG]
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where L® e R™*™ L) ¢ R*" and L € R™" represent the local transition rates between states
in $©, M) and SU) for j > 2, respectively; FU) € R™*™ and FU) € R"*™ represent the forward
transition rates from states in S to states in SU) and from states in S*) to states in S*+7) for
j >1and k > 1, respectively; B € R*™*™ and B € R"*" represent the backward transition rates
from states in S) to states in S(9) and from states in S\ to states in SU~) for j > 2, respectively;
and 0 is a zero matrix of the appropriate dimension.

For Q to be an infinitesimal generator, the infinite sets of matrices {F() : j > 1} and {F/ :
J > 1} must be summable. In practice, we must also be able to describe them using a finite
representation, so we assume that they obey the following geometric expression:

Vi >1, FOU) = AJ-1. R and FU) — Ad-1. F,



where A and A are nonnegative diagonal matrices with elements strictly less than one:
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This ensures that the infinite sums 772, Ai = (I—-A)!and >0 AJ = (I— A)~! exist. However,
our methodology is not bound to the special diagonal structure of A and A but rather to the
requirement that these sums exist and are efficiently computable.

If we also partition the stationary probability vector satisfying w-Q = 0 as w = [71'(0), ), 7@

with 7(® € R™ and «(9) € R™ for j > 1, we can then write - Q = 0 as:

rOLO 4+ OB 0
FOFQ + FOLO 4 @B — 0
FOF@ 4+ OFD 4 z@OL 1+ OB _ 0 3)
FOFG) + OFD L z@OFD 4 2®L 4+ @B = o

3.1 Conditions for stability

We briefly review the conditions that enable us to assert that the CTMC described by the infinites-
imal generator Q in (2) is stable, that is, admits a probability vector satisfying w - Q = 0 and
w17 =1,

First, observe that the matrix Q = B+ L + E;-";l FU) is an infinitesimal generator, since it

has zero row sums and non-negative off-diagonal entries. If Q is irreducible, any state sz(j ) in the
("
Z’I
through states in SU), I < j. In this case, for “large values of j”, the conditional probability of being
(4)
i

to 7 - 17 = 1, that is, the stationary solution of the ergodic CTMC having Q as the infinitesimal

original process can reach any state s; ’, for 2 < 7 < 5/ and 1 < 4,4’ < n, without having to go

in sy’ given that we are in SU) tends to #;, where # is the unique solution of 7 - Q = 0, subject
generator.

Then, the M/G/1-type process is stable as long as, for large values of j, the forward drift from
S is less than the backward drift from it:

7t - (Zl-FU)) 1T <w-B-1",
=1

This condition can be verified numerically, and it is easy to see that it is equivalent to the one
given by Neuts in [9], « - 3 < 1, where, in our terminology, the column vector 3 is given by
8= (L +3R 0 F(l)) .17, As in the scalar case, the condition where 7 - B is exactly equal to 1

results in a null-recurrent CTMC. If Q is instead reducible, the same condition for stability must
be applied to each subset of {1,...,n} corresponding to a recurrent class in the CTMC described

by Q



3.2 Main theorem

As done in [2], we must require that B contains nonzero entries only in its last column. Then, we
derive m + 2n equations in w(?, (1) and the new vector of n unknowns w*) = >, x(). Under
these assumptions we can formulate the following theorem.

Theorem. Given an ergodic CTMC with infinitesimal generator Q having the structure shown in
(2) such that the first n — 1 columns of B are null, Bi:s,1:n-1 = 0, and with stationary probability
vector = [7\'(0),7’[’(1),7\'(2), .. .], the system of linear equations

XM =[1,0] ()
where M € R(m+2n)x(m+2n) is qefined as follows:

(A ' (I - A)_l : ﬁ‘)lzn,l:n—l A. (I - A)_Q FT

R 1:m,lin—1
M=|1"| B |L3) o | (I-A) " Flipim | I—A)2.F17 (5)
171 o 0 (I-A)1F+L)ipimna | (I-A)2F-B)-17

admits a unique solution x = [7(?), #(1) x(*)] where 7#(*) = -, &0,
Proof: We first show that [ﬂ'(o),ﬂ'(l),ﬂ'(*)] is a solution of (4) by verifying that it satisfies five
matrix equations corresponding to the the five sets of columns we used to define M.

(i) The first equation is the normalization constraint:

7@ .17 4 7z 9T 4 () 1T = 1. (6)
(ii) The second set of m equations is the first line in (3):
0. LO 4+ . B =0, (7)

(iii) The third set of n — 1 equations is from the second line in (3), which defines n equations,
fortunately only the last one actually containing a contribution from 7(?), due to the structure of

2)

B. This is of fundamental importance, since 7(2) is not one of our variables. Hence, we consider

only the first n — 1 equations and write:

" lim,lin— 1:m,1in—1

(iv) Another set of n — 1 equations is obtained as follows. First, the sum of the remaining lines
in (3) gives

7O .S H0 4 20 5RO £ 3 0. (L "> F(j)) 3 R0 B =0,
=2

j=2 j=1
which, since 3772, FO=A.I-A)!-Fand Y FU) = (I— A)"! . F, can be written as
aOA. I-A) L F+aOT-A) L. F+xl ((1 —A)L.F+ L) +(x® —x@).B=0.

Again, only the last equation contains a contribution from (2, thus we consider only the first
n — 1 equations:

~

=0 (A.(1-A)7-F) +a®) (- A)~ - F) +n) (1- A)7'F - +L) ~0

1:n,ln—1
(9)

1:n,l:in—1 1:n,l:in—1



(v) For the last equation, consider the flow balance equations between U{:_Ol S® and ;S o,
for j > 2,

( o0 o0
7(0) . Zﬁ‘(i) 1T 7). ZF(Z') i - 72 .B.17
' ' o
70, Zﬁ‘(i) 17 4 x (M) ZF(Z') 1T 7@ Z F@O 1T — 3 .B.17T
) i=3 i=2 i=1
o o o o o
7(0) . Z FO . 17470 ZF(Z') B ) Z FO .17 4 ... 4 zk). ZF(i) 7 = g+ . B 1T
i=k+1 i=k i=k—1 i=1
\
(10)
and sum these equations by parts:
oo o0 R o o0 . o0
@ 5SS EO AT 4 10 ZZF(’ 1T+Z7r SO FO AT =3 1k . B .17,
k=2 i=k k=1i=k k=1i=k k=2

since 2,32 FO = A . (I-A) 2.-Fand Y2,5% FO = (I—A) 2.F, we finally obtain
k=2 £Lii=k k=1 i=k
7O A @-A) 2. F 1T +720 . @-A) 2. F- 1T +2% . (1-A)2.F-B)-1T =0 (11)

The vector [0, w1 7()] satisfies (6), (7), (8), (9), and (11), hence it is a solution of (4). Now
we have to show that this solution is unique. For this, it is enough to prove that the rank of M is
m + 2n, by showing that its m + 2n rows are linearly independent.

Since Q is ergodic, we know that the vector 17 and the set of vectors corresponding to all the
columns of Q except one (any one of them) are linearly independent. In particular, we choose to
remove from Q the n'" column of the second block of columns in (2), corresponding to the transitions
into state s . The result is then the countably infinite set of linearly 1ndependent column vectors of

RN {v[ v[2 ..} shown in Fig. 3. We then define n new vectors of RN, {z[1), ... z["} as follows
(see Fig. 3):
e Fori=1,.. —1, let 2l =352V [m+in+ti] that is we sum the i*" column for each block

of columns, startlng from the block corresponding to transitions into level S@. B doesn’t
appear in the expression of these vectors because B1.; 1., -1 = 0.

o Let z" = S ke v vImtkn+i o justify the expression for z[™, it is convenient
to consider 1ts derivation in steps: zl" = Y yU!, where yll = Y7  x[0-Dntid and
xl(G=1)n+i] = Y,V [mt+kn+i]  Note that Q being an infinitesimal generator implies that

B+L+I-A)" Gl - F)- 17 = 0, which explains the 0 components in the vectors yl7!, or,
equivalently, that (L 4+ (I—A)~1.F)-17 = —B- 17, which explains the presence of B in z"l.

The m + 2n vectors {v[} ... vImtnl gl 27} are linearly independent because:

e The original set {vl!], v[?}, ...} is linearly independent.

e The vectors {z['), ..., z["} are obtained as linear combinations of different subsets of vectors
from {vimtntl] ylmtnt2] 3
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(I-A)2.F-B)-17

Figure 3: The column vectors used to prove linear independence.

e Disjoint subsets of vectors are used to build {z[Y, ..., z"~1}.

e z[” is built using vectors already used for {zlY,...,z»~1} but also vectors of the form
v[mtin] which are not used to build any of the vectors in {z[l], .. ,z["_”}.

Hence, the matrix having as column the vectors {v[ll, ... vIm*nl gl 5[} has rank m+2n,

which implies that we must be able to find m + 2n linearly independent rows in it. Since the row
m + jn + 1 is identical to the row m +n+¢ for 5 > 1 and ¢ = 1,...,n, the first m + 2n rows must
be linearly independent. These are also the rows of our matrix M, and so the proof is complete. O




4 Computing the measures of interest

We now consider the problem of obtaining stationary measures of interest once w0 7 and =*)
have been computed. We consider measures that can be expressed as the expected reward rate

S . .
_ Z z pZ(J) '7"@(])’

J=04e8G)
@ .

length in steady state for a model where SU) contains the system states with j customers in the

() _ () _

/) = j, while, to compute the second moment of the queue length, we let pZ = 42,
Since our solution approach computes 7(®, (1), and 7). we rewrite r as

where p;”’ is the reward rate of state s(j ). For example, if we want to compute the expected queue

queue, we let p;

o

j=2
where p(0 = [pg"),...,p&?)] and pl¥) = [p ...,pg)], for j > 1. Then, we must show how to
compute the above summation without having the values of () for j > 2 explicitly available. We
do so for the case where the reward rate of state s( 7 ,forj >2andi=1,...,n, is a polynomial of
(o] 0l (k]

a; a;

degree k in j with arbitrary coefficients a;~,a, ", ..., a;

Vi>2, Vie{1,2,...,n}, pgj) = a4 allj 4. 4tk (12)

In this case, then,
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7j=2
= 0. al0T 4 p[1. [T 4 ..y plk]. glkIT
and the problem is reduced to the computation of rlt = Z;’;Q jlwl) forl=0,... k.

We show how rl¥l, k& > 0, can be computed recursively, starting from rl%. which is simply 7®).
Multiplying the equations in (3) from the second line on by the appropriate factor j* results in

kg0 p1) 4 9k (. 4 2kx(2).B =0
3k Fp2) 4+ 3kxO.p0) 4 3kzQ.L + 3¢xG).B 0
4k 0).FB) 4 gkrD.F@ 4 gkx@.FO) 4 4kxOL 4+ 4kxW.B = 0 °

Summing these equations by parts we obtain

o o0
70N (G +2)%- A F+ ) (2’°L(1 Z]+3 Aj-F>+

~ / [\ /

lef plk.0] def erk,1]

11



PRI (Z(j+z’+2)k-Aj-F+(i+1)k-L) +3 7@ .*.B=o.

j=0
which can then be rewritten as

Exchanging the order of summations we obtain

k o0 ~
> ( ]; ) STal bt AL+ Y (G +2) AT F | 4+l B = B0 gkl
=0 i=2 j=0

= plk—1]

+rikl.B = —flk:0] _glk1]

Finally, separating the case [ = 0 from the rest in the outermost summation we obtain

o0 k 00
. k _ . .
rlfl . <L+§:AJ-F> -I—r[’“]-B:—f[k’O]—f[k’l]—E:< z )r[k 1. <L+§ (J+2)I'A]'F>,

§=0 =1 j=0

which is a linear system of the form rl*/ . (B + L + (I — A)! - F) = bl¥l, where the right-hand
side bl¥l is an expression that can be effectively computed from 79, #() and the vectors rl®
through rl*~1. However, the rank of (B + L + (I — A)~! . F) is n — 1, so the above system is

under-determined. We then remove the equation corresponding to the last column, resulting in
_ k
(1= A) " F 4 L)t = bl (13)

and obtain one additional equation for rl¥! from the equations in (10), again after multiplying them
by the appropriate factor j*,

o o0
( 21677(0).2 FO 17T 4 Qkﬂ-(l).z FO 1T — 9%kx(2).B.1T
=2 i=1
o0 o0 [ee]
3k (0). Z]}(i) 1T 4 3k7r(1).z FO . 1T 4 3k7r(2).z F® . 1T = 3kx3).B.17T
9 ’io:o3 ’iOZOQ io:ol . '
4k 70N @) 4T 4k7r(1).z FO .17 4 4kﬂ-(2).z F® .17 ¢ 4kﬂ-(3).z FO .17 — 4kz®.B.17T
i=4 i=3 i=2 i=1
\

Noting that, for j > 1, 3772, F@) = A7-1.(I— A)"!. F, summing these equations by parts gives:

7O G+2F AL 1A F T+ 2OY G2k AT 1A Ry
. j=0

oo o0
a3 G +i+1)k AT I-A) T F1T = Z] -B-17,
=2 j=

which, with steps analogous to those just performed to obtain (13), can be written as

. (1-A)2.F-B) 17 = ¥ (14)

12



where ! s, again, an expression containing w0, 7() and the vectors rl” through i1

Note that the n x n matrix [(I— A)™' -F +L)1.p,1:0-1|((I— A)~2. F — B) - 1] has full rank.
This follows from the fact that we already proved that the matrix M of our main theorem, (5),
has full rank, hence its last n rows are linearly independent. But the first m + n entries in each of
those n rows are identical, hence their last n columns must be linearly independent; that is exactly
the matrix we are considering here. Hence, we can compute rl¥! using (13) and (14), i.e., solving a
linear system in n unknowns (of course, we must do so first for [ =1,...,k —1).

It should be noted that the expressions for bl¥l and ¢/ contain sums of the form

oo ) 00 .d—l )
S+t A= AT N5 AT AT d=23 I=1,...,k.
j=0 j=1 j=1

Thus, we need to compute infinite sum of the form Z?‘;l 4' - AJ, which obviously converge since
the spectral radius of A is strictly less than one. It can be shown that

00 l
Zjl AT = (Z Al i) - Az) S(I— A)—(l+1)
j=1 i=1
where A(l,7) are the Eulerian numbers [10], which can be computed using the recursion
AQd) =i -AQ—1,0)+ (I —i+1)- AQ—1,i — 1),

with A(1,1) =1 and A(l,i) =0fori <lori>I.
As an example, we consider r!), which is used to compute measures such as the first moment
of the queue length. In this case,

~ ~ ~

bl = —x©@. 2@-A)" +A-(1-4)?) F—n). (2"LO + 3I-A)" + A (I- A)?) - F)

[0 (A-(I—A)_Q-F+2(I—A)_1-F+L)
and
M= 7@ (I-A)3+T-A))- A F-1" -7 (A @T-A)+20-A)?).F-17

(A T-A)P+(T-4)7) . F-1T.

We conclude by observing that, when the sequences {F@) : j > 1} and {F) : j > 1} do not
have the geometric form we assume, the treatment in this section can be modified appropriately.
However, some measures might be infinite. For example, if the sequences are summable but decrease
only like 1/5% for some d > 1, then the moments of order d — 1 or higher for the queue length do
not exist (are infinite).

5 The case of bounded bulk arrivals

If we restrict the process so that it is allowed to jump forward by at most p levels, its infinitesimal
generator Q still has the structure of (2), except that F() and FU) are zero for j > p (this occurs,
for example, when modeling queues with bounded bulk arrivals). Since the number of matrices
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on any row is finite, there is no reason to require any particular relation between the matrices )
or FU). We can then formulate the following lemma.

Lemma. Given an ergodic CTMC with infinitesimal generator Q, having the structure shown
in (2) such that ) = 0 and F) = 0 for j > p and the first n — 1 columns of B are null,
Bi.n,1:m—1 = 0, and with stationary probability vector w = [77(0),77(1),77(2),...], the system of
linear equations

17 [ LO | Frmin 1| (S0, F0) (S2,G - 1) F@) a7

1:in,lin—1

<« 17| B L%zz,l:n—l (Eé?zl F(J')>1m . (Z?:N' : F(J')) 1T 11,0
17| o 0 (P PO + L)M . (b, i-FO —B) .17

admits a unique solution x = [7(0, #() 7] where w(*) = 37, 70,
Proof: The steps of the proof are exactly the same as those of the theorem introduced in Sect. 3,
hence they are omitted. O

The measure of interest r can also be derived as done in Sect. 4. Using the same definitions
for r, p, and rl!, we need to show how to express the vectors rl!l, | = 0,.... k. For brevity’s sake,

k]

we omit the steps, and simply state that, again, rl¥l can be computed recursively by solving the

equation

i=1

p p
LI (z FO) 4+ L) (Z] CFU) _ B) 17| = bl
l:in,lin—1 j=1

where bl*] is computed using 7?9, 71, and rl% through rlk—11,

We stress that we consider the case of finite bulk arrivals explicitly because, while such type
of process could be solved using the version of ETAQA presented in [2] or the matrix-geometric
method [8], by merging every p levels into a larger single level, the results of this section show how
to compute the solution without the corresponding overhead (a factor of p for both execution time
and storage in ETAQA, a factor of p? for execution time and p? for storage in the matrix-geometric
method).

6 ETAQA and alternative solution methods

In this section, we attempt to examine where the extended ETAQA approach we just introduced lies
with respect to alternative solution approaches. We start by saying that M /G /1-type processes have
generally received less attention than GI/M/1-type processes in the literature. This is no doubt due
to their greater analytical complexity and to the lack of such a well-known and successful solution
approach as the matrix-geometric technique for GI/M/1-type processes. The main reference we
are aware of for the solution of M/G/1-type processes is the “other” book by Neuts, published in
1989, which presents a solution approach which we will call “Neuts’s algorithm” [9, pages 158-167].

Neuts’s algorithm is described in terms of a discrete-time Markov chain with a transition proba-
bility matrix Q having the same structure as in (2), with L(!) = L (we do not assume this condition
in the continuous case because B # B implies that the diagonal of L(Y) might differ from that of
L). The algorithm is based on the matrix G, whose entry in row 7 and column %' represents the
probability that, if the DTMC is in state sgj ), it will enter level SU~Y for the first time through
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state s;; 7. G is stochastic iff the DTMC is recurrent, and the algorithm assumes that G is irre-

ducible. Several steps are required to obtain the value of 7(® and 7(1).

1. Let Q= (B+ L+ Y FU)) be the transition probability matrix analogous to the one defined
in Sect. 3.1 for the continuous case; compute the column vector 3 = (L + 3272, j - FO)) .17, the
probability vector 7 solution of ¥ - Q = 7, and p = 7 - 3.

2. Compute the matrix G minimal solution of G = B+ L -G + 372, FU) . GIt! (see [5, 9] for
algorithmic issues).

3. Compute the probability vector g satisfying g =g - G.

A~

4. Compute the matrices X and Y solution of X = B + (L+ E;-”;l FO) . Gj) -X and ¥ =
2 FO).@i- 1410 .v

5. Compute the stochastic matrices K = L0 4+ (Z;”;l FO) . Gj_l) Xand H = E-Y-l—Zé-’il FU).GJ.
6. Compute the probability vectors k and h satisfying k = k-K and h = h-H.

7. Compute the column vectors

o0
. . ~ -1
¢'=|1-B-Y FO.G/| . [I-Q+ (1" -8)-g| -1T+(1-p) ' -B-17
j=1
and
® . : - —1 s
ZFJ)—ZF Nerht -[I—Q+(1T—ﬂ)-g] 7+ 13 (G -1)-FO T
j=1 = j=1
8. Compute the column vectors k/ = ¢"+Z] (FU . GIL. [I—L—E;’;l F(j)-Gj] - ¢' and

h'=¢'+B-(I-LO)"" . ¢".
9. Finally, compute w0 = (k- k')_1 kand 7(1) = (h- hl)_l -h.

Once 7 and (! are known, we can then iteratively compute 7() for j = 2, 3, etc., stopping
when the accumulated probability mass is close to one. This can be a numerically intensive step
when p is close to one since, in this case, the entries of () decrease slowly as j grows.

Comparing now ETAQA to Neuts’s algorithm, it is only fair to point out immediately that,
while in principle Neuts’s algorithm can solve all M/G/1-type processes, our extended ETAQA
approach can be applied only when the connectivity of the states in the CTMC satisfies certain
conditions: we essentially require that B has a single nonzero column (after repartitioning the
state space, if required). When ETAQA is applicable, however, it makes sense to investigate its
advantages with respect to more general algorithms.

The condition we impose on B does simplify Neuts’s algorithm considerably, as it implies that
G can be obtained without any computation: G;; is 1 if ¢/ = n and 0 otherwise. However, given
the complete generality of the matrices L and L{®), the computation of X and Y still requires
considerable effort and, from that point on, the structure of G only reduces the computational
complexity of Neuts’s algorithm in the sense that all matrix products containing a factor G on the
right can be performed efficiently and require only a vector of size n for their storage. However,
the matrices X, Y, H, and K must be computed and stored in their entirety (at least the last two;
X and Y can be actually computed and stored one column at a time), and they are not sparse
in general, hence the computational complexity of is O(m?® 4+ n3) and the storage complexity is
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O(m? + n?). Furthermore, Neuts’s algorithm computes a finite number of entries in 7, thus any
stationary measure obtained from it is, in a sense, approximate because of this truncation.

Our extended ETAQA method, in addition to its appealing simplicity, allows us to exploit the
sparsity of the blocks defining Q, for both execution time and storage: the matrix M used by
ETAQA (or the analogous one for the case of bounded bulk arrivals) has the same sparsity as
the original blocks (the inverses (I — A)~! and (I — A)~' require linear computation and storage,
since the geometric scaling factors A and A are diagonal matrices), and the iterative solution of
the linear system in (4) requires time linear in the number of nonzero entries in M. Furthermore,
ETAQA allows instead to efficiently compute “mathematically exact” measures.

7 Applications

In this section, we describe two applications that can be solved by the extended ETAQA approach
described in Sect. 3. We concentrate on presenting the CTMCs that models the application of
interest and we focus on the form of the repeating matrix pattern that allows us to apply our
technique.

7.1 Multiprocessor scheduling

Resource allocation in multiprocessor systems has been a favorite research topic for the performance
and operating systems community in recent years. The number of users that attempt to use the
system simultaneously, the parallelism of the applications and their respective computational and
secondary storage needs, and the need to meet the execution deadlines are examples of issues that
exacerbate the difficulty of the resource allocation problem.

A popular way to allocate processors among various competing applications is by space-sharing
the processors: processors are partitioned in disjoint groups and each application executes in isola-
tion on one of these groups. Space-sharing can be done in a static, adaptive, or dynamic way. If a
job requires a fixed number of processors for execution, this requires a static space-sharing policy
[12]. Adaptive space-sharing policies [1] have been proposed for jobs that can configure themselves
to the number of processors allocated by the scheduler at the beginning of their execution. Dynamic
space-sharing policies [6] have been proposed for jobs that are flexible enough to allow the scheduler
to reduce or augment the number of processors allocated to each application in immediate response
to environment changes. Because of their flexibility, dynamic policies can offer optimal performance
but are the most expensive to implement because they reallocate resources while applications are
executing.

Modeling the behavior of scheduling policies in parallel systems often results in CTMCs with
matrix-geometric form [13]. Here, we present a CTMC that models the behavior of a restricted
dynamic scheduling policy. A common solution to reducing the processor reconfiguration cost in
dynamic policies is to limit the number of reallocations that can occur during the lifetime of a
program [1]. Fig. 4 illustrates the CTMC of a dynamic scheduling policy that can only reduce the
number of processor allocated to an application, and only immediately after a service completion.
We restrict our attention to the system behavior under bursty arrival conditions modeled as bulks
of finite size (see [11] for an analysis of adaptive space-sharing policies under the same assumptions
for the arrival process).

16



The system state is described by the number of applications that are waiting for service in
the queue and the number of applications that are in service. NwM s, denotes that there are N
applications in the queue, waiting to be executed, and M applications in service, each having a
fraction % of the total number of processors allocated to it. Thus, the service rate of an application is
W, a function of r. For simplicity, the figure assumes that the maximum number of simultaneously
executing applications is set to three and that the bulk size is at most four, but any other finite
concurrency level and unbounded bulk sizes can be managed by our approach.

A deterministic set of transition rules specify the successor state for each state in the chain.
The policy strives to guarantee that all executing applications are allocated an equal number
of processors while minimizing the waiting queue length, but since reallocations occur only at
departure times, there are states where there are fewer than three executing applications even
when there are applications waiting in the queue. We further assume that the policy incurs no
reallocation overhead to illustrate its ideal behavior.

It is easy to observe that our lemma for the bounded bulk arrivals can be readily applied for
the performance analysis of this policy. Since the behavior of this dynamic scheduling policy under
different workloads is outside the scope of this paper, we do not present numerical results. We
point out, however, that the average job response time can be easily calculated by first computing
the average queue length as discussed in Sect. 3 and then applying Little’s law.
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Figure 4: The CTMC that models a dynamic multiprocessor scheduling policy.

7.2 Self-monitoring and self-adjusting server

In many application domains it is common practice to dynamically add or remove servers so as
to dynamically adjust server capacity to incoming workloads [3]. The motivation behind such

!This overhead can be accounted for by appropriately reducing the service rates when reallocation occurs.
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self-adjusting systems is that it is desirable to operate using as few as possible servers when the
load is low (and perhaps use the idle servers for other types of work), but at the same time being
able to sustain heavier workload intensities by dynamically increasing the system capacity through
the addition of more servers. Examples of such applications include protocols in communication
networks, Internet information query services, and schedulers for concurrent bandwidth allocation
to both multimedia and best-effort applications. Here, we concentrate on the behavior of a scheduler
that serves applications in a time-sharing manner and adjusts its capacity as a function of the arrival
rate intensity.

A generic CTMC that describes the behavior of such systems is illustrated in Fig. 5. The system
state defines the number of applications in the system and the current service level. We assume
that the server can operate at four levels, a, b, ¢, and d. Requests to the system may come from two
sources. The first one is Poisson with parameter A, while the second one is Poisson with parameter
% but may be of arbitrary bulk size. The bulk size is governed by a geometric distribution with
parameter 1 — p (for the sake of clarity, Fig. 5 shows the bulk arrivals only for service level a).

The service station increases its capacity gradually, according to the current workload. The
time to add a new server is exponentially distributed with parameter v; this may occur during the
service levels a, b, and c. We further assume that the reduction of server capacity is instantaneous
and occurs only when the system empties completely (modeling an actual delay for taking servers
offline can be easily accommodated, since it just increases the set of states S (0)).

It is easy to verify that our extended version of ETAQA can be readily applied after reparti-
tioning the state space as shown by the grayed-out areas in Fig. 5.

“
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Figure 5: The CTMC that models a self-monitoring and self-adjusting server.
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8 Conclusions and future work

In this paper we presented an extension of the ETAQA approach to M/G/1-type processes. Our
exposition focuses on the description of the extended ETAQA methodology and its application to
efficiently compute the ezxact probabilities of the boundary states of the process and the aggregate
probability distribution of the states in each of the equivalence classes corresponding to a spe-
cific partitioning of the remaining infinite portion of the state space. Although the method does
not compute the probability distribution of all states, it still provides enough information for the
“mathematically exact” computation of a wide variety of Markov reward functions.

We must emphasize that our treatment does not apply to all M/G/1-type processes. The
necessary condition that must be satisfied is that all transitions from one level to the previous one
are directed to a single state (but no restriction is placed on transitions within a level or toward
higher levels). When this condition is satisfied, the solution is derived by solving a system of m+2n
linear equations and provides significant savings over standard algorithms for the solution of general
M/G/1-type processes. Although the condition on B is indisputably restrictive, we present a set
of applications from the computer systems field where extended ETAQA readily applies.

In the future, we expect to release a software tool that efficiently implements the extended
ETAQA. Implementation of the tool is currently underway. We also intend to explore possibilities
to extend the methodology to a wider class of M/G/1-type processes than those presented in this
paper. To this end, the utility of approximation methods based on the extended ETAQA will be
examined.
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