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Abstract—We consider the general problem of workload model
generation using Markovian Arrival Processes (MAPs). MAPs
are a large class of analytically tractable processes frequently
used in communication and computer network modeling. We
show that MAP moment and autocorrelation formulas admit
a simple scalar form deriving from spectral properties of the
MAP defining matrices. This suggests a new approach for study-
ing MAPs, by which we address challenging characterizationand
fitting problems as well as the open issue of synthesizing processes
with prescribed moments and acf for inter-arrival times. A
case study illustrates the impact of spectral-based synthesis on
sensitivity analysis of network models.

I. I NTRODUCTION

Markovian Arrival Processes (MAPs) [12] form a general
class of point processes which admits hyper-exponential, Er-
lang, and Markov Modulated Poisson Processes (MMPPs) as
special cases. The most appealing feature of a MAP is the
ease of its integration within queueing models, which makes
this technology useful for evaluating the performance effects
of non-Poisson workloads. Such workloads are prevalent in
networking where long-range dependent traffic has been long
identified as an important traffic characteristic, but are also
recently emerging in systems including disk drives [15] and
multi-tiered systems of e-commerce applications [11]. Re-
newal service processes of high variability have been recently
shown inadequate for performance prediction of multi-tiered
Internet services if there is dependence in the traffic flows
through the various tiers [11]. Models of such systems that
are parameterized via MAPs dramatically improve analysis
accuracy and applicability to real networks.

Although the MAP technology is rapidly growing and many
new results and applications have been recently presented [2],
[6], [8], [9], [11], [17], little advances have been obtained
in the characterization of the actual capabilities of MAPs.In
this work, we provide an analytical characterization of MAPs
based on a spectral analysis of the moments and of the au-
tocorrelation function (acf). Our result simplifies the analysis
of general MAPs by representing the most important statistics
in terms of a few scalar parameters. We illustrate applications
of this result to characterization, fitting and synthesis ofMAP
processes. Sensitivity analysis of network queueing models is
shown as an application of spectral-based process synthesis.

A. Markovian Arrival Processes

We point to [12] for background on MAPs, and we limit
here to a synthetic overview. A MAP(n) is specified by two
n× n matrices, a stable matrixD0 and a nonnegative matrix
D1, that describe transition rates betweenn states. Each tran-
sition in D1 produces a job arrival;D0 describes background
transitions not associated with arrivals;Q = D0 + D1 is
the infinitesimal generator of the underlying continuous-time
Markov chain. We focus on the inter-arrival (or equivalently
service) time description of arrival processes [16]. For a
MAP(n), inter-arrival time moments and acf are computed
using the probability vectorπe, πee = 1, of the embedded
process with irreducible stochastic matrixP = (−D0)−1D1,
wheree is a column vector of1’s of the appropriate dimension.
The MAP inter-arrival times are identically distributed with
meanE[X ] = πe(−D0)−1e, squared coefficient of variation
c2
v = 2E[X ]−2πe(−D0)−2e − 1, andk-th moment

E[Xk] = k!πe(−D0)−ke, k ≥ 0. (1)

The lag-k acf coefficient is computed as

ρk =
E[X ]−2πe(−D0)−1P k(−D0)−1e − 1

c2
v

, k ≥ 1. (2)

Throughout the paper we refer to the(D0, D1) representation
as the Markovian representation of a MAP.

B. Paper Organization

The paper is organized as follows. We present in Section
II the spectral analysis of MAPs. Characterization and fitting
applications are exemplified in Section III on the MAP(2) pro-
cess. Spectral-based process synthesis is given in SectionIV,
and applied to a network model in Section V to illustrate the
critical impact of non-renewal workloads in models. Finally,
Section VI draws conclusions and outlines future work. A
preliminary non-copyrighted version of this paper has been
recently presented at the MAMA’07 workshop, San Diego.

II. SPECTRAL REPRESENTATION

We develop aspectral representationof MAPs, i.e., a simple
scalar representation of (1)-(2) based on spectral properties
of (−D0)−1 and P . The idea is that of representing MAPs
moments and acf in terms of a set of few fundamental
parameters, rather than by matricial formulas. Applications of
this simplified representation are shown in the next sections.
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A. Characterization of Moments

We begin by describing the moments (1) in terms of the
spectrum of(−D0)−1. Recall that the characteristic poly-
nomial φA ≡ φA(s) of a n × n matrix A is φA = sn +
α1s

n−1 + . . . + αn−1s + αn, which is a polynomial ins
with rootssi equal to the eigenvalues ofA. We consider the
Cayley-Hamilton theorem [7], which states that the powers
of A satisfy Ak = −

∑n
j=1 αjA

k−j , for k ≥ n, i.e., that
matrix powers ofA are linearly dependent according to the
coefficients1 of φA. Since MAP moments are computed in (1)
from matrix powers of(−D0)−1, it is intuitive that they may
consequently be linearly dependent as we now prove.

Lemma 1. In a MAP(n), anyn+1 consecutive moments are
linearly dependent, i.e.,

E[Xk] = −
∑

j=1...n

bjE[Xk−j ], E[X0] = 1, k ≥ n, (3)

wherebj = mjk!/(k − j)!, andmj is the coefficient ofsn−j

in φ(−D0)−1 .

Proof: From the Cayley-Hamilton theorem it isE[Xk] =
k!πe(−D0)−ke = −k!πe

∑

j=1...n mj(−D0)−k−j)e =

−
∑

j=1...n
k! mj

(k−j)!E[Xk−j ].

Observing that the coefficients of a characteristic polynomial
φA are functions of the eigenvalues ofA, we can derive the
relation between eigenvalues of(−D0)−1 and moments.

Theorem 1 (Spectral Representation of Moments). Let θt ∈

C, 1 ≤ t ≤ m, be them distinct eigenvalues of(−D0)−1,
each with multiplicityqt. Then

E[Xk] =
∑

t=1...m

k! θk
t

∑

j=1...qt

Mt,jk
j−1, (4)

E[X0] =
∑

t=1...m

Mt,1 = 1, (5)

and the constantsMt,j follow imposingn arbitrary moments.

Proof: Equation (3) can be seen as a homogeneous linear
recurrence of ordern in E[Xk]/k! with constant coefficients
mj . The general solution thus depends onn particular so-
lutions and on then roots of the associated characteristic
equation which are exactly the eigenvaluesθt of (−D0)−1.

Observing that theMt,j andθt are2n− 2 parameters, and
that theMt,j ’s are linearly dependent due to the condition
E[X0] = 1, we have the following corollary.

Corollary 1 (Independent Moments). A MAP(n) process can
fit up to 2n − 1 independent moments.

To appreciate the economicity of the spectral represen-
tation (4), consider one of the simplest MAPs, i.e., the
MMPP(2) process

D0 =

[

−q12 − µ1 q12

q21 −q21 − µ2

]

, D1 =

[

µ1 0
0 µ2

]

,

1Theαj ’s can be easily computed, e.g., with the MATLAB functionpoly.

TABLE I
FIRST THREE MOMENTS OF AMAP(2)PROCESS

Moment Markovian Representation

E[X]
q12 + q21

µ1q21 + q12µ2

E[X2]
2(µ1q21 + q12µ2)(q12 + q21)(µ1q21 + q12µ2)−1 + 2

(µ1µ2 + µ1q21 + q12µ2)

E[X3]
6[µ2

1
q12 + µ2

2
q21 + (q12 + q21)(q12µ1 + q21µ2)]

(µ1q21 + q12µ2)(µ1µ2 + µ1q21 + q12µ2)2

and assume that(−D0)−1 has distinct eigenvalues. Table I
shows the formulas of the first three moments according to the
Markovian representation. Using the spectral representation
the same moments become

E[X ] = M1,1θ1 + M2,1θ1,

E[X2] = 2M1,1θ
2
1 + 2M2,1θ

2
2,

E[X3] = 6M1,1θ
3
1 + 6M2,1θ

3
2.

The spectral representation is thus able to dramatically sim-
plify formulas with respect to the Markovian representation
and clearly reveals the structure of the moments. Furthermore,
Corollary 1 shows that only2n− 1 parameters are needed to
impose the maximum number of fittable moments, and stresses
the redundancy of the Markovian representation. These sim-
plifications extend also to the acf coefficients.

B. Characterization of Autocorrelation

The spectral characterization can be extended to acf coef-
ficients by considering the spectrum ofP , which determines
the properties of the matrix powersP k in (2).

Lemma 2. In a MAP(n), any n + 1 consecutive acf coeffi-
cients are linearly dependent, i.e.,

ρk = −
∑

j=1...n

ajρk−j , ρ0 =
1

2

(

1 −
1

c2
v

)

, k ≥ n, (6)

whereaj is the coefficient ofsn−j in φP and
∑n

j=1 aj = 0.

Proof: We wish to prove
∑

j=0...n ajρk−j = 0, a0 = 1.
By definition of ρk this is equal to

∑

j
aj(E[X ]−2πe(−D0)−1P k−j(−D0)−1e − 1) = 0.

Note that the statement is indeed true if we can show that
∑n

j=0 ajP
k−j = 0 and

∑n
j=0 aj = 0. But the first equality

is true by the Cayley-Hamilton theorem; the second relation
follows by the stochasticity ofP , as we have that its largest
eigenvalue is alwaysγ1 = 1 and thusφP (γ1) = 0 ⇒ a1+a2+
. . . + an = 0, which finally provesρk = −

∑

j=1...n ajρk−j .
The boundary conditionρ0 = 1

2 (1 − 1/c2
v) follows by

considering (2) fork = 0. We finally have

ρ0 =
2E[X ]−2πe(−D0)−2e − 2

2c2
v

=
c2
v − 1

2c2
v

=
1

2

(

1 −
1

c2
v

)

.
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Using a proof analoguos to that of Theorem 1, it is possible
to relateρk with the eigenvalues ofP and characterize the
maximum number of fittable acf coefficients.

Theorem 2(Spectral Characterization of Autocorrelation). Let
γt ∈ C, 1 ≤ t ≤ m, be an eigenvalue ofP with multiplicity
rt. Let alsoγ1 = 1 be the unit eigenvalue ofP . Then

ρk =
∑

t=2...m

γk
t

∑

j=1...rt

At,jk
j−1, (7)

ρ0 =
∑

t=2...m

At,1, k ≥ 1, (8)

where the At,j ’s constants can be imposed fromn − 2
independent acf coefficients.

Observing that the distinctAt,j andγt in (7) are2n−2, and
that fixing c2

v imposesρ0, we have the following corollary.

Corollary 2 (Independent Autocorrelation Coefficients). A
MAP(n) process can fit up to2n − 2 independent acf
coefficientsρk, k ≥ 1. With givenc2

v, the maximum number of
independent coefficients becomes2n − 3.

Similarly to the moments, (7) has a much simpler structure
than the corresponding Markovian formula (2).

C. Spectral Representation ofMAPs

Summarizing, we can describe moments and acf coefficients
using the set of parameters(Mt,j , γt) and (At,j , γt), respec-
tively. The set(Mt,j, γt) has 2n − 1 degrees of freedom,
which once assigned leave(At,j , γt) with 2n − 3 degrees of
freedom. Therefore, only4(n − 1) degrees of freedom have
to be assigned in a MAP(n) in order to fix moments and
acf. Given that the Markovian representation requires2n2−n
(redundant) parameters, and that a MAP(n) has no more than
n2 degrees of freedom [17], our result unexpectedly indicates
that only4n−4 degrees of freedom should be spent to impose
moments and acf. As we discuss in the next sections, this result
can be fruitfully employed in workload characterization, MAP
fitting and process design.

We conclude this section with two remarks. First, in the fre-
quent case where(−D0)−1 andP have distinct eigenvalues,
it can be shown by spectral decomposition [7] that

Mt,1 = πe[(−D0)−1]te, (9)

At,1 = (c2
v)−1E[X ]−2πe(−D0)−1[P ]t(−D0)−1e, (10)

where [A]i is the i-th spectral projector of matrixA, i.e.,
the rank-one matrix given by the product of the right and
left eigenvectors ofA for the eigenvaluesi. Due to the
direct relation with spectral projectors, we henceforth refer
to theMt,j andAt,j constants as moment and acf projectors,
respectively. We also remark that the spectral descriptionis
also able to represent other statistics of MAPs. For instance, if
(−D0)−1 has distinct eigenvalues, it follows from (1) and (4)
that the cumulative distribution function (cdf) of inter-arrival
times [12] is simply

F (x) = 1 − πee
D0xe = 1 −

n
∑

t=1

Mt,1e
−x/θt. (11)

III. MAP(2) CHARACTERIZATION AND FITTING

MAP(2)s are used in traffic characterization thanks to their
small parametrization space of just six parameters. Several
characterization results have been proposed for MAP(2) using
diagonalization methods and matrix exponentials [6]. In order
to illustrate the simplicity of characterizing MAP(2)s using
spectral methods, we immediately derive the structure of
MAP(2) moments and acf coefficients. According to (4), the
moments of a MAP(2) are

E[Xk] = k!M1,1θ
k
1 + k!(1 − M1,1)θ

k
2 , (12)

and up to three independent moments may be fitted. Similarly,
the acf coefficients are

ρk = γk
2A2,1 = γk

2 ρ0 =
γk
2

2

(

1 −
1

c2
v

)

, k ≥ 1, γ2 ∈ R,

(13)
which can fit a single acf coefficient with fixedc2

v, and admits
no more than a few different shapes according to the signs
of γ2 and c2

v. Note also thatρk always converges to zero as
k → ∞, unlessγ2 = −1 which produces obscillations. It can
also be shown from criteria in [4] thatλ1 and λ2 are both
reals, and by (12) thatθ2 ≤ E[X ] ≤ θ1 assumingθ2 ≤ θ1.

Our characterization clearly indicates that the MAP(2) pro-
cess offers very limited versatility in exploring the impact of
non-renewal workloads on systems, since the acf coefficients
are always geometrically decaying with rateγ2, whereas real
workloads typically exhibit different decaying rates at low
and high lags [11], [13]. Superposition methods [1] can be
used to overcome this limitation by creating larger, more
flexible, processes but these are limited to the superposition
of MMPP(2)s because of the difficulty of assigning the two
redundant parameters in the Markovian representation of a
MAP(2). Problems of this type are usually tackled with
nonlinear optimization methods, which are quite often difficult
numerically. Using the spectral characterization, we solved the
problem of fitting a MAP(2) in its generality as we show next
for a particular case. We point to [18] for a comprehensive
discussion.

A. GeneralMAP(2) fitting

Given the four independent parametersλ1, λ2, M1,1, γ2

which define moments and acf of a MAP(2), we consider
the fitting of a MAP(2) with D0 andD1 diagonalized as

D0 = X0

[

λ1 0
0 λ2

]

X−1
0 , X0 =

[

m k
1 1

]

,

D1 = X1

[

ν1 0
0 ν2

]

X−1
1 , X1 =

[

t y
1 1

]

.

whereλt = −θ−1
t , t = 1, 2. The Markovian representation can

be related to the spectral representation using the relations

λ−1
1 λ−1

2 ν1ν2 = γ2, ν2 =
(M1,1(λ1 − λ2) + λ2 + ν1)λ1λ2

M1,1ν1(λ1 − λ2) − λ1(ν1 + λ2)
,

which hold by det(P ) = det((−D0)−1) det(D1) and by
definition of M1,1, respectively.
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Given the above definition, the problem of MAP(2) fitting
is that of assigning values to the eigenvector entriesm, k, t, y
such that(D0, D1) is a valid MAP. Since the infinitesimal
generatorQ = D0 + D1 must have rows that sum to zero,
we first need to explicitely impose

k =
t(y − 1)x2 + y(1 − t)y2

yx2 − ty2 − (x2 − y2)
, m =

t(y − 1)x1 + y(1 − t)y1

yx1 − ty1 − (x1 − y1)
,

where x1 = λ2 + ν1, x2 = λ1 + ν1, y1 = λ2 + ν2, y2 =
λ1 + ν2. This step reduces the problem of fitting a MAP(2) to
assigningy andt so that all rates between states are positive.
This is obtained by imposing that the two variables belong
to feasible regions bounded by certain hyperbolic and linear
constraints [18]. Taking any feasible point(y∗, t∗) inside a
region, e.g., its centroid, a MAP(2) can then be defined. E.g.,
for x1 < 0, y1 < 0, x2 < 0, y2 < 0, ν2 < 0, a feasible
point (y∗, t∗) is y∗ = 0.5[(−λ2)

−1ν2 + (ν1 + ν2 + λ1)
−1ν1],

t∗ = 0.5[max(ν2y
∗ν1

−1, L1(y
∗)) + min(ν1y

∗ν2
−1, L2(y

∗))].
whereLi(y) = [yxi − (xi − yi)]yi

−1, i = 1, 2. We point to
[18] for a comprehensive discussion of all other cases.

IV. PROCESSDESIGN

Process synthesis is important for design exploration stud-
ies, where the analyst wishes to evaluate system response
in different scenarios. Non-renewal features can be used to
dramatically improve model accuracy, e.g., in the reliability
analysis of a system where the acf of service times may
describe the temporal dependency of component failures.

Unfortunately, no analytical technique exists for generating
higher-order MAPs with prescribed moments and acf of inter-
arrival (or equivalently service) times. To address this limita-
tion, we propose a quite general method based on Kronecker
products. Since complex acf structure emerge only under non-
negligible fluctuations with respect to the mean, we focus on
MAPs with c2

v ≥ 1.

A. A Flexible Class ofMAP(n)s

We develop a class of MAP(n)s with Markovian representa-
tion (D0, D1) in whichD0 = diag(−θ−1

1 ,−θ−1
2 , . . . ,−θ−1

n ),
θt > 0. This property yields two important consequences:

• given an arbitrary stochastic matrixP , the process with
Markovian representation(D0,−D0P ) is always a valid
MAP, sinceD1 = diag(θ−1

1 , θ−1
2 , . . . , θ−1

n )P is always
nonnegative. This allows to ignore non-linear feasibility
constraints that make MAP fitting a non-trivial optimiza-
tion problem [8].

• The spectral representation of moments has a particularly
simple form, since eigenvaluesθt are freely assigned with
D0; if the θt’s are chosen distinct, then the projectors
Mj,t become equal to the elements of the vectorπe

and theMj,t’s vector is stochastic. Hence,πe and D0

uniquely assign moments and cdf. The latter, beingD0

diagonal, is in factF (x) = 1 −
∑n

t=1 πt
ee

−x/θt, where
πt

e is the t-th element ofπe.

Other properties of this class of processes are now discussed.

Fig. 1. INVERSESPECTRALCHARACTERIZATION OF MOMENTS

Step 1. Obtain then variablesmj ’s from a system of
n − 1 linear equations (3) forn ≤ k ≤ 2n − 1 and the
conditionE[X0] = 1.
Step 2. Solveφ(−D0)−1 = sn+m1 sn−1+. . .+mn−1s+
mn for the n eigenvaluesθt.
Step 3. Determine theMt,j constants from the system
of linear equations (4) fork = 0, . . . , n, where theθt

eigenvalues are those obtained in Step 2.

1) Moments:Given a set of2n−1 moments, one can easily
compute the relatedMj,t and λt values solving an inverse
spectral characterization problem as shown in Figure 1. If the
set of projectorsMj,t is not stochastic or the eigenvaluesθt

are not positive, then the considered set of moments is not
exactly fittable by our class. However, an approximation can
be obtained, e.g., by the Feldmann-Whitt algorithm [5], which
provides an approximate cdf with the same form and parameter
ranges of the cdfF (x) of our MAP process.

2) Autocorrelation Coefficients:Moments and acf assign-
ment has been reduced to defining a stochastic matrixP with
prescribed spectral properties, e.g., the steady-state probability
vector πe which is the left-eigenvector associated to the
eigenvalueγ1 = 1. The general problem ofexactlyassigning
a spectrum to a matrix is known to be hard; however accurate
approximations suffice in practice, and we observe that thiscan
be done by exploiting properties of Kronecker products [3].

Recall that given two matricesA and B, with order p
and q, eigenvaluesαi and βj , and eigenvectorsai and bj ,
the Kronecker productA ⊗ B is a matrix of orderpq with
eigenvaluesαiβj and eigenvectorsai ⊗ bj . We note that by
these definitions, ifA andB are stochastic, than alsoA⊗B is
stochastic. This suggest the following compositional method
for definining P . We set P = P 1 ⊗ P 2, being P 1 and
P 2 two small stochastic matrices, so that we can place in
P all eigenvaluesγ1

i of P 1 andγ2
j of P 2. This also inserts a

number of spurious eigenvaluesγ1
i γ2

j , but these vanish quicker
than γ1

i and γ2
j if one of the two eigenvalues is not too big

(e.g.,γ2
j < 0.9), otherwiseγ1

i γ2
j ≈ γ1

i which reinforces the
contribute of γ1

i (this can also be adjusted by the related
Aj,t constant). Using Kronecker products, quite complex acf
structures can be defined, e.g., by multiple Kronecker products
P = P 1 ⊗ P 2 ⊗ · · · ⊗ P k or by increasing the order of
P 1 and P 2. Note also that the steady-state vectorπe is
simply the Kronecker product of the steady-state vectors of
the defining matricesP k. An example of Kronecker-based
process synthesis is given in the next section.

V. NETWORK MODEL ROBUSTNESSANALYSIS

To illustrate our process design methodology, we study a
network model response to different temporal dependencies
in workloads. We consider a MAP(4) withP = P 1 ⊗ P 2,

P 1 =

[

a + α 1 − a − α
a 1 − a

]

, P 2 =

[

b + β 1 − b − β
b 1 − b

]

,
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Fig. 2. MAP(4) processes with different acf at low lags.

whereP 1 andP 2 have real eigenvaluesα andβ, respectively;
P has thus eigenvaluesγ1 = 1, γ2 = α, γ3 = β, γ4 = αβ.
Without loss of generality, we assumeγ2 ≥ γ3 ≥ γ4. We
investigate two simple closed queueing networks with two
or three queues in series representing different tiers, and
we investigate how acf at the first tier impacts on network
performance. Tier1 is modelled as queue with the MAP(4)
service process; the remaining tiers are each modeled with a
queue having exponential service rateµ2 = µ3 = 1 job/sec.

To have a clear interpretation of results, we fix the moments
of the MAP(4) and vary only the acf function. In particular,
we leave sufficient degrees of freedom to fit two moments and
we keep fixed the higher ones by setting

θt = ǫt, t ≥ 2,

where0 ≤ ǫt ≤ ǫ, and ǫ is an arbitrarily small constant so
that E[Xk] → M1,1θ

k
1 for ǫ → 0, which stays constant on

all higher moments once assignedE[X ] and c2
v. In the limit

ǫ → 0, also (9)-(10) assume simple expressions that are easy to
be inverted analytically forα, β, a, b, θ1, e.g., using symbolic
algebra in Maple or Mathematica.We assign these parameters
to setE[X ] and c2

v, and to impose the acf asymptoteρk ∼

A2,1γ
k
2 as well asγ3 which is the main determinant of the

decay rate at low lags. The family of processes generated in
this way is plotted in Figure 2; for all processesE[X ] = 1,
c2
v = 20 and the acf has oblique asymptoteρk ∼ 0.4ρ0γ

k
2 .

Table II shows exact global balance results for network
throughput under the different acfs. In all experiments the
network population is set toN = 50 jobs. The results stress
the importance of accounting for non-renewal features, since
up to35% of the throughput can be affected by acf at a single
tier. Furthermore, it is quite surprising to observe that low lag
deviations from the acf asymptote do not seems responsible
for any significant performance degradation in this model,
suggesting that medium and high low-lag acf values may
have similar performance impact. Observations of this type
are impossible using MMPP(2)s or MAP(2)s, and promote
our process synthesis methodology to improve understanding
of system response to non-renewal workloads.

TABLE II
NETWORK THROUGHPUT[JOB/SEC] UNDER VARYING

AUTOCORRELATION AT TIER 1

TIER 1 AUTOCORRELATION 2 TIERS 3 TIERS

γ2 = 0.000, γ3 = 0.000 0.762 (renewal) 0.261 (renewal)
γ2 = 0.700, γ3 = 0.000 0.701 (-8.0%) 0.254 (-2.7%)
γ2 = 0.900, γ3 = 0.000 0.621 (-18.5%) 0.237 (-9.2%)
γ2 = 0.950, γ3 = 0.000 0.577 (-24.2%) 0.226 (-13.4%)
γ2 = 0.999, γ3 = 0.000 0.507 (-33.4%) 0.211 (-19.2%)
γ2 = 0.999, γ3 = 0.700 0.506 (-33.5%) 0.211 (-19.2%)
γ2 = 0.999, γ3 = 0.900 0.502 (-34.1%) 0.211 (-19.2%)
γ2 = 0.999, γ3 = 0.950 0.496 (-34.9%) 0.209 (-19.9%)

VI. CONCLUSION

We have proposed a spectral characterization of moments
and acf that significantly simplifies the analysis of MAP pro-
cesses. Our method finds natural application in process char-
acterization and synthesis. Ongoing work include the applica-
tion of spectral-based process synthesis to evaluate network
response to correlation in inter-arrival (or service) times, and
the impact of the result on capacity planning.
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