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Abstract—We consider the general problem of workload model A. Markovian Arrival Processes

generation using Markovian Arrival Processes (MAPs). MAPs We point to [12] for background on MAPs, and we limit
are a large class of analytically tractable processes freguntly '

used in communication and computer network modeling. We Nere to a synthetic overview. A MAR) is specified by two
show that MAP moment and autocorrelation formulas admit 7 X n matrices, a stable matri®)y and a nonnegative matrix

a simple scalar form deriving from spectral properties of the Dy, that describe transition rates betweestates. Each tran-

MAP defining matrices. This suggests a new approach for study  sition in D, produces a job arrivalD, describes background
ing MAPs, by which we address challenging characterizatiomnd transitions not associated with arrival§ — Do + D; is

fitting problems as well as the open issue of synthesizing presses e . . X
with prescribed moments and acf for inter-arrival times. A the infinitesimal generator of the underlying continuonset

case study illustrates the impact of spectral-based syntisiss on Markov chain. We focus on the inter-arrival (or equivalgntl
sensitivity analysis of network models. service) time description of arrival processes [16]. For a
MAP(n), inter-arrival time moments and acf are computed
using the probability vectorr., w.e = 1, of the embedded
process with irreducible stochastic mat#x= (— Do) ' D;,

wheree is a column vector of’s of the appropriate dimension.

Markovian Arrival Processes (MAPs) [12] form a generatpe \ap inter-arrival times are identically distributedtii
class of point processes which admits hyper-exponential, EneanE[X] — 7.(—Do) " 'e, squared coefficient of variation
lang, and Markov Modulated Poisson Processes (MMPPs)cas: 2F[X]2m.(—Do)2e — 1, and k-th moment

special cases. The most appealing feature of a MAP is the

ease of its integration within queueing models, which makes E[X"] = klm.(~Do) "e, k>0. 1)
this technology useful for evaluating the performancectffe The lagk acf coefficient is computed as

of non-Poisson workloads. Such workloads are prevalent in B ek _
networking where long-range dependent traffic has been long, — E[X]"*m.(~Do) :P (=Do)'e -1
identified as an important traffic characteristic, but argoal &
recently emerging in systems including disk drives [15] anBhroughout the paper we refer to thBPo, D) representation
multi-tiered systems of e-commerce applications [11]. Rés the Markovian representation of a MAP.

newal service processes of high variability have been thceng Paper Organization

shown inadequate for performance prediction of multietibr

) . . . . The paper is organized as follows. We present in Section
Internet services if there is dependence in the traffic ﬂOVYFQ'the spectral analysis of MAPs. Characterization andniitti
through the various tiers [11]. Models of such systems that P y '

are parameterized via MAPs dramatically improve analysiPPlications are exemplified in Section Il on the M¢p pro-

accuracy and applicability to real networks. cess. Spgctral—based process sy.nthe3|s. is given in Sé¥tion
Althouah the MAP technol . il . d and applied to a network model in Section V to illustrate the
though the technology Is rapidly growing and many. ;e impact of non-renewal workloads in models. Figall
new results and applications have been recently presefted

ection VI draws conclusions and outlines future work. A
6], [8], [9], [11], [17], little advances have been obtaihe . . . .
i[n]th[e ]ch[alacEter]izeEtioL of the actual capabilities of MARs preliminary non-copyrighted version of this paper has been

: : ) . recently presented at the MAMAQ7 workshop, San Diego.
this work, we provide an analytical characterization of MAP

based on a spectral analysis of the moments and of the au- Il. SPECTRAL REPRESENTATION

tocorrelation function (acf). Our result simplifies the bs#s We develop &pectral representatioof MAPS, i.e., a simple

of general MAPs by representing the most important stesistiscalar representation of (1)-(2) based on spectral priegert
in terms of a few scalar parameters. We illustrate appbeoati of (—Dp)~! and P. The idea is that of representing MAPs
of this result to characterization, fitting and synthesid&P moments and acf in terms of a set of few fundamental
processes. Sensitivity analysis of network queueing nsoidel parameters, rather than by matricial formulas. Applicagiof
shown as an application of spectral-based process systheshis simplified representation are shown in the next sestion

I. INTRODUCTION

L k>1.(2)



TABLE |

A. Characterization of Moments FIRST THREEMOMENTS OF AMAP (2)PROCESS
We begin by describing the moments (1) in terms of the _ '
spectrum of(—Dy)~!. Recall that the characteristic poly- _Moment Markovian Representation
nomial pa = #a(s) of an x n matrix A is po = s" + E[X] q12 + g21
a1s" ! + ...+ a,_15 + a,, Which is a polynomial ins K1G21 + qi2p2
with roots s; equal to the eigenvalues &. We consider the B[X?] 2(n1g21 + qr2p2)(qi2 + g21)(p1qe1 + qrape) ™ + 2
Cayley-Hamilton theorem [7], which states that the powers (B1p2 + p1g21 + qr2p2)
of A satisfy AF = — Z;‘L:1 ajAk_jv for k > n, ie., that EIx3 6ludqiz + p2q21 + (q12 + q21)(q12p1 + g21p2))
matrix powers ofA are linearly dependent according to the (X7 (11q21 + quape) (1 po + p1go1 + quap2)?

coefficients of ¢ . Since MAP moments are computed in (1)
from matrix powers of —Dy) 1, it is intuitive that they may
consequently be linearly dependent as we now prove. and assume that—Dy)~! has distinct eigenvalues. Table |

shows the formulas of the first three moments according to the
Markovian representation. Using the spectral representat
the same moments become

Lemma 1. In a MAP(n), anyn+ 1 consecutive moments are’
linearly dependent, i.e.,

> bEX), BX =1, k>n, (3)

j=1l..n

E[X] = Mi:161 + M 161,

21 2 2
whereb; = m;k!/(k — j)!, andm; is the coefficient o™~ BIXT] = 20107 + 2M2165,

i ¢(_pg)-1- B[X?] = 6M,,160] + 6M5,105.

Proof: From the Cayley-Hamilton theorem it B[ X *] = The spectral representation is thus able to dramaticathy si
klmwe(—Do)%e = —klm.> ._,  mi(—Do) ¥ e = plify formulas with respect to the Markovian representatio
-y KLmy g ki), I m and clearly reveals the structure of the moments. Furthesmo

= T Corollary 1 shows that onlgn — 1 parameters are needed to

Observing that the coefficients of a characteristic polyiam impose the maximum number of fittable moments, and stresses
¢a are functions of the eigenvalues &f, we can derive the the redundancy of the Markovian representation. These sim-
relation between eigenvalues 6f Do)~' and moments. plifications extend also to the acf coefficients.

Theorem 1 (Spectral Representation of Moment&et ; € B. Characterization of Autocorrelation
C, 1 <t < m, be them distinct eigenvalues of—Dg)~!,

each with multiplicityg,. Then The spectral characterization can be extended to acf coef-

ficients by considering the spectrum Bf, which determines

SOOROF > Mk (4) the properties of the matrix poweB* in (2).
=hm =l Lemma 2. In a MAP(n), anyn + 1 consecutive acf coeffi-
> Myy=1, (5) cients are linearly dependent, i.e.,
t=1..m
and the constantd/, ; follow imposingn arbitrary moments. Z aPhjs PO = 1 <1 _ i) . k>n, (6)
Proof: Equation (3) can be seen as a homogeneous Iinear j=L.n

recurrence of orden in E[X*]/k! with constant coefficients whereq; is the coefficient 0"~/ in ¢p and Y7, a; = 0.
m;. The general solution thus depends wrparticular so-

lutions and on then roots of the associated characteristic =~ Proof: We wish to prove) ;_, ,, a;p—j =0, ap = 1.
equation which are exactly the eigenvalugsof (— Do), By definition of p; this is equal to

" N a(BIX] 2w (~Do) LP* I (—~Do) e — 1) = 0.

Observing that thel/; ; andf, are2n — 2 parameters, and J
that the M; ;'s are linearly dependent due to the conditiomote that the statement is indeed true if we can show that
E[X°] =1, we have the following corollary. S ya;PY =0 and Y7 a; = 0. But the first equality
Corollary 1 (Independent Moments)A MAP (n) process can is true by the Cayley—l—_|a_mllton theorem; the secqnd relation
fit up to 2n — 1 independent moments. fo_llows by t_he stochasticity o?, as we have that its largest
eigenvalue is always; = 1 and thuspp(v1) = 0 = a1 +as+
To appreciate the economicity of the spectral represen- 4 4, = 0, which finally provespy = —>"._, , a;pk—;-
tation (4), consider one of the simplest MAPs, i.e., the The poundary conditiop, = 11— 1/é2_)”follows by
MMPP(2) process considering (2) fork = 0. We finally have
Do— |02 m @2 ]aD1|:‘L61 0]’ pO:2E[X] me(-Do)Pe-2 -1 _1( 1)
g1 q21 — p2 H2 2c2 22 2 c?

1The a;’s can be easily computed, e.g., with the MATLAB functipol y. |



Using a proof analoguos to that of Theorem 1, it is possible  11l. MAP(2) CHARACTERIZATION AND FITTING
to relatep;, with the eigenvalues of” and characterize the  \aAp(2)s are used in traffic characterization thanks to their
maximum number of fittable acf coefficients. small parametrization space of just six parameters. Severa

Theorem 2(Spectral Characterization of Autocorrelatiohpt ~characterization results have been proposed for K#ABsing
v € C, 1<t < m, be an eigenvalue aP with multiplicity diagonalization methods and matrix exponentials [6]. ldeor

7. Let alsoy; = 1 be the unit eigenvalue dP. Then to illustrate the simplicity of characterizing MAP)s using
A i1 spectral methods, we immediately derive the structure of
Pk = Z Mt ' Z Ap ik, () MAP(2) moments and acf coefficients. According to (4), the
t=2.m  j=l.m moments of a MAR2) are
= A1, k>1, 8

P tz;m R ® E[X*) = kIM; 105 + k(1 — M, 1)0%, (12)
where the 4 ;'s constants can be imposed from — 2 and up to three independent moments may be fitted. Similarly,
independent acf coefficients. the acf coefficients are

Observing that the distinct; ; and~; in (7) are2n—2, and k k vy 1
i ; X : = = =—=(1-= >

that fixing ¢2 imposespy, we have the following corollary. Pe = 2421 =2p0 > \! )’ kzlyek,

(13)
which can fit a single acf coefficient with fixed, and admits
no more than a few different shapes according to the signs
of 7o and 2. Note also thap, always converges to zero as
k — o0, unlessy; = —1 which produces obscillations. It can
Similarly to the moments, (7) has a much simpler structusdso be shown from criteria in [4] that; and A\, are both
than the corresponding Markovian formula (2). reals, and by (12) that, < E[X] < 6; assuming; < 6.
C. Spectral Representation MAPs Our characterization clearly indicates that the MAPpro-
o ) .. cess offers very limited versatility in exploring the impad
Summarizing, we can describe moments and acf coefficiepi§y_renewal workloads on systems, since the acf coefficient
using the set of parametef8/; ;,7:) and (A ;,v:), r€SPEC- 4re always geometrically decaying with rate whereas real
tively. The set(M;;,v:) has2n — 1 degrees of freedom, \yqriioads typically exhibit different decaying rates atwlo
which once assigned leavel, ;, ;) with 2n — 3 degrees of anq high lags [11], [13]. Superposition methods [1] can be
freedom. Therefore, onlg(n — 1) degrees of freedom have\,seq to overcome this limitation by creating larger, more
to be assigned in a MAR) in order to fix moments and fjgyipe processes but these are limited to the superpasiti
acf. Given that the Markovian representation requi¥e%— n of MMPP(2)s because of the difficulty of assigning the two
(redundant) parameters, and that a MAPhas no more than eqyndant parameters in the Markovian representation of a
n? degrees of freedom [17], our result unexpectedly mdmatm;AP(Q)_ Problems of this type are usually tackled with
that only4n —4 degrees of freedom should be spent to iMPO$R)jinear optimization methods, which are quite often cliff

moments and acf. As we discuss in the next sections, thif re%merically. Using the spectral characterization, we edlhe
can be fruitfully employed in workload characterizationAR! problem of fitting a MAR2) in its generality as we show next

fitting and process design. o for a particular case. We point to [18] for a comprehensive
We conclude this section with two remarks. First, in the f“?iiscussion

quent case where-Dy)~! and P have distinct eigenvalues,
it can be shown by spectral decomposition [7] that A. GeneralMAP(2) fitting

My = w[(—Dg) ]se, (9) Given the four independent parameteXs, A2, M 1,72
" o on—1 _9 1 1 which define moments and acf of a MAB, we consider
Ay = () BIX]me(= Do) [Pl(=Do) e, (10) 0 fitting of a MAR?2) with Dy and D, diagonalized as
where [A]; is the i-th spectral projector of matrid, i.e.,

the rank-one matrix given by the product of the right and Dy = X, [)E)l )\0} Xt Xo = {T ﬂ ,
2

left eigenvectors ofA for the eigenvalues;. Due to the
direct relation with spectral projectors, we hencefortfere
to the M, ; and A; ; constants as moment and acf projectors,
respectively. We also remark that the spectral descripgon . ) .
also able to represent other statistics of MAPs. For ingtaific WhereA: = —6;", ¢ = 1,2. The Markovian representation can
(—Do)~! has distinct eigenvalues, it follows from (1) and (4pe related to the spectral representation using the rafatio
that the cumulative distribution function (cdf) of interraal N1y- B (M (M = A2) + A+ )i
times [12] is simply LA i Ve Miivi(A = A2) = A(v1 + A2)’

F(z)=1- 7.‘.eeDoIe —1— ZMt.1€*1/9t' (11) Whi.Ch_h0|d by det(P) :_det((ng)fl) det(D7) and by
’ definition of M, ;, respectively.

Corollary 2 (Independent Autocorrelation Coefficientsh
MAP(n) process can fit up t®2n — 2 independent acf
coefficientsy, & > 1. With givenc2, the maximum number of
independent coefficients becon?es— 3.

v1 0 _ t
Dlle{ol yg]Xll’ X, = L ﬂ

t=1



Given the above definition, the problem of MAR fitting Fig. 1. INVERSESPECTRALCHARACTERIZATION OF MOMENTS
is that of assigning values to the eigenvector entiieg, ¢, y Step 1 Obtain then variablesm;'s from a system of
such that(Dy, D;) is a valid MAP. Since the infinitesimal | » — 1 linear equations (3) fon < k < 2n — 1 and the
generatorQ = Dy + D; must have rows that sum to zero,| condition E[X°] = 1.

we first need to explicitely impose Step 2Solveg_py)-1 = s"+my s" .. Amy, 15+
m, for then eigenvalue9;.
j— = D2 +y(1 - t)y27 m= = Doty - t)y17 Step 3 Determine thel; ; constants from the system
yra — tys — (22 — yo) yr1 —tyr — (21— Y1) of linear equations (4) fok = 0,...,n, where thed,
wherez; = \o +v1, &2 = M +v1, 1 = Ao+ 14, Yo = eigenvalues are those obtained in Step 2.

A1 + vo. This step reduces the problem of fitting a M@IPto
assigningy andt so that all rates between states are positive.
This is obtained by imposing that the two variables belong 1) Moments:Given a set oBn—1 moments, one can easily
to feasible regions bounded by certain hyperbolic and tinegompute the related/; ; and \; values solving an inverse
constraints [18]. Taking any feasible poi(y*,t*) inside a spectral characterization problem as shown in Figure hdf t
region, e.g., its centroid, a MAR) can then be defined. E.g.,set of projectors\/; ; is not stochastic or the eigenvalués
for z; <0,y < 0,22 <0,y <0, v, <0, a feasible are not positive, then the considered set of moments is not
point (y*,t*) is y* = 0.5[(=A2) 'wva + (11 + 12+ M) '11],  exactly fittable by our class. However, an approximation can
t* = 0.5[max(voy*rr 1, Li(y*)) + min(hy*rv2~*, L2(y*))].  be obtained, e.g., by the Feldmann-Whitt algorithm [5], ahi
where L;(y) = [yz; — (xi —yi)|lyi~*, i = 1,2. We point to provides an approximate cdf with the same form and parameter
[18] for a comprehensive discussion of all other cases. ranges of the cd#'(z) of our MAP process.
2) Autocorrelation CoefficientsMoments and acf assign-
ment has been reduced to defining a stochastic m&&niith
Process synthesis is important for design exploration-stugrescribed spectral properties, e.g., the steady-statepiiity
ies, where the analyst wishes to evaluate system respoveetor . which is the left-eigenvector associated to the
in different scenarios. Non-renewal features can be usedeigenvaluey; = 1. The general problem aéxactlyassigning
dramatically improve model accuracy, e.g., in the religbil & spectrum to a matrix is known to be hard; however accurate
analysis of a system where the acf of service times mapproximations suffice in practice, and we observe thatts
describe the temporal dependency of component failures. be done by exploiting properties of Kronecker products [3].
Unfortunately, no analytical technique exists for geriagat ~ Recall that given two matricesx and B, with order p
higher-order MAPs with prescribed moments and acf of inteand ¢, eigenvaluesy; and 3;, and eigenvectora; and by,
arrival (or equivalently service) times. To address thisitia- the Kronecker producfA @ B is a matrix of orderpg with
tion, we propose a quite general method based on KronecRéigenvaluesy;3; and eigenvectors; ® b;. We note that by
products. Since complex acf structure emerge only under ndhese definitions, ifA andB are stochastic, than alsb® B is
negligible fluctuations with respect to the mean, we focus @tochastic. This suggest the following compositional radth

IV. PROCESSDESIGN

MAPs with ¢2 > 1. for definining P. We setP = P; ® P,, being P; and
P, two small stochastic matrices, so that we can place in
A. A Flexible Class ofMAP(n)s P all eigenvalues of P, and~; of P,. This also inserts a
We develop a class of MAR)s with Markovian representa- "Umber of spurious eigenvalugs,?, but these vanish quicker
tion (Do, D) in which Do = diag(—60; ", 65", ..., —0:1) than~; and~? if one of the two eigenvalues is not too big

9, > 0. This property yields two important consequences: (€:9-7; < 0.9), otherwisey;~7 ~ +; which reinforces the
. . . .., contribute ofv! (this can also be adjusted by the related
« given an arbitrary stochastic matriR, the process with A;, constant) ZUsin Kronecker products. quite complex act
Markovian representatiofDy, — Do P) is always a valid 7" ’ v P  d P

MAP, sinceD; — diag(6; .6 ",...,6-1)P is always structures can be defined, e.g., by multiple Kronecker prtsdu

. . . e . P = Py ® Py ®---® Py or by increasing the order of
nonnegative. This allows to ignore non-linear feasibilit . and P,. Note also that the steady-state vectey is

constraints that make MAP fitting & non-trivial OpUmlza_simply the Kronecker product of the steady-state vectors of
tion problem [8].

. . the defining matricesP,. An example of Kronecker-based
« The spectral representation of moments has a partlcularlly oo : :
ocess synthesis is given in the next section.

simple form, since eigenvaluégare freely assigned with P
Dy; if the ;s are chosen distinct, then the projectors
M;, become equal to the elements of the vecir _ )
and the)M; ,’s vector is stochastic. Hencer, and Dy To illustrate our process design methodology, we study a

uniquely assign moments and cdf. The latter, belng Network model response to different temporal dependencies
diagonal, is in factF(z) = 1 — 21;1 wée*“’/ef, where in workloads. We consider a MAP(4) witR = P ® P,

wt is thet-th element ofr.. p _lata 1-a—a] , _[b+8 1-b-5
Other properties of this class of processes are now disgusse” ' ~ | « l—a |"727 | b 1-0 |’

V. NETWORK MODEL ROBUSTNESSANALYSIS
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0.502 (-34.1%)
0.496 (-34.9%)

0.211 (-19.2%)
0.211 (-19.2%)
0.209 (-19.9%)

o
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VI. CONCLUSION

We have proposed a spectral characterization of moments
and acf that significantly simplifies the analysis of MAP pro-
cesses. Our method finds natural application in process char
P has thus eigenvalueg = 1, 2 = o, 73 = (8, 74 = 3. acterization and synthesis. Ongoing work include the appli
Without loss of generality, we assumg > ~v3 > ~4. We tion of spectral-based process synthesis to evaluate rietwo
investigate two simple closed queueing networks with tw@sponse to correlation in inter-arrival (or service) timand
or three queues in series representing different tiers, aifiet impact of the result on capacity planning.
we investigate how acf at the first tier impacts on network ACKNOWLEDGMENTS
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