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Abstract—We propose a traffic fitting algorithm for Markovian
Arrival Processes (MAPs) that can capture statistics of any
order of interarrival times. By studying real traffic traces , we
show that matching higher order properties, in addition to
first and second order descriptors, results in increased queueing
prediction accuracy with respect to other algorithms that only
match the mean, coefficient of variation, and autocorrelations.
The result promotes the idea of modeling traffic traces usingthe
interarrival time process instead of the counting process that is
more frequently employed in previous work, but for which higher
order moments are difficult to manipulate.

We proceed by first characterizing the general properties of
MAPs using a spectral approach. Based on this characterization,
we show how different MAP processes can be combined together
using Kronecker products to define a larger MAP with predefined
properties of interarrival times. We then devise an algorithm
that is based on this Kronecker composition and can accurately
fit traffic traces. The algorithm employs nonlinear optimization
programs that can be customized to fit an arbitrary number
of moments and to meet the desired cost-accuracy tradeoff.
Numerical results of the fitting algorithm on real HTTP and TC P
traffic data, such as the Bellcore Aug89 trace, indicate thatthe
proposed fitting methods achieve increased prediction accuracy
with respect to other state-of-the-art fitting methods.

I. I NTRODUCTION

Markovian models provide a convenient way of evaluat-
ing the performance of network traffic since their queueing
analysis enjoys established theoretical results and efficient
solution algorithms [27]. Although unable to directly generate
traffic with long-range dependent (LRD) behavior, Markovian
models can approximate accurately LRD traffic in several
ways, e.g., by superposition of flows with short-range depen-
dent (SRD) behavior over many time scales. This is known
to be sufficient for the evaluation of real systems since the
performance effects of LRD traffic becomes nil beyond a finite
number of time scales [12].

One of the main obstacles to the Markovian analysis of
network traffic is model parameterization, which often requires
to describe the interaction of several tens or hundreds of states.
Even for basic Markov Modulated Poisson processes (MMPP)
or phase-type renewal processes (PH), few results exist for
their exact parameterization and they are restricted to models
of two or three states only [5], [11], [16], [17], [23]. Due to
the lack of characterization results, it is also impossibleto
establish general properties of these processes.

In this paper we tackle the above issues by developing
characterization and fitting methods for Markovian Arrival
Processes (MAPs), a class of Markovian models developed
by Neuts [28] that encompasses MMPP and PH processes as
special cases. We describe the properties of the interarrival
time (IAT) process of a MAP and use these properties to derive
accurate fitting algorithms for network traffic.

There are several works in the literature that have focused
on fitting Markovian traffic models by exactly parameterizing
MAPs/MMPPs with two or three states [8], [11], [16], [17],
[23]. The small state space minimizes the costs of queueing
analysis, but it places significant assumptions on the form
of the autocorrelations. For instance, a MMPP(2) cannot
fit negative autocorrelations, while the MAP(2) autocorrela-
tion function is geometrically decreasing with constant decay
rate [17].

In [3] Andersen and Nielsen develop a general fitting
algorithm to model LRD traffic traces by superposition of
several MMPP(2) sources [14]. The algorithm matches first
and second order descriptors of the counting process, i.e.,
the mean traffic rate, the Hurst parameter, and the lag-1
autocorrelation in counts, has low computational costs and
captures the properties of the classic Bellcore LRD traces [1],
[24].

Following a different approach, Horváth and Telek [20]
consider the multifractal traffic model of Riedi et al. [29],and
obtain a class of MMPPs which exhibits multifractal behavior
[32]. According to this result, one may fit network traffic by
first computing an unnormalized Haar wavelet transform of the
trace and then by determining the MMPP process which best
matches the variance of the wavelet coefficients at different
time scales. Simulation results on the Bellcore Aug89 trace
show that this algorithm achieves better accuracy than the
superposition method in [3], but at the expense of a larger
state space.

Recently, several research efforts [16], [17], [21]–[23] are
directed toward the accurate fitting of the IAT process instead
of the counting process that is considered in [3] and [20].
IATs can be harder to measure than counts [18], but simple
analytical expressions are available for their moments and
lag correlations [15]. Instead, only the first three moments
of a counting process are known and yet only the first two
are easy to manipulate [14]. Several authors have shown that
fitting the mean, coefficient of variation and autocorrelations
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Fig. 1. Autocorrelation and MAP/M/1 queueing behavior (util. 80%) of two
MAP(32) fittings of the LBL-PKT-5 trace [1]. The MAPs have identical first
and second order properties of the interarrival process, but one has also an
accurate fitting of third order properties for which the other is instead loose.

is insufficient to predict queueing behavior [4], [13], [25],
therefore fitting the higher order properties of the IAT process
seems a natural way to achieve increased prediction accuracy.

To build intuition on the importance of higher order proper-
ties we first present an experiment on the LBL-PKT-5 trace of
the Internet Traffic Archive [1]. Figure 1 shows two different
MAP models we obtained for this traffic trace. The two MAPs
have identical first and second order properties of the IAT
process, namely same mean, same coefficient of variation
(CV), and same autocorrelation function. Mean and CV of
IATs are identical to the sample values, the autocorrelation fit
is also quite good. However, one model also matches the third
order statistics, i.e., the skewness and the bispectrum [9]of the
sample IAT process, while the other has a quite loose fit of
these descriptors. The strikingly different queueing predictions
of the two models, as shown in Figure 1, stress the importance
of higher order properties in network traffic.

In this paper, we consequently propose to fit network traffic
using higher order properties of the IAT process in addition
to the usual first and second order descriptors. Because of the
general difficulty in imposing even basic autocorrelationsto
the IAT process, we first derive characterization results that
simplify fitting. Starting from these characterization results,
we obtain two MAP fitting algorithms: an efficient hyperex-
ponential moment matching algorithm which applies to traffic
that is approximately renewal and a more versatile algorithm
based on nonlinear optimization that still matches moments,
but can also accurately fit general traffic. The latter algorithm
is based on a new MAP definition technique, called Kronecker
Product Composition (KPC), which is able to generate MAPs
with predefined moments, autocorrelations, and higher order
statistics in IATs. Compared to the state-of-the-art fitting meth-
ods in [3] and [20], the proposed algorithm shows improved
queueing prediction accuracy at similar computational costs.
In addition, it does not place limitations on the number and
order of statistical properties that can be matched for a traffic
trace, thus enabling the selection of the best cost-accuracy
tradeoff.

Our detailed contributions can therefore be summarized as
follows:

1) MAP(n) Characterization:After reviewing the IAT pro-
cess in MAPs, in Section III we propose a general spectral

characterization of IAT moments, autocorrelations, and higher
order moments. These observations clarify the capabilities of
general MAPs, provide necessary conditions for fitting, and
simplify the analysis of small processes.

2) Hyperexponential Fitting:We develop in Section IV the
moment matching algorithm for hyperexponential traffic and
illustrate its accuracy using real traffic traces of the Internet
Traffic Archive [1]. The algorithm is also instrumental to the
general traffic fitting algorithm presented later in the paper.

3) Compositional definition of MAP(n): In Section V
we propose the compositional method based on Kronecker
products that can easily generate a MAP(n) with predefined
properties of IATs from the composition of smaller processes,
e.g., MAP(2)s. While traditional superposition is convenient
only for imposing first and second order properties of counts,
our method is more flexible and gives complete control of the
IAT statistics at all orders.

4) MAP Fitting: Exploiting the previous results, we develop
in Section VI the general fitting algorithm which first deter-
mines the optimal values of IAT moments, autocorrelations,
and higher order descriptors using nonlinear optimization, and
successively finds the MAP which best matches these target
values. The approach is numerically stable and the fitting is
usually performed in a few minutes. Comparative analyses in
Section VII on the Bellcore Aug89 trace and on Seagate Web
trace [30] show that our algorithm achieves increased accuracy
with respect to existing methods.

Section VIII draws final conclusions. The final appendix re-
ports the MAPs used to fit the traces discussed in Section VII.

II. IAT P ROCESS INMAPS

A MAP(n) is specified by twon × n matrices: a sta-
ble matrix D0 with nonnegative off-diagonal entries and a
nonnegative matrixD1 that describe transition rates between
n states. Each transition inD1 produces a job arrival;D0

describes instead background transitions not associated with
arrivals. The matrixQ = D0 + D1 is the infinitesimal
generator of the underlying Markov process. In the special case
whereD1 is a diagonal matrix, the process is a MMPP(n).

We henceforth focus on the interval stationary process
that describes the IATs. For a MAP(n), this is described
by the embedded discrete-time chain with stochastic matrix
P = (−D0)

−1D1, with probability vectorπe, πee = 1,
wheree is a column vector of1’s of the appropriate dimension.
Let P be irreducible with a simple unit eigenvalueγ1 = 1.
Then, its IAT is phase-type distributed withk-th moment

E[Xk] = k!πe(−D0)
−ke, k ≥ 0, (1)

which implies that CV2 = 2E[X ]−2πe(−D0)
−2e − 1. The

lag-k autocorrelation coefficient is

ρk = (E[X ]−2πe(−D0)
−1P k(−D0)

−1e− 1)/CV2. (2)

Higher order moments of the IAT process can be described
in terms of joint moments. Let Xi be thei-th IAT from an
arbitrary starting epochi0 = 0, and consider a sequence
Xi1 , Xi2 , . . . , XiL

, where 0 ≤ i1 < i2 < . . . < iL. The
moments ofL consecutive IATs are given by

H(~i,~k ) = E[Xk1

i1
Xk1

i2
· · ·Xk1

iL
],
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where~i = (i1, i2, . . . , iL) and~k = (k1, k2, . . . , kL). The mo-
mentsH(~i,~k ) capture nonlinear temporal relations between
samples and are known to completely characterize a MAP
[4], [33]. They are computed as [33]

H(~i,~k ) = πe

(
L∏

l=1

kl!(−D0)
−klP il−il−1

)
e, (3)

where forl = 1, i0 is set toi0 = 0. Noting that it is always
P iL−iL−1e = e, (3) reduces in the caseL = 1 to (1).

In the remaining of this paper and if not otherwise stated,
MAP descriptors refer to the IAT process. Further, we use the
notation (D0, D1) or ((−D0)

−1, P ) to uniquely specify a
MAP.

III. C HARACTERIZATION OF MAP(n) PROCESSES

We now obtain a spectral characterization of IAT moments
and autocorrelations, i.e., a scalar representation of (1)-(2)
based on spectral properties of(−D0)

−1 and P . This sim-
plifies the analysis of MAP moments and autocorrelations, as
we show with some examples.

A. Characterization of Moments

We begin by describing the moments (1) in terms of the
spectrum of(−D0)

−1. Recall that the characteristic polyno-
mial of a n× n matrix A is

φ(A) = sn + α1s
n−1 + . . . + αn−1s + αn, (4)

which is a polynomial ins with roots si equal to the eigen-
values ofA. Consider the Cayley-Hamilton theorem [19], by
which the powers ofA satisfy

Ak = −
∑

j=1...n

αjA
k−j , k ≥ n (5)

that is, matrix powers are linearly dependent. Because MAP
moments are computed in (1) from powers of(−D0)

−1, they
are linearly dependent.

Lemma 1. In a MAP(n), anyn+1 consecutive moments are
linearly dependent according to the relation

E[Xk] = −
∑

j=1...n

(
mjk!

(k − j)!

)
E[Xk−j ], E[X0] = 1, k ≥ n,

(6)
wheremj is the coefficient ofsn−j in φ((−D0)

−1).

Proof: Using the Cayley-Hamilton theorem,

E[Xk] = −k!πe(
∑

j=1...nmj(−D0)
−(k−j))e (7)

which immediately proves the lemma by (1).
Since the coefficientsmj are functions of the eigenvalues

of (−D0)
−1 we can derive a closed-form formula forE[Xk].

Theorem 1. Let (−D0)
−1 havem ≤ n distinct eigenvalues

θt ∈ C, 1 ≤ t ≤ m. Let qt be the algebraic multiplicity ofθt,∑
t=1...m qt = n. Then the IAT moments are given by

E[Xk] =
∑

t=1...m

k! θk
t

∑

j=1...qt

Mt,jk
j−1, (8)

E[X0] =
∑

t=1...m

Mt,1 = 1, (9)

where the constantsMt,j ’s are independent ofk. In particular,

Mt,1 = πe(−D0)
−1
t e, (10)

where (−D0)
−1
t is the t-th spectral projector of(−D0)

−1,
i.e., the product of the right and left eigenvectors forθt.

Proof: Denoting by (−D0)
−1
t and M t the spectral

projector and nilpotent matrix of(−D0)
−1 associated to the

Jordan block forθt, the generalized spectral decomposition of
(−D0)

−1 is [2]

(−D0)
−1 =

∑

t=1...m

(θt(−D0)
−1
t + M t), k ≥ 0

where it is M
qt

t = 0, M t(−D0)
−1
t = (−D0)

−1
t M t,

M t(−D0)
−1
p = 0 and (−D0)

−1
t (−D0)

−1
p = 0, t 6= p.

Therefore, for allk ≥ 0 we have

(−D0)
−k =

( ∑

t=1...m

(θt(−D0)
−1
t + M t)

)k

=
∑

t=1...m

(θt(−D0)
−1
t + M t)

k

=
∑

t=1...m

θk
t

min{qt−1,k}∑

i=0

(
k

i

)
(−D0)

−1
t (θ−1

t M t)
i,

where we used in the last passage thatθt 6= 0 being(−D0)
−1

an invertible matrix. Inserting the last formula for(−D0)
−k

into (8) we get after some manipulations

E[Xk] =
∑

t=1...m

θk
t

min{qt,k+1}∑

i=1

(
k

i− 1

)
M̂t,i, (11)

where
M̂t,i = πe((−D0)

−1)t(θ
−1
t M t)

i−1e. (12)

The last expression is equivalent to (1) by expanding the
binomials and grouping the coefficients ofkj . This yields the
following equivalence

Mt,j =

qt∑

i=j

s(i− 1, j − 1)

(i− 1)!
M̂t,i. (13)

where thes(m, n) is the Stirling number of the first kind
giving the coefficient ofxn in x(x−1)(x−2) · · · (x−m+1).
Finally, the condition

∑
t Mt,1 = 1 is obtained by evaluating

(8) for k = 0 and noting thatE[X0] is alwaysE[X0] = 1.

Corollary 1. If θt has algebraic multiplicityqt = 1, then
Mt,j = 0 for j ≥ 2.

Proof: In this case the nilpotentM t of the t-th Jordan
block is zero and in (13) the only non-zero projector isMt,1.

Note that formula (8) is more general than a standard
spectral decomposition of(−D0)

−1 since it also holds for de-
fective, i.e., non-diagonalizable,(−D0)

−1. This is extremely
important, since well-known processes, e.g., the Erlang pro-
cess, haveD0 that is not diagonalizable and thus the usual
spectral decomposition based on this assumption cannot be
applied.
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Example 1. We show how to apply Theorem 1 for the
analytical characterization of a MAP. Consider the MAP(3)

D0 =



−2λ λ λ

0 −λ λ
0 0 −λ


 , D1 =




0 0 0
0 0 0
λ 0 0


 , λ ≥ 0.

The left eigenvector ofP for γ1 = 1 is πe = [1, 0, 0]T . Since

(−D0)
−k =



2−kλ−k (1− 2−k)λ−k kλ−k

0 λ−k kλ−k

0 0 λ−k


 ,

from (1) it is E[Xk] = k!πe(−D0)
−ke = (k+1)!λ−k. How-

ever this approach does not generalize easily to larger models,
because obtaining a closed-form expression for(−D0)

−k on
larger examples can be difficult. We show that the spectral
characterization can analyzeE[Xk] without the need of a
closed-form formula for(−D0)

−k. We first computeE[X ] =
2λ−1 andE[X2] = 6λ−2, and observe that the eigenvalues of
(−D0)

−1 are θ1 = (2λ)−1 and θ2 = λ−1 with multiplicity
q1 = 1 and q2 = 2. Imposing E[X ] and E[X2] in (8),
we find M1,1 = 0, M2,1 = 1 − M1,1 = 1, M2,2 = 1,
and substituting back we finally getE[Xk] = k!θ−k

1 M1,1 +
k!θ−k

2 (M2,1 + kM2,2) = (k + 1)!λ−k.

A consequence of Lemma 1 is that one can study the
necessary conditions for the feasibility ofD0 without explicit
computation of the eigenvaluesθt. Because stability ofD0 is
granted if and only ifRe(−θ−1

t ) < 0, 1 ≤ t ≤ m, we can use
the Routh-Hurwitz test [?] on φ((−D0)

−1) to study when a
given set of moments ensures stability. This is shown in the
following example.

Example 2. The coefficientsmj ’s of a MAP(2) are obtained
solving (6) forn = {2, 3} and are given by

m1 =
E[X3]− 3E[X ]E[X2]

3(2E[X ]2 − E[X2])
, m2 =

3
2E[X2]2 − E[X ]E[X3]

3(2E[X ]2 − E[X2])

The Routh-Hurwitz table for the characteristic polynomialof
(−D0)

−1 has first column[1, m1, m2]
T . The stability ofD0

follows if the coefficientsmj have alternating sign, implying
that Re(θt) > 0 ⇒ Re(−θ−1

t ) < 0. From the formulas for
m1 andm2 we see that in a MAP(2) this requires:

CV2 > 1 : E[X3] > max(3E[X ]E[X2], 3
2E[X2]2E[X ]−1)

CV2 < 1 : E[X3] < min(3E[X ]E[X2], 3
2E[X2]2E[X ]−1).

Similar conditions can be obtained for larger processes, e.g.,
the stability of the MAP(3) can be studied as a function of its
first 2n− 1 = 5 moments.

We also observe that if(−D0)
−1 is diagonalizable, then

m = n and the projectorsMt,1 are in simple relation to the
IAT cdf since

F (x) = 1− πee
D0xe = 1−

∑

t=1...n

Mt,1e
−x/θt , (14)

which follows by the relation ediag(−θ−1

1
,...,−θ−1

n ) =
diag(e−θ−1

1 , . . . , e−θ−1

n ) and the computational formula for
Mt,1. Note that (14) allows an efficient numerical computa-
tion of useful quantities such as the percentiles of the IAT
distribution.

B. Characterization of Autocorrelation

The spectral characterization can be extended to autocorre-
lations using the properties of the powersP k in (2).

Lemma 2. In a MAP(n), anyn + 1 consecutive autocorrela-
tions are linearly dependent according to the relation

ρk = −
∑

j=1...n

ajρk−j , ρ0 =
(
1− 1/CV2

)
/2, k ≥ n, (15)

whereaj is the coefficient ofsn−j in φ(P ) and
∑n

j=1 aj = 0.

Proof: We want to prove that
∑

j=0...n ajρk−j = 0,
wherea0 = 1. By definition ofρk, this is equivalent to prove

∑
j
aj(πe(−D0)

−1P k−j(−D0)
−1e− E[X ]2) = 0.

The last equation follows if we can show that∑n
j=0 ajP

k−j = 0 and
∑n

j=0 aj = 0. But the former
holds true by the Cayley-Hamilton theorem, while the
latter follows by the stochasticity ofP , since for the unit
eigenvalueγ1 = 1 it is φ(P ) = 0 =

∑n
j=0 aj . This proves

ρk = −∑j=1...n ajρk−j . The formula for ρ0 follows by
evaluating (2) fork = 0, i.e.,

ρ0 = (E[X ]−2πe(−D0)
−2e− 1)/CV2 =

(
1− 1/CV2

)
/2.

sinceπe(−D0)
−2e = E[X2]/2 = (1 + CV2)E[X ]2/2.

Similarly to Theorem 1, we can obtain a closed-form
expression ofρk.

Theorem 2. Let γt ∈ C, 1 ≤ t ≤ m, be an eigenvalue
of P with algebraic multiplicityrt. If γt = 0 assume that
its geometric multiplicity equals its algebraic multiplicity, i.e.,
the rt associated Jordan blocks have all order one. Then the
autocorrelation function of a MAP is

ρk =
∑

t=2...m

γk
t

∑

j=1...rt

At,jk
j−1, k ≥ 1 (16)

ρ0 =
∑

t=2...m

At,1 = (1− 1/CV2)/2, (17)

where theAt,j ’s constants are independent ofk. In particular,

At,1 = E[X ]−2πe(−D0)
−1P t(−D0)

−1e/CV2, (18)

in which P t is the t-th spectral projector ofP , that is, the
product of the right and left eigenvectors associated toγt.

Proof: The proof is similar to the proof of Theorem 1.
Let us assume first thatγt 6= 0 for all t. If γt has multiplicity
rt, the generalized spectral decomposition ofP gives [2]

P =
∑

t=1...m

(γtP t + N t), k ≥ 0

whereN t is the nilpotent matrix associated toγt, N rt

t = 0,
N tP t = P tN t, andN tP p = 0, t 6= p. Therefore,

P k =
( ∑

t=1...m

(γtP t + N t)
)k

=
∑

t=1...m

(γtP t + N t)
k

=
∑

t=1...m

γk
t

min{rt−1,k}∑

i=0

(
k

i

)
P t(γ

−1
t N t)

i, k ≥ 0.
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Inserting the last formula forP k into (16) we get after
algebraic manipulations

ρk =
∑

t=1...m

γk
t

min{rt,k+1}∑

i=1

(
k

i− 1

)
Ât,i,

where

Ât,i = E[X ]−2πe(−D0)
−1P t(γ

−1
t N0,t)

i−1(−D0)
−1e/CV2.

Grouping the coefficients ofkj , we have

At,j =

rt∑

i=j

s(i− 1, j − 1)

(i− 1)!
Ât,i, (19)

where thes(m, n)’s are the Stirling number of the first kind.
Finally, the relation forAt,1 follows immediately by (19).

From Lemma 2 we see that the functionρk when evaluated
in k = 0 assumes the valueρ0 = (1 − 1/CV2)/2. Although
this coefficient does not admit any statistical interpretation,
since the autocorrelation function is by definitionρk = 1
for k = 0, it is useful to consider this limit value since
the conditionρ0 =

∑
t At,1 can simplify the computation

of projectors. The valueρ0 can also help in manipulating
the autocorrelation coefficients, since it is often observed
that increasingρ0 produces a generalized increase of all
autocorrelations. For instance, in the special case of a MAP(2)
process, it follows from (16) thatρk = γk

2ρ0 and therefore the
autocorrelations increases monotonically as a function ofρ0.

Corollary 2. If γt has algebraic multiplicityrt = 1, then
At,j = 0 for j ≥ 2.

Proof: If all nilpotentsN t are zero, then the only non-
zero projector in (19) isAt,1.

Without loss of generality, we assume in the rest of the
paper that|γj | ≥ |γj+1|, j = 1, . . . , n− 1. According to this
ordering, the asymptotic decay of the autocorrelation function
is geometric with rateγ2 (unlessγ2 = −1 and ρk does not
converge to zero ask → +∞). We complete the analysis in
Theorem 2 by studying the following degenerate case.

Corollary 3. If P has r0 eigenvalues equal to zero and
belonging to Jordan blocks of orderl10, l

2
0, . . . , l

q
0, then

ρk =
∑

j=1...r0

ηk,j +
∑

t=2...m−1

γk
t

∑

j=1...rt

At,jk
j−1,

where

ηk,j = E[X ]−2πe(−D0)
−1(N j)

k(−D0)
−1e/CV2, (20)

in which N 0,j , N
lj
0

0,j = 0, is the nilpotent associated to the
Jordan block of orderlj0, andηk,j is equal to zero fork ≥ lj0.

Proof: The generalized spectral decomposition ofP is

P k =
( ∑

j=1...r0

N0,j +
∑

t=1...m−1

(γtP t + N t)
)k

=

=
∑

j=1...r0

Nk
0,j+

∑

t=1...m−1

γk
t

min{rt−1,k}∑

i=0

(
k

i

)
P t(γ

−1
t N t)

i,

for k ≥ 0. The rest of the proof is similar to the proof of
Theorem 2.

We conclude by remarking that the distinctAt,j ’s andγt’s
in (16) are no more than2n − 2. Thus a MAP(n) process
can fit up to2n− 2 independent autocorrelationsρk, k ≥ 0.
For a given CV2, ρ0 is fixed and the maximum number of
independent coefficients becomes2n− 3.

We now present three examples illustrating respectively:

• the application of the previous results to the characteri-
zation of two classes of MAP(3) and MAP(4) that can
be employed to match traces with complex eigenvalues
in autocorrelations (Example 3);

• the computation of the projectorsAt,j in the difficult case
of a process with defectiveP (Example 4);

• A comparison of the non-negligible impact of a defective
P on the autocorrelations (Example 5).

Example 3. The Circulant MMPP is proposed in [25] to
insert complex eigenvalues in the autocorrelation of counts.
According to our results, this approach can be generalized
to the IAT process by simply defining a MAP with circulant
P and/or (−D0)

−1. In particular, if D0 is diagonal, the
resulting MAP admits a quite simple characterization. Define
[p1, p2, . . . , pn], pn = 1−∑j 6=n pj , to be the first column of
the circulant matrixP . Since in a circulantP it is πe = e/n,
from (1) we haveE[Xk] =

(
n−1k!

)∑
t θk

t .
Using Theorem 2 we can also study autocorrelations. For

instance, in the casen = 3 the circulant matrix has two iden-
tical or complex conjugate eigenvalues, which implies from
the condition onA2,1 + A3,1 = ρ0 that A2,1 = A3,1 = ρ0/2.
Now letting γ2 = |γ2|ejω2 ,

|γ2| = (1/2)
√

(3p1 − 1)2 + 3∆2
3,2, ω2 = arctan

√
3∆3,2

(3p1 − 1)
,

with ∆i,j = pi − pj , the autocorrelation is

ρk = ρ0|γ2|k
(ejkω2 + e−jkω2)

2
= ρ0|γ2|k cos(kω2).

Higher order cases are similar. E.g., forn = 4 after few
manipulations we get

ρk = Aa,1γ
k
a + Ab,1|γb|k cos(kωb),

with

γa = ∆1,2 + ∆3,4, |γb| =
√

∆2
4,2 + ∆2

1,3, ωb = arctan
∆4,2

∆1,3
,

Aa,1 =
CV2(θ4 − θ2 + θ3 − θ1)

2

(θ3 + θ2 + θ4 + θ1)2
, Ab,1 = ρ0 −Aa,1,

where the eigenvalues are denoted by the indicesa andb since
the asymptotic decay rate|γ2| can be either|γa| or |γb|.
Example 4. Consider the MAP(5) with (−D0)

−1 =
diag(1, 2, 3, 4, 5) and

P =




0 λ λ λ λ
λ 0 λ λ λ
0 2λ 0 λ λ
0 0 3λ 0 λ
0 0 0 4λ 0




, J =




1 0 0 0 0
0 λ 1 0 0
0 0 λ 1 0
0 0 0 λ 1
0 0 0 0 λ




,
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Fig. 2. Autocorrelations for the defective and non-defective P of Example 5

whereλ = 0.25 andJ is the Jordan canonical form ofP . P is
defective withγ2 = λ = 0.25, r2 = 4, and the autocorrelation
coefficients are given by

ρk = γk
2 (A2,1 + A2,2k + A2,3k

2 + A2,4k
3), A2,1 = ρ0.

The computation of the spectral projectors and nilpotent
matrices ofP is performed following the same steps of the
proof of Theorem 2, see [2] for computational formulas for
the projectorsP t and the nilpotentsN t. In particular, the
Aj,t constants are obtained by (19) and are given byA2,1 =
8.160 · 10−2, A2,2 = −2.843 · 10−1, A2,3 = 1.565 · 10−1,
A2,4 = −2.076 · 10−2.

Example 5. The defective stochastic matrixP def with Jordan
canonical form

J =




1 0 0 0
0 0 0 0
0 0 1/2 1
0 0 0 1/2


 , V =




1 −2 −4 −6
1 19 −5 5
1 −3 4 24
1 3 7 −23


 ,

where J = V −1P defV , has two eigenvaluesγ2 = 1/2,
γ3 = 0 with multiplicities r2 = 2, r3 = 1. Consider
the MAP(4) (D0 = diag(−72,−17,−58,−52),−D0P def ),
imposing ρ1 and ρ2 in (16) we getA2,1 = 6.5978 · 10−3,
A2,2 = −3.5763 · 10−3, A3,1 = ρ0 − A2,1 = 1.9669 · 10−1,
and the autocorrelation is

ρdef
k = (A2,1 + A2,2k)γk

2 .

If we consider a similar non-defectiveP ndef with same
eigenvalues andV matrix, but Jordan canonical form

J = V −1P ndefV =




1 0 0 0
0 0 0 0
0 0 1/2 0
0 0 0 1/2


 ,

the related MAP(D0,−D0P ndef ) has a different auto-
correlation despite the fact that the eigenvalues and their
multiplicities are identical. Imposingρ1 andρ2, we getA2,1 =
6.5978 ·10−3, A2,2 = 0.0, A3,1 = ρ0−A2,1 = 1.9669 ·10−1,
thus

ρndef
k = A2,1γ

k
2 .

A comparison ofρdef
k andρndef

k is shown in Figure 2.

C. Higher-Order Statistics

We conclude by observing that the characterization given for
moments and autocorrelations generalizes in a similar fashion
to the joint moments (3), since these functions consist of
powers of(−D0)

−1 andP . For example, in the case where
both matrices are diagonalizable andL = 2, we have

H(~i,~k) = E[Xk1

i1
Xk2

i2
] =

∑

t=1...,n

∑

l=1...,n

Ht,lθ
kt

t γil

l , (21)

where the joint moment projectorHt,l is a constant indepen-
dent of~i and~k and which is computed from the product of
the spectral projectors of(−D0)

−1 andP .
From (3) it can be seen that for generalL the joint moment

projector is not in simple relation with the projectorsMj,t and
Aj,t, since it is obtained by first multiplying several projectors
((−D0)

−1)t andP t and then weighting the result using the
πe probabilities. Therefore, moment and autocorrelation fitting
algorithms, which impose the eigenvaluesθt and γl and the
projectorsMt,j and At,j , still leave degrees of freedom to
assign the projectors of higher order moments.

IV. H YPEREXPONENTIALFITTING

The high variability of packet transmission delays makes it
easy to find network traffic traces with CV2 > 1, and most
of the traffic traces in the Internet Traffic Archive [1] have
this property. For this class of processes, our characteriza-
tion results immediately suggest an efficient hyperexponential
fitting algorithm, see [10] for previous work. This will be
important in the general fitting algorithm presented at the
end of the paper, but can also be used independently to fit
a hyperexponential PH process of a network traffic trace with
CV2 > 1. Note that here we focus only on fitting the sample
distribution, since we assume that the process is renewal.

Observing that theMt,j ’s and θt’s are n + m ≤ 2n
parameters subject to

∑
t Mt,1 = 1, we see from (8) that a

MAP(n) can fit up to2n−1 independent moments. A similar
conclusion has been recently obtained by the analysis of the
underlying PH-type distribution [33]. Given2n − 1 sample
moments, it is possible to fitE[Xk] by a hyperexponential
PH process using (6)-(8) by the algorithm in Figure 4. Ac-
cording to the computational formulas forMj,t in the proof
of Theorem 1, the diagonal form ofD0 implies thatM = πe

and the moments have the formE[Xk] = k!
∑

t πe,tθ
k
t . As

a result, the PH process(D0,−D0eM) is renewal since
P = eM = eπe has rank one and thusγt = 0, t ≥ 2.

Example 6. Using the moment matching algorithm in Figure
4, we determine a hyperexponential process PH(3) which fits
the first five moments of the LBL-PKT-5 trace. The moment
matching algorithm returns the following values:

M1,1 = 0.0262134, M2,1 = 0.3847399, M3,1 = 0.5890467,

θ1,1 = 0.0200142, θ2,1 = 0.0090486, θ3,1 = 0.0022153.

The central picture in Figure 3 shows the accurate ccdf fitting
obtained by the PH(3) with the above projectors and eigenval-
ues. The first five moments are matched exactly; higher order
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Fig. 3. Distribution fitting of three traces of the Internet Traffic Archive [1] using the algorithm in Figure 4. The computational costs are negligible.

Fig. 4. HYPEREXPONENTIALMOMENT MATCHING ALGORITHM

Step 1. Use 2n − 1 consecutive sample moments
E[X ], E[X2], . . . , E[X2n−1] to parameterize the linear
system composed byE[X0] = 1 and (6) for k =
n, n + 1, . . . , 2n− 1. If the system is singular orn = 1
the PH(n) is exponential with meanE[X ]. Otherwise
go to Step 2.
Step 2. Solve for the valuesmj and determine the roots
of φ(−D0)−1 = sn + m1 sn−1 + . . . + mn−1s + mn

which are the eigenvaluesθt of (−D0)
−1. If any θt is

complex or a non-positive real, then dropE[X2n−1] and
E[X2n−2] and restart with aPH(n− 1).
Step 3. Parameterize the linear system defined by (8)
for k = 0, . . . , n and solve for theMj,t’s. If any Mj,t

is complex or a non-positive real, then dropE[X2n−1]
andE[X2n−2] and restart with aPH(n− 1).
Step 4. Return the process(D0,−D0eM) with D0 =
diag(−θ−1

1,1, . . . ,−θ−1
n,1) andM = [M1,1 , . . . , Mn,1].

moments are also matched closely, e.g., the sample moment
E[X̂8] = 2.7044 · 10−11 is well approximated by the PH(3)
which hasE[X8] = 2.7908 · 10−11. Similar quality levels are
achieved also for the BC-pOct89 and LBL-TCP-3 traces also
shown in Figure 3. Note that, because these traffic traces areall
significantly autocorrelated, fitting the underlying distribution,
although accurately, is clearly insufficient for predicting their
queueing behavior. For this reason, we focus in the rest of the
paper on the more difficult problem of fitting the traffic pro-
cess and its temporal dependence structure. Nevertheless,the
algorithm presented in this section can be successfully adopted
if the observed network traffic is approximately renewal and
is also fundamental to the general fitting algorithm presented
in Section VI.

V. COMPOSITIONAL DEFINITION OF LARGE PROCESSES

The accurate fitting of LRD network traffic requires models
composed by many states; e.g., the MAP fittings of the
Bellcore Aug89 trace in [3] and [20] employn = 16 and
n = 32 states, respectively. Since traditional superposition
is not meant to impose higher order properties of the IAT

process, we define a different process composition method
which we call Kronecker Product Composition (KPC). Given
J MAPs {Dj

0, D
j
1}, we define the KPC process as the MAP

{Dkpc
0 , Dkpc

1 } = {(−1)J−1D1
0⊗ · · · ⊗DJ

0 , D1
1⊗ · · · ⊗DJ

1 }

where⊗ is the Kronecker product operator [6]. It can be easily
shown by the properties of the Kronecker product thatP kpc =
−(Dkpc

0 )−1D
kpc
1 = P 1⊗· · ·⊗P J andπkpc

e = π1
e⊗· · ·⊗πJ

e ,
thus our composition generates an embedded processP kpc

with simple structure.
In order to generate a valid MAP, the KPC requires that

at leastJ − 1 composing processes have diagonalD
j
0 as

we discuss later in Example 7. Nevertheless, because one
MAP can be arbitrary, the KPC does not place modeling
restrictions.

The basic property of a MAP obtained by KPC is that
we can easily impose its eigenvalues and projectors in both
moments and autocorrelations as we show later in Theorem 3.
Equivalently, one may impose directly moments and autocor-
relation values, as described in Theorem 4. This is important
because, by the characterization in Section III, the fittingof
real traffic is essentially an inverse eigenvalue problem for the
eigenvalues ofP and(−D0)

−1. Inverse eigenvalue problems
are notoriously hard, but the KPC method provides an effective
solution. A MAP(n) can be defined to assume an arbitrary
number of autocorrelation and moment values, with the only
practical difficulty of limiting the order of the resulting MAP.
In the rest of the section, we show how one can a priori
determine moments and autocorrelations of the KPC process
given the knowledge of the properties of the composing MAPs.

A. KPC Process Characterization

Without loss of generality we study{Dkpc
0 , Dkpc

1 } for the
caseJ = 2. The results presented here recursively characterize
also the caseJ > 2.

Theorem 3. Let MAPa = {Da
0 , D

a
1} and MAPb = {Db

0, D
b
1}

be MAPs of orderna and nb, respectively, and assume that
Db

0 is a diagonal matrix. Letγa
p , θa

p , Aa
p,1 and Ma

q,1 be the
eigenvalues and projectors of MAPa. Let γb

q , θb
q, Ab

p,1 and
M b

q,1 be the equivalent descriptors of MAPb. Then the KPC

MAPa ⊗MAPb = {−Da
0 ⊗Db

0, D
a
1 ⊗Db

1}
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is a MAP of ordernanb with eigenvaluesγt = γa
pγb

q , θt =
θa

pθb
q, and projectors

Mt,1 = Ma
p,1M

b
q,1, At,1 = (Aa

p,1CV2
a)(Ab

q,1CV2
b)/CV2,

for all 1 ≤ p ≤ na, 1 ≤ q ≤ nb.

Proof: The relations for the eigenvalues follow from
basic properties of the Kronecker product [6]. The projector
associated toθt = θa

pθb
q is

Mt,1 =πe((−D0)
−1)te

=(πa
e ⊗ πb

e)((−D0)
−1)a

p ⊗ ((−D0)
−1)b

q(e
a ⊗ eb)

=(πa
e((−D0)

−1)a
pea)(πb

e((−D0)
−1)b

qe
b) = Ma

p,1M
b
q,1.

Similarly, the projector ofγt = γa
pγb

q is

At,1 =E[X ]−2πe(−D0)
−1P t(−D0)

−1e/CV2,

=E[X ]−2(E[Xa]2Aa
p,1CV2

a)(E[Xb]2Ab
q,1CV2

b)/CV2,

=(Aa
p,1CV2

a)(Ab
q,1CV2

b)/CV2.

Theorem 4. Moments and autocorrelations of the KPC satisfy

E[Xk] = E[Xk
a ]E[Xk

b ]/k!, (22)

CV 2ρk = (CV 2
a )ρa

k + (CV 2
b )ρb

k + (CV 2
a CV 2

b )ρa
kρb

k, (23)

where the quantities in the right-hand side refer to MAPa

and MAPb. In particular the relation forE[Xk] immediately
implies

1 + CV 2 = (1 + CV 2
a )(1 + CV 2

b )/2. (24)

Proof: We begin by proving (22). Using the properties of
the Kronecker product [6] we have

E[Xk] = k!πe(−D0)
−ke

= k!(πa
e ⊗ πb

e)(−((−1)2−1Da
0 ⊗Db

0))
−k(ea ⊗ eb)

= k!(πa
e ⊗ πb

e)((D
a
0)−k ⊗ (Db

0)
−k)(ea ⊗ eb),

and multiplying by(−1)−2k which equals one for allk ∈ N

E[Xk] = k!(−1)−2k(πa
e(Da

0)
−kea)(πb

e(D
b
0)

−keb)

= k!(πa
e(−Da

0)
−kea)(πb

e(−Db
0)

−keb)

= E[Xk
1 ]E[Xk

2 ]/k!.

Equation (23) follows the same steps as (22) by considering
(2).

The two theorems provide a complete characterization of
first and second order IAT properties of the KPC process. The
KPC also simplifies the definition of higher order statistics.
We have this characterization of the joint moments of the
composed process.

Theorem 5. The joint moments of MAPa ⊗MAPb satisfy

H(~i,~k ) =
Ha(~i,~k )Hb(~i,~k )

k1!k2! · · ·kL!
, (25)

beingHa(~i,~k ) andHa(~i,~k ) the joint moments of{Da
0 , D

a
1}

and {Db
0, D

b
1}, respectively.

Proof: The proof follows similarly to the proof of Theo-
rem 4 by considering (3).

Example 7. To motivate the assumption on the diagonal
structure of theDj

0’s, consider the KPC of the MAP(2)

D1
0 =

[
−3α α
2α −4α

]
, D1

1 =

[
α α
α α

]
(26)

with the MMPP(2)

D2
0 =

[
−2β β
β −3β

]
, D2

1 =

[
β 0
0 2β

]
. (27)

None of the two processes has diagonalD
j
0, thus the KPC is

the infeasible MAP(4) with negative off-diagonal entries

D0 =




−6δ 3δ 2δ −δ
3δ −9δ −δ 3δ
4δ −2δ −8δ 4δ
−2δ 6δ 4δ −12δ


 , D1 =




δ 0 δ 0
0 2δ 0 2δ
δ 0 δ 0
0 2δ 0 2δ


 ,

whereδ = αβ. If any process has diagonalD
j
0, the negative

anti-diagonal ofD0 becomes zero and the result is feasible.

Example 8. It is known that MAP(2) and MMPP(2) processes
have IAT autocorrelationρk that cannot be greater than0.5,
see [17]. The fitting of real traces requires to address this
problem, but to the best of our knowledge no examples of
MAP(n)s with largeρ1 have been given in the literature. An
example can be easily generate by KPC. Consider a process
{Da

0 , D
a
1} with quite large autocorrelation, e.g., the MAP

Da
0 =

[
−10001 0

0 −101

]
, Da

1 =

[
10000 1

1 100

]
,

which has lag-1 autocorrelationρ1 = 0.485 andCV 2
a = 49.5.

We seek for a MAPb {Db
0, D

b
1} which may produceρ1 ≥ 0.5

by KPC, and we focus on the case where this process is PH-
type renewal, thusρa

k ≡ 0, for all k. From (23)-(24) we have

ρk =

(
CV 2

a

CV 2

)
ρa

k =

(
CV 2

a

(1 + CV 2
a )(1 + CV 2

b )/2− 1

)
ρa

k,

and to increase the autocorrelation it is sufficient to select a
process withCV 2

b such thatCV 2
a > CV 2. For instance,

Db
0 =



−5 5 0
1 −2.5 1
0 0 −1


 , Db

1 =




0 0 0
0.5 0 0
1 0 0


 ,

is PH-type renewal with CV2b = 0.584, and from (24) we
have CV2 = 39.0 < CV2

a. As expected the KPC of the two
MAPs yields a MAP(6) with ρ1 = 0.616 which addresses
the MAP(2) limit ρk ≤ 0.5. Processes with even larger
autocorrelation can be obtained with a similar approach.

VI. GENERAL MAP FITTING ALGORITHM

Using KPC, we define a general-purpose fitting algorithm
for network traffic. We illustrate the algorithm in the case
where theJ composing MAPs used in the KPC are an arbitrary
MAP(2) (index j = 1) and J − 1 MAP(2)s with diagonal
D0, but the method works with minor modifications also with
other processes. The algorithm proceeds in three steps.
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Fig. 5. AUTOCORRELATION AND CV2 FITTING [STEP 1]

minimize
∑

k∈K

(ρk − ρ̂k)2

subject to

(CV2 − ĈV
2
)2 ≤ tolCV2 ,

lbCV2(j) ≤ CV2(j) ≤ ubCV2(j), ∀ j ∈ J;

lbγ2
(j) ≤ γ2(j) ≤ ubγ2

(j), ∀ j ∈ J;

where

ĈV
2 ← sample CV2,

ρ̂k ← sample autocorrelation, ∀ k ∈ K

CV2 ← (24) recursively using CV2(j), ∀ j ∈ J,

ρk(j)← 1

2

(
1− 1

CV2(j)

)
γ2(j)

k, ∀ k ∈ K, ∀ j ∈ J;

ρk ← (23) recursively using ρk(j), ∀ k ∈ K, ∀ j ∈ J.

Step 1 - Autocorrelation andCV2 Fitting. Let ĈV
2

be the
sample CV2; similarly, let ρ̂k be the sample autocorrelation
computed on a set of lagsK, and letJ = {1, 2, . . . , J}. We
fit second order IAT properties by the nonlinear optimization
program in Figure 5. The fitting algorithm is essentially a least-
square algorithm constrained to the properties of the KPC. The
result of the optimization are two sets CV2(j) andγ2(j) for
j ∈ J which specify the optimal CV2 and autocorrelation for
each of theJ MAPs used in the KPC. For each variable, a set
of upper and lower bounds are imposed, e.g.,ubCV2(j) and
lbCV2(j) are respectively upper and lower bounds on the value
CV2(j) to be determined by the solver. Since CV2(j) and
γ2(j) are constrained by proper bounds, they can be always
chosen to be feasible for a MAP(2), see [16] for existing
bound formulas. If the optimization uses processes other than
the MAP(2), the feasibility constraints given below need to
be adjusted accordingly. In all experiments we set the upper
bound on the CV2 to beubCV2(j) = ∞, j ∈ J. Further, for
the arbitrary MAP(2) we have

lbCV2(1) = 0.5, lbγ2
(1) = −1, ubγ2

(1) = 1− ǫ,

being ǫ an arbitrarily small positive quantity. The remaining
J − 1 MAP(2)s with diagonalD0 can be shown to have
hyperexponential marginal probabilities, and we set

lbCV2(j) = 1 + ǫ, lbγ2
(j) = 0, ubγ2

(j) = 1− ǫ.

The valuetolCV2 is a tolerance on the exact matching of the
CV2. On certain traces where the value of the lag-1 autocor-
relation ρ1 differs significantly fromρ0 = (1 − 1/CV2)/2,
flexibility on the CV2 fitting avoids an excessive constraining
to impose the passage throughρ1 which can result in bad
fitting of autocorrelation at high lags.

Step 2 - Moment and Higher-Order Fitting. Once that the
optimal values of CV2(j) and γ2(j) are obtained after one
or more runs of the previous algorithm, we search for the
missing parameters required to define valid MAP(2)s, namely

Fig. 6. MOMENT AND HIGHER-ORDERFITTING [STEP 2]

minimize
∑

(~i,~k)∈H

(H(~i,~k)− Ĥ(~i,~k))2

subject to

(E[X ]− Ê[X ])2 ≤ tolE[X],

(E[X3]− Ê[X3])2 ≤ tolE[X3],

lbE[X](j) ≤ E[X ](j) ≤ ubE[X](j), ∀ j ∈ J;

lbE[X3](j) ≤ E[X3](j) ≤ ubE[X3](j), ∀ j ∈ J;

where

Ê[X ]← sample E[X],

Ê[X3]← sample E[X3],

E[X ]← (22) recursively using E[X ](j), ∀ j ∈ J,

E[X3]← (22) recursively using E[X3](j), ∀ j ∈ J,

E[X2](j)← (1 + SCV (j))(E[X ](j))2, ∀ j ∈ J.

the meansE[X ](j) and third momentsE[X3](j) for all
j ∈ J. Indeed, the second momentsE[X2](j) are readily
obtained from the CV2(j) for given E[X ](j). As shown by
the motivating example in Figure 1, given fixed autocorrelation
and CV2 there exist many possible valid processes; we thus
solve a new nonlinear optimization program to select the one
that results in better fitting of higher order properties of IATs
on a set of sample joint momentŝH(~i,~k) for (~i,~k) ∈ H. The
nonlinear program is given in Figure 6. For MAP(2)s we use
the following moment bounds [16]

lbE[X](j) =
√

2E[X2], ubE[X](j) = +∞,

lbE[X3](j) =
√

(1.5 + ǫ)E[X2]2/E[X ], ubE[X3](j) = +∞.

Step 3 - MAP(n) Generation. Given the target optimal
values for theE[X ](j), CV2(j), E[X3](j), γ2(j) we generate
theJ MAPs as follows. TheJ−1 diagonal MAPs are usually
feasible since the constraints on moments and autocorrelations
are sufficient for feasibility [16]. The related values ofMt,j

andθt,j are computed from the first three moments using the
fitting algorithm in Section IV and exploiting thatE[X2](j) =
(1 + CV2(j))(E[X ](j))2. The matrix P (j) is immediately
specified by the vectorM = [M1,1, 1 − M1,1] = πe and
by γ2(j) = det(P (j)). For the arbitrary MAP(2) we use
standard fitting algorithms, see e.g., [8], [11]. Whenever the
fitting results in infeasible processes (e.g., negative rates in
D1 or in the off-diagonal elements ofD0), we perform a
least square fitting to best match the targetE[X3](j) and
γ2(j) while keeping fixedE[X ](j) andE[X2](j). Once that
J feasible MAPs are obtained, the final process is immediately
computed by KPC.

We conclude the section by remarking that with
MMPP(2)s/MAP(2)s, the fitting algorithm cannot include
complex eigenvalues in the IAT autocorrelations. These may
be included by also using one or more circulant MAP(3)s or
MAP(4)s such as those described in Example 3, but this may
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easily yield processes with several tens or hundreds of states.
This state space explosion associated to the use of circulant
matrices has been pointed out also in the fitting of the counting
process [7] and remains an open problem. However, we em-
pirically observe that many traffic traces that exhibit multiple
complex eigenvalues in the counting process often have IAT
autocorrelation that does not require complex eigenvalues,
and this makes MAP(2)-based IAT fitting sufficient more
frequently than counting process-based methods. For instance,
Figure 7 compares the Welch power spectrum density (PSD)
estimate of the IAT and counting processes on the Bellcore
Aug89 trace. The counting process is obtained by computing
the arrivals in105 consecutive times slots of identical duration
∆T = 10−2sec. The figure for the counting process indicates
power in the low frequency spectrum, whereas the IAT process
does not show any significant complex sinusoid and thus can
be approximated effectively by real eigenvalues only.
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Fig. 7. Comparison of the power spectrum of the IAT process and the
counting process for the Bellcore Aug89 trace. The countingprocess shows
power density in the complex spectrum which is instead negligible in IATs.

VII. E XPERIMENTS

We present a comparison of our algorithm with the best-
available algorithms for Markovian analysis of LRD traffic,
that is, the method of Andersen and Nielsen (A&N) in [3]
and the multifractal approach of Horvath and Telek (H&T) in
[20]. We first describe the experimental methodology, laterwe
report fitting results on the Bellcore Aug89 trace [1], [24] and
a recently measured Web traffic trace obtained at Seagate and
presented in [30].

A. Experimental Methodology

We apply the algorithm described in Section VI as fol-
lows. We first fit the autocorrelation on a set of103 − 104

logarithmically-spaced lags ranging in a large interval, e.g.,
[1, 105]. Previous work has often limited to match IAT auto-
correlations in[1, 104], but we have observed that the choice of
a larger lag interval can result in increased modeling accuracy
at heavy traffic where second order properties are fundamental
for queueing prediction [31]. The solution of the least squares
program in Figure 5 is usually very efficient (of the order
of seconds), and only a few runs are needed for an accurate
match. Here we consider four MAPs (J = 4); good fitting of
the autocorrelation is also possible with only two or three
MAPs, but the remaining degrees of freedom are usually
insufficient to match accurately higher order properties of
IATs.

In the fitting of the joint moments, we have performed
several experiments and obtained the best results by matching
a set of momentsE[Xi1Xi2Xi3 ], which implicitly define the
bispectrum of the IAT process [9]. This seems to be more
important than matching momentsE[Xk1

i1
Xk2

i2
] of the IATs,

which did not result in improved queueing prediction accuracy
with respect to a standard second order fitting. Without loss
of generality we seti1 = 1 and fit E[X1Xi2Xi3 ] on a
square grid of102 or 252 points (i2, i3) generated by the
Cartesian product of two identical sets of logarithmically-
spaced points in[1, 104]. The pointE[X1X1X1] = E[X3] is
always included in this grid, thus in Step 2, see Figure 6, we set
tolE[X3] = +∞ to give more flexibility to the least-squares;
in all experiments we instead impose exact matching ofE[X ]
and CV2, thustolE[X] = 0 andtolCV2 = 0. Compared to the
autocorrelation, the least square fitting of joint moments seems
more difficult and the nonlinear optimizer can occasionally
return infeasible solutions. Thus, several runs may be needed
to find a good local optimum, which is nevertheless obtained
in a few minutes.

The computational costs of the final MAP(n) generation is
negligible. We also remark that small corrections of erroneous
behaviors are possible without the need of re-running the entire
fitting algorithm. For instance, to obtain a slower asymptotic
decay rate for the autocorrelations it is possible to increase the
value of the largestγ2(j) and regenerate the MAP(n).

Finally, the evaluation of the queueing behavior of the fitted
MAP is done with an implementation of the analytical method
for the solution of a MAP/D/1 process in [26] and using a
numerical tolerance for convergence ofǫ = 10−10. Details on
the experimental results are given in the rest of the section.

B. Bellcore Aug89,−/D/1 queue

We first compare with the queueing predictions of the
models in [3], [20] using the Bellcore Aug89 on a first-come-
first-served queue with deterministic service and different
utilization levels. This is the standard case for evaluating
the quality of LRD trace fitting, e.g., [3], [20], [21]. The
traffic trace consists of106 IAT samples collected in 1989
at the Bellcore Morristown Research and Engineering facility
and shows a clear LRD behavior, see [24] for details. We
run the algorithm described in Section VI to determine a
MAP(16) which accurately fits the trace. The size of this
MAP is similar to those employed in previous work, which
are composed by16 states (A&N) or32 states (H&T). Due to
the limited length of the trace, we fit all autocorrelations in the
interval [1, 2 · 104], since at higher lags the sample values are
significantly affected by noise. The result of this fit is rather
accurate, as shown in Figure 8, and is obtained in less than
one minute1. In the second phase of the algorithm, the joint
momentsE[X1Xi2Xi3 ] are matched on a square grid of252

points. On this instance, the computational cost of the program
in Figure 6 is low, approximately thirty seconds. The values
of the first three moments of the MAP(16) are given in Table

1In both figures 8 and 11 we do not report the acf fitting of A&N andH&T
since these methods do not match IAT autocorrelations, but autocorrelations
in counts.
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Fig. 8. Fitted autocorrelation for the Bellcore Aug89 traceusing the program in Figure 5.

TABLE I
MAP(16) FITTING OF THE BELLCORE AUG89 TRACE USING THE ALGORITHM OFSECTION VI

BC-Aug89 Trace MAP(16)
E[X] 3.1428 · 10−3 3.1428 · 10−3

CV2 3.2236 · 100 3.2235 · 100

E[X3] 2.0104 · 10−6 1.1763 · 10−5

γ2 n/a 9.9995 · 10−1
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Fig. 9. Queueing predictions for the Bellcore Aug89 trace ona queue with deterministic service.

I; the entries of each composing MMPP(2)/MAP(2) are given
in the appendix.

In order to assess the accuracy of the fit, we compare the
queueing prediction of our model with the MMPPs obtained
in [3], [20] for utilization levels of 20%, 50%, and 80%.
All traces have a quite good match of the individual queue
probabilities. In Figure 9 we plot the complementary cdf
(ccdf) of queue-length probabilitiesPr(queue ≥ x), which
accounts also for the residual queueing probability mass and
thus shows the impact of the tail probability. At20% utilization
the effects of the long-range dependence seems minimal, and
the probability mass is spread over few lags. Our method gives
almost the same results of the multifractal technique, while
the method of A&N seems to underestimate the queueing
probability for the smallest values ofx, which also affects
the rest of the ccdf.

The intermediate case for50% utilization is generally
difficult to capture, since the network is approaching heavy

traffic, but the dependence effects are still not as strong asin
slightly higher utilization values, i.e., for60%−70% utilization
(see, e.g., [3]). All methods initially overestimate the real
probability, but for higher values ofx our method is closer
to the trace values than A&N and H&T which predict a large
probability mass also afterx = 103.

Finally, in the case of80% utilization all three methods
perform well, with our algorithm and the H&T being more
precise than A&N. The final decay of the curve is again
similar, but the KPC method resembles better the simulated
trace.

Overall, the result of this trace indicates that the KPC
approach seems more effective than both H&T and the A&N
methods, while preserving the smallest representation (16
states) of the A&N method. It also interesting to point out that
the fitting leaves room for further improvements, especially
in the 50% case which is difficult to approximate. This may
indicate that significant information about the IAT processmay
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Fig. 10. Queueing predictions for the Bellcore Aug89 trace on a queue with exponential service.

be captured by statistics of higher order than the bispectrum.

C. Bellcore Aug89,−/M/1 queue

In the second experiment we evaluate the robustness of the
fitting under different variability in the service process.This
is important to assess that the fitting captures the essential
properties of the traffic process, and thus can provide accurate
results regardless of the context in which the fitted MAP is
used. In Figure 10 we plot comparative results for a−/M/1
queue using in input the same MAPs considered before. As
we can see, KPC performs better than in the−/D/1 case,
and it is now able to capture well the tail decay also for the
80% utilization. A possible explanation of this behavior is
that the autocorrelation in the flow becomes more important
if the queueing process is more variable, therefore more
accurate autocorrelation fitting becomes necessary under such
conditions. In comparison, the other methods seem instead to
suffer by the increase in variability of the process, as shown
by the overestimates which are significantly greater than in
the−/D/1 case. This indicates that KPC is more robust than
counting-process based fittings.

D. Seagate Web Traffic Trace,−/D/1 queue

In order to provide a comparison on traffic traces that are
representative of other network traffic, we implemented the
A&N method2 and compared its counting process fitting with
our method on the HTTP Web traffic trace presented in [30].
The trace is composed by3.6·106 interarrival times of requests
at the storage system of a Web server, and has a long-range
dependence that is stronger than the BC-Aug89, see [30] for
the Hurst coefficient estimates. Thanks to the larger size of
the sample, we now fit the autocorrelation in the larger set
of lags [1, 105] using only103 logarithmically-spaced points
since the autocorrelation function is less noisy than for the
Bellcore trace, see Figure 11. The joint moments are then fitted
on a grid of102 points. The values of the first three moments
of the related MAP(16) are reported in Table II; each of the
composing MMPP(2)/MAP(2) are given in the appendix.

2For this trace we do not report fitting results using the H&T multifractal
method because we were unable to implement it. For the Bellcore trace used
in the previous subsection, we use the MAP given in [20].

Queueing results for this trace are shown in Figure 12. Here
we compare with an implementation of the A&N algorithm
[3]. The A&N MAP(16) fitting is obtained by the algorithm
parametersH = 0.85682, ρ = 0.74503, λ⋆ = 3.3185, n = 5,
d⋆ = 4.

Although the performance effects of Web traffic on a server
is more often modeled by a queue with exponential service, we
perform the comparison here assuming a deterministic service
time, since the results on the Bellcore trace indicate that this
case is more difficult to approximate. Predictions on a−/D/1
queue at utilization levels of20%, 50%, 80% are shown in
Figure 12. The KPC method is more accurate than the A&N
fitting in the cases50% and80% while the case20% is hard
to approximate for both methods. This reinforces the validity
of the observations on the Bellcore trace: IAT fitting is more
effective as soon as the effect of the temporal dependence
becomes evident. The50% and80% utilization levels for the
KPC method are cases of almost perfect fits. In particular,
for the 50% case the analytical results indicate that the tail
probability is zero with respect to machine accuracy forx =
61891, while the simulated queue drops to zero forx = 61002.

VIII. C ONCLUSION

We have presented several contributions to the Markovian
analysis of network traffic described in terms of packet or
request interarrival times. We have obtained a spectral char-
acterization of moments and autocorrelation which simplifies
the analysis of MAP processes and proposed a new class
of circulant MAPs which exhibit complex eigenvalues in the
IAT spectrum. On the basis of this spectral characterization,
we have obtained an algorithm for fitting hyperexponential
traffic by means of small PH processes. Experimental results
on traces of the Internet Traffic Archive indicate high accuracy.

In the second part of the paper, we have studied the
definition of large MAPs by Kronecker Product Composi-
tion (KPC), and shown that this provides a simple way to
create processes with predefined moments and correlations
at all orders. A least square fitting procedure based on the
properties of these processes has been described. Detailed
comparisons with other state-of-the-art fitting methods based
on the counting-process show that KPC provides improved
fitting of LRD traces that require models that capture their
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Fig. 11. Fitted autocorrelation for the Seagate Web trace using the program in Figure 5.

TABLE II
MAP(16) FITTING OF THE SEAGATE WEB TRAFFIC TRACE USING THE ALGORITHM OFSECTION VI

Seagate Trace MAP(16)
E[X] 3.0134 · 100 3.0134 · 100

CV2 3.3285 · 100 3.3285 · 100

E[X3] 1.5986 · 103 1.1414 · 103

γ2 n/a 9.9997 · 10−1
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Fig. 12. Queueing predictions for the Seagate Web trace on a queue with deterministic service.

higher-order properties, including the challenging BC-Aug89
trace of the Internet Traffic Archive.
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APPENDIX

KPC Fitting - Bellcore Aug89 Trace. The Bellcore Aug89
trace is fitted by the KPC process(Dkpc

0 , Dkpc
1 ) defined by

D
kpc
0 =−Da

0 ⊗Db
0 ⊗Dc

0 ⊗Dd
0

D
kpc
1 =Da

1 ⊗Db
1 ⊗Dc

1 ⊗Dd
1.

The four composing processes have

Da
1 =

[
2.5582 · 100 4.3951 · 10−2

1.1368 · 10−2 6.6173 · 10−1

]
,

Db
1 =

[
2.6769 · 100 6.6924 · 10−5

4.2706 · 10−5 1.7082 · 100

]
,

Dc
1 =

[
4.3309 · 100 2.7061 · 10−4

6.7564 · 10−2 2.2578 · 10−2

]
,

Dd
1 =

[
3.5552 · 101 2.9355 · 10−1

2.6962 · 100 4.8230 · 100

]
.

and the correspondingD0 are diagonal withi-th element
equal in modulus to the sum of thei-th row of the associated
D1 matrix, e.g., Da

1 = diag(−(2.6769 · 100 + 6.6924 ·
10−5),−(4.2706 · 10−5 + 1.7082 · 100)).

KPC Fitting - Seagate Web Trace. The MAP(16) fitting
the Seagate Web trace is the process(Dkpc

0 , Dkpc
1 ) where

D
kpc
0 =−Da

0 ⊗Db
0 ⊗Dc

0 ⊗Dd
0

D
kpc
1 =Da

1 ⊗Db
1 ⊗Dc

1 ⊗Dd
1

in which the composing processes have

Da
1 =

[
6.0174 · 10−4 1.9726 · 10−5

5.4983 · 10−6 1.6772 · 10−4

]
,

Db
1 =

[
4.7919 · 101 6.4534 · 10−2

2.8556 · 10−2 2.1204 · 101

]
,

Dc
1 =

[
4.4827 · 100 5.7367 · 10−5

1.6440 · 10−5 1.2846 · 100

]
,

Dd
1 =

[
2.9941 · 101 3.6688 · 10−3

1.9573 · 10−3 1.5974 · 101

]
.

and the correspondingD0 are diagonal withi-th element
equal in modulus to the sum of thei-th row of the associated
D1 matrix.


