
License Usage and Changes: A Large-Scale Study
of Java Projects on GitHub

Christopher Vendome1, Mario Linares-Vásquez1, Gabriele Bavota2,

Massimiliano Di Penta3, Daniel German4, Denys Poshyvanyk1
1The College of William and Mary, VA, USA — 2Free University of Bolzano, Italy

3University of Sannio, Italy — 4University of Victoria, BC, Canada

Abstract—Software licenses determine, from a legal point of
view, under which conditions software can be integrated, used,
and above all, redistributed. Licenses evolve over time to meet
the needs of development communities and to cope with emerging
legal issues and new development paradigms. Such evolution
of licenses is likely to be accompanied by changes in the way
how software uses such licenses, resulting in some licenses being
adopted while others are abandoned. This paper reports a
large empirical study aimed at quantitatively and qualitatively
investigating when and why developer change software licenses.
Specifically, we first identify licenses’ changes in 1,731,828
commits, representing the entire history of 16,221 Java projects
hosted on GitHub. Then, to understand the rationale of license
changes, we perform a qualitative analysis—following a grounded
theory approach—of commit notes and issue tracker discussions
concerning licensing topics and, whenever possible, try to build
traceability links between discussions and changes. Our results
point out a lack of traceability of when and why licensing changes
are made. This can be a major concern, because a change in the
license of a system can negatively impact those that reuse it.

Index Terms—Software Licenses, Mining Software Reposito-
ries, Empirical Studies

I. INTRODUCTION

The increasing diffusion of Free and Open Source Software

(FOSS) projects is a precious resource for developers, who

can reuse existing assets, extend/evolve them, and in this way

create new work productively and reduce costs. Nevertheless,

whoever is interested in integrating FOSS code in their soft-

ware project (and redistributing resulting source code with

the project itself), or modifying existing FOSS projects to

create new work—referred to as “derivative work”—must be

aware that such activities are regulated by software licenses
and in particular by certain FOSS licenses. A file is licensed

by adding a licensing statement as a comment on top of a

file, or in a separate text file that indicates the license(s) under

which such file is licensed.

Generally speaking, FOSS licenses can be classified into

restrictive (also referred to as “copyleft” or “reciprocal”) and

permissive licenses. A restrictive license requires developers

to use the same license to distribute new software that incor-

porates software licensed under such restrictive license (i.e.

the redistribution of the derivative work must be licensed

under the same terms); meanwhile, permissive licenses allow

re-distributors to incorporate the reused software under a

difference license [30], [17]. The GPL is a classic example of

a restrictive license. In Section 5 of the GPL-3.0, the license

addresses code modification stating that “You must license the

entire work, as a whole, under this License to anyone who
comes into possession of a copy” [4]. The BSD Licenses are

examples of permissive licenses. For instance, the BSD 2-

Clause has two clauses that detail the use, redistribution, and

modification of licensed code: (i) the source must contain the

copyright notice and (ii) the binary must produce the copyright

notice and contain the disclaimer in documentation [1].

When developers or organizations decide to make a project

available as open source, they can license their code under

many different existing licenses or specify a new unique

license. The choice may be dictated by the set of dependencies

that the project has (e.g., libraries) released under various

different licenses. For example, if a project has to (statically)

link some GPL code, then it must be released under the

same GPL version; failing to fulfill such a constraint would

create potential legal implications. Also, as shown by Di

Penta et al. [14], the choice of the licenses in a FOSS

project may have massive impact on its success, as well as

on projects using it. For example—as it happened for the

IPFilter project [5]—a highly restrictive license may prevent

others from redistributing the project (in the case of IPFilter,

this caused its exclusion from OpenBSD distributions). An

opposite case is the one of MySQL connect drivers, originally

released under GPL-2.0, whose license was modified with an

exception [29] to allow the driver’s inclusion in other software

released under other open source licenses (e.g., the Apache

one). In summary, the choice of the license—or even a decision

to change an existing license—is a crucial crossroad point in

the context of software evolution of every FOSS project.

In order to encourage developers to think about licensing

issues early in the development process, some forges (e.g.,

GitHub) have introduced specific mechanisms such as the pos-

sibility of picking the project license at the time the repository

is created, and websites (e.g., http://choosealicense.com/) for

helping developers to choose a license. In addition, there are

numerous research efforts aimed at supporting developers in

classifying source code licenses [22], [21] and identifying

licensing incompatibilities [18]. Even initiatives such as the

Software Package Data Exchange (SPDX) [6] have been aimed

at proposing a formal model for licenses. However, despite

of the effort put by the FOSS community, researchers, and

independent companies, it turns out that developers usually

do not have a clear idea yet on the exact consequences of

licensing (or not) their code using a specific license, or they

2015 IEEE 23rd International Conference on Program Comprehension

978-1-4673-8159-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPC.2015.32

218



are unsure, for example, on how to re-distribute code licensed

with a dual license among the other issues.

Paper contributions. This paper reports the results of a

large empirical study aimed at quantitatively and qualitatively

investigating when and why licenses change in Java projects

hosted on GitHub. In particular, we mined the entire change

history of 16,221 projects, extracting the license type (e.g.,

GPL) and version (e.g., v2) in each of the 4,665,611 files

involved in a total of 1,731,828 commits. Starting from this

data, we provide quantitative evidence on (i) the diffusion

of licenses in FOSS systems, (ii) the most common license-

change patterns, and (iii) the traceability between the license

changes to both the commit messages and the issue tracker

discussions; additionally, we provide qualitative rationale on

the reasons why developers adopt specific license(s), both for

initial licensing and for licensing changes.

Previous work explored license incompatibilities [18], li-

cense changes [14], license evolution [25] and integration

patterns [20]. Building upon previous results, this paper:

1) Constitutes, to the best of the authors’ knowledge, the

largest study aimed at analyzing the change patterns in

licensing of software systems (earlier work was limited

to the analysis of up to six projects [25], [14], whereas

this work analyzes 16,221 projects).

2) Is the first work aimed at linking licensing changes to

their rationale by means of a qualitative analysis of

commit notes and issue tracker discussions.

The study results suggest that determining the appropriate

license of a software project is far from trivial and that a

community can influence developers when picking a license.

Although licensing is considered by developers during the

initial release of a project, forges and third party tools do not

provide enough support to developers with licensing related

tasks, e.g., in picking a license, declaring the license of a

project, license migration, traceability of changes related to

licensing. Also, there is a lack of consistence and standard-

ization in the mechanism that should be used for declaring

a license (e.g, putting it in source code heading comments,

separate license files, README files, etc.), which fosters con-

fusion among developers attempting to reuse code. Moreover,

the legal nature of the licenses exacerbate this problem since

the implications and grants or restrictions are not always clear

for developers when the license is present.

II. RELATED WORK

Our work is mainly related to (i) techniques and tools for

automatically identifying and classifying licenses in software

artifacts, and (ii) empirical studies focusing on different as-

pects of license adoption and evolution.

A. Identifying and Classifying Software Licensing

To the best of our knowledge, the problem of license identi-

fication has firstly been tackled in the FOSSology project [22]

aimed at building a repository storing FOSS projects and their

licensing information and using a machine learning approach

to classify licenses. Tuunanen et al. [31] present ASLA, a tool

aimed at identifying licenses in FOSS systems; the tool has

been shown to determine licenses in files with 89% accuracy.

German et al. [21] proposed Ninka, a tool that uses a

pattern-matching based approach for identifying statements

that characterize various licenses. Given any text file as an

input, Ninka outputs the license name (e.g., GPL) and its

version (e.g., 2.0). In the evaluation reported by the authors,

Ninka’s achieved a precision around 95% while detecting

licenses. Ninka is currently considered the state-of-the-art tool

in the automatic identification of software licenses.

While the typical license classification problem arises when

source code is available, in some cases, it is not available—i.e.,

only byte code or binaries are available—and the goal is to

identify whether the byte code has been produced from source

code under a certain license. To this aim, Di Penta et al. [13]

combined code search and textual analysis to automatically

determine a license under which jar files were released. Their

approach automatically infers the license from decompiled

code by relying on Google Code Search.

B. Empirical Studies on Licenses Adoption and Evolution

Di Penta et al. [14] investigated the migration of licenses

over the course of a project’s lifetime. The study suggests that

licenses changed version and type during software evolution,

but there was no generic patterns generalizable to the six

analyzed FOSS projects. German et al. [20] analyzed 124

open source packages exploited by several applications to

understand how developers deal with license incompatibilities.

Based on this analysis, they built a model outlining when

specific licenses are applicable and what are their advantages

and disadvantages. Later, German et al. [18] presented an

empirical study focused on the binary packages of the Fedora-

12 Linux distribution aimed at (i) understanding if licenses

declared in the packages were consistent with those present in

the source code files and (ii) detecting licensing issues derived

by dependencies between packages; they were able to find

some licensing issues confirmed by Fedora. Manabe et al. [26]

analyzed the changes in licenses of FreeBSD, OpenBSD,

Eclipse, and ArgoUML, finding that each project had different

evolution patterns. German et al. [19] analyzed the presence

of cloned code fragments between the Linux Kernel and two

distributions of BSD, i.e., OpenBSD and FreeBSD. The aim

was to verify whether the cloning was performed in accordance

to the terms of the licenses. Results show that, in most cases,

these code-migrations were admitted.

While we share similar goals with prior related work—

understanding insights into license usage and migration— our

analysis is done on a much larger scale, i.e., across 16K

projects vs. less than 10 projects in prior work (although

German et al. [18] considered a single version of Fedora, the

work investigated 1,475 source and 2,399 binary packages,

which corresponded to each other, for that system). In addition,

we performed an in-depth analysis of the rationale behind

license usages and migrations by systematically studying and

categorizing a multitude of related software artifacts (i.e.,

source code files, commit notes, and issue tracker discussions).

219



III. DESIGN OF EMPIRICAL STUDY

The goal of our study is to investigate license adoption and

evolution in FOSS projects, with the purpose of understanding

the overall rationale behind picking a particular license or

changing licenses and of determining the underlying license

change patterns. The context consists of the change history of

16,221 Java open source projects mined from GitHub, as well

as their issue tracker discussions.
A. Research Questions

We aim at answering the following research questions:

1) RQ1 What is the usage of different licenses by projects in
GitHub? This research question examines the proportions

of different types of licenses that are introduced by FOSS

projects hosted in GitHub. In doing this, we should

consider that GitHub is a relatively young forge, which

has seen exponential growth in the number of projects

over the past few years (see Table II), and that most of the

projects it hosts are young in terms of the first available

commit or the date that the repository was created.

2) RQ2 What are the most common licensing change pat-
terns? Our second research question investigates the

popular licensing change patterns in the GitHub Open

Source community with the aim of driving out—from

a qualitative point of view—the rationale behind such

change patterns.

3) RQ3 To what extent are licensing changes documented in
commit messages or issue tracker discussions? This re-

search question investigates on whether licensing changes

in a system can be traced to commit messages or issues’

discussions.

4) RQ4 What rationale do these sources contain for the
licensing changes? This research question investigates the

rationale behind the particular change in license(s) from

a developer’s perspective.

We address our four research questions by looking at the

licensing phenomenon from two different points of view,

namely (i) a quantitative analysis of the licenses under which

projects were released, their changes across their evolution

history, and the ability to match these changes to either

commit notes or issue tracker discussions; and (ii) a qualitative
analysis of developers’ licensing-related discussions made over

the issue trackers and of the way in which developers docu-

mented licensing changes through commit notes. For the case

of licensing changes, we are interested in analyzing license

migration patterns that fall in the following three categories:

• No license → some License(s) – N2L. This reflects the

case where developers realized the need for a license and

added a licensing statement to files;

• some License(s) → No license – L2N . In this case, for

various reasons, licensing statements have been removed

from source code files; for example, because a developer

accidentally added a wrong license/license version;

• some License(s) → some other License(s) – L2L. This is

the most general case of a change in licensing between

distinct licenses.

With the quantitative analysis, we looked for answers to

RQ1, RQ2, and RQ3; whereas, with the qualitative analysis,

we aimed at answering RQ4.

B. Quantitative Analysis

In order to generate the data set to be used in the study, we

mined the commit history of 16,221 Java Application publicly

available on GitHub. GitHub hosts over twelve million Git
repositories covering many popular programming languages,

and provides a public API [3] that can be used to query

and mine project information. Also, the Git version control

system allows for local cloning of the entire repository, which

facilitates the comprehensive analysis of the project change-

history and thus of the license changes happened in each

commit.

To extract data for our quantitative analysis, first we mined

a comprehensive list of projects hosted on GitHub by imple-

menting a script exploiting GitHub’s APIs. GitHub limits the

number of requests (or queries) per hour by IP Address to 60

for non-authenticated requests and 5,000 for the authenticated

ones. The computation of the comprehensive list resulted in

over twelve million projects. Since the infrastructure we use

for license extraction supports Java systems (as it will be

explained later), we filtered out all systems that were not

written in Java, obtaining a list of 381,161 Java projects hosted

on GitHub. We cloned all 381,161 git repositories locally for

a total of 6.3 Terabytes of storage space. In our analysis, we

randomly sampled 16,221 projects due to the computation time

of the aforementioned infrastructure.

Once the Git repositories had been cloned, we used a code

analyzer developed in the context of the MARKOS European

project [9] to extract license information at commit-level gran-

ularity. The MARKOS code analyzer uses the Ninka license

classifier [21] to identify and classify licenses contained in all

the files hosted under the versioning system of each project.

For each of the 16,221 projects in our study, the MARKOS

code analyzer mined the change log, producing the following

information for each commit:

1) Commit Id: The identifier of the commit that is currently

checked out from the Git repository and analyzed;

2) Date: The timestamp associated with the commit;

3) Author: The person responsible for the commit;

4) Commit Message: The message attached to the commit;

5) File: The path of the files committed;

6) Change to File: A field to indicate whether each file

involved in the commit was Added, Deleted, or Modified;

7) License Changed: A Boolean indicating value whether

the particular file has experienced a change in license in

this commit with respect to its previous version;

8) License: The name and version (e.g., GPL-2.0) of each

license applied to the file.

The computation of such information for all 16,221 projects

took almost 40 days, and resulted in the analysis of a total

of 1,731,828 developers’ commits involving 4,665,611 files.

Note that for the BSD and CMU licenses Ninka was not able

to correctly identify its version (reporting it as BSD var and

220



CMU var). Additionally, the GPL and the LGPL may contain

a “+” after the version number (e.g., 3.0+), which represents a

clause in the license granting the ability to use future versions

of the license (i.e., the GPL-2.0+ would allow for utilization

under the terms of the GPL-3.0). Also, we have values of

“no license” and “unknown”, which represents the case that

no license was attached to the file or Ninka was unable the

determine the license.

We quantitatively analyzed the collected data by presenting

descriptive statistics about the license adoption and the most

common atomic license changes in the analyzed systems. The

latter are defined as the commits in which we detected a

specific kind of license change within at least one source code

or textual file. For example, given a commit with three files

experiencing the licensing change No license → Apache-2.0,

and 10 files with GPL-2.0 → GPL-3.0, the atomic license

changes from that commit are one No License → Apache-2.0
change and one GPL-2.0 → GPL-3.0 change. We prefer not

to count the number of changes at file level as it was done

in previous work [14] to avoid inflating our analysis because

of large commits and to make comparable commits performed

on both small and large projects. At the end, we identified a

total of 1,833 projects with atomic license changes out of our

dataset of 16,221 projects. This subset of projects was used to

investigate license change traceability. Intuitively, we require

the presence of license changes in order to determine how

well changes in licensing are documented in either the commit

notes or issue tracker discussion. Therefore, we used a web

crawler to identify, among these 1,833 projects, those using the

GitHub issue tracker, finding a total of 1,586 projects having at

least one issue on it. To link the licensing changes to commit

notes/issue reports, we performed both string matching and

date matching between either the commit notes or the issue

tracker discussions and the extracted licensing information

(e.g., license name or date that license was committed).

C. Qualitative Analysis

Our qualitative analysis is based on manual inspection and

categorization of commit notes and issue tracker discussions.

While the former can be queried from the repository using

Git commands, the latter have been extracted by building a

web crawler collecting the information present in all issue

trackers on GitHub of the 16,221 projects described above. In

particular, for each issue our crawler collected (i) its title and

description, (ii) the text of each comment added to it, (iii) and

the date the issue was opened and closed (when applicable).

In other words, we collected the discussion present in each

issue. Of the 16,221 considered projects, 16,096 used the issue

tracker (By “used,” we refer to the existence of the issue

tracker url. However, a subset of project’s had a bug where

their issue tracker redirected to pull-requests). In order to find

the relevant issues (i.e., those presenting discussions about

software licenses), we used a keyword search mechanism

exploiting specific licensing keywords (e.g., copyright) or

license names (e.g., GPL). In some cases, our keyword-filters

included bi-grams composed by the license type and version,

since some licenses types considered alone (e.g., apache)

produced a very large amount of false positive discussions

(e.g., all those talking about Apache projects). At the end, we

obtained 273 issue-tracker discussions to manually analyze.

Concerning the commit notes, we premise that finding

commit notes explicitly reporting the rationale behind a li-

cense adoption/change is far from trivial. Indeed, we found

developers are very reluctant to document license changes

in commit notes. Although we primarily considered 16,221

projects in our analysis (quantitative and traceability), we

extracted commit notes from the complete commit history

of 381,161 Java projects, which amounted to 63,564,326

commits, in order to perform our qualitative analysis. We

sought to improve the ability to generalize our taxonomy by

sampling from this complete history of all Java projects; as

previously noted, it was infeasible to use the entire dataset for

our qualitative analysis due to computation time. Among these

commit messages, our keyword-based filter identified 742,671

commit messages (1.17%) likely talking about licenses. It

is worth noting that we adopted a rather strict keyword-

based filter based on the critical words exploited by Ninka

during licenses identification augmented with license names.

From these commits, we randomly sampled 500 total commit

notes to understand the level of detail that commits contain

with respect to licensing. In addition, we also considered

224 randomly sampled commit notes from the commits of

the 1,833 projects in which we identified (in our quantitative

analysis) an instance of an atomic license change.

After collecting commit notes and issue discussions, we

used Grounded Theory (GT)—following the principles for-

mulated by Corbin and Strauss [11]—to group them into

categories. The GT-based classification of commits and issue

tracker discussions aimed at finding the rationale for licensing

changes in the analyzed dataset; in particular we aimed at

answering the following two sub-questions: What are the
reasons pushing developers to associate a particular license
to their project? and What causes them to migrate licenses or
release their project under a new license (i.e., co-licensing)?

For the GT-based analysis, we distributed the commit notes

and the issue tracker discussions among the authors such

that two authors were randomly assigned to each message

(a message can be a commit note or an entire issue tracker

discussion). After each round of open coding, in which the

authors independently created classifications for the messages,

we met to discuss the coding identified by each of us, and

refined them into categories. Note that during each round the

categories defined in previous rounds were refined accordingly

to the new knowledge created from the additional manual

inspections and from the authors’ discussions. Overall, the GT

analysis concerned (i) 500 randomly selected licensing-related

commit notes identified via the keywords-based mechanism;

(ii) the 224 commit notes from the commits where a licensing

change was observed in our quantitative analysis; and (iii)

the 273 issue tracker discussions matching licensing-related

keywords. The output of our GT-based analysis is a set

of categories and subcategories explaining why licenses are

221



TABLE I
TOP LICENSES: OSI, SOURCEFORGE, AND OUR DATASET.

OSI Popular License (unordered) SourceForge (Dec. 2009) Our Github Data Set
Apache-2 Lic GNU Public Lics GNU Public Lics

BSD 2-Clause Lic Lesser GNU Public Lics Apache Lics
BSD 3-Clause Lic BSD Lics Lesser GNU Public Lics
GNU Public Lics Apache Lics MIT Lic

Lesser GNU Public Lics Public Domain Eclipse Public Lic
MIT Lic MIT Lic Comm. Dev. and Dist. Lic

Mozilla Public Lic 2 Academic Free Lic Mozilla Public Lic
Comm. Dev. and Dist. Lic Mozilla Public Lics BSD Lics

Eclipse Public Lic

TABLE II
PROJECTS IN OUR DATASET WITH AN INITIAL COMMIT FOR EACH YEAR.

Year Projects Year Projects Year Projects Year Projects Year Projects
1992 1 2000 7 2004 22 2008 186 2012 14159
1996 1 2001 11 2005 36 2009 263 2013 60
1997 3 2002 10 2006 72 2010 440
1999 6 2003 35 2007 91 2011 811

adopted and changed. We qualitatively discuss the findings

of our GT-based analysis in Section IV-D, presenting our

categories classification and examples of commit notes and

issue tracker discussions belonging to the various categories.

D. Dataset Analysis

To have an idea of the external validity of our dataset,

we measured the diversity metric proposed by Nagappan et
al. [28] for our dataset. We matched the list of our mined

projects from GitHub to the list of available projects from Boa

[16], and ended up with 1,556 projects that were matched by

name. This subset was used in the computation of the diversity

metric, obtaining a score of 0.35, indicating that around 10%

of our dataset covers just over a third of the open source

projects according to six dimensions: programming language,

developers, project age, number of committers, number of

revisions, and number of programming languages. The dimen-

sional scores are 0.45, 0.99, 1.00, 0.99, 0.96, 0.99, respectively,

suggesting that our subset covers the relevant dimensions for

our analysis. However, the focus on Java projects limits the

programming language score, affecting the overall score.

Another important aspect to analyze is the representative-

ness of the licenses present in our dataset with respect to those

diffused in the OS community. The Open Source Initiative

(OSI) specifies a list of approved 70 licenses, indicating the

ones reported in the first column of Table I as the most

commonly used in FOSS software (they do not specify any

order). The second column of Table I reports the top licenses

as extracted from the FLOSSmole’s SourceForge snapshot of

December 2009 [23], while the third column shows the top

licenses as extracted from our sample of GitHub projects.

The license declared by OSI as the most commonly used

the most commonly found also in our dataset (BSD 2 and 3

fall both in the BSD type). In the comparison between our

dataset and SourceForge, while the order of diffusion for the

different licenses is not exactly the same, six of the top eight

licenses in SourceForge are also present in our dataset (all but

Public Domain and Academic Free License). This analysis,

together with the diversity metric, suggests that our dataset is

representative of OS systems.

Table II reports the year of the first commit date for each

of the 16,221 considered projects. This table clearly shows

the exponential growth of GitHub until 2012, confirming

what already was observed by people in the GitHub commu-

nity [15]. While GitHub also experienced exponential growth

in 2013 [7], our dataset does not mirror this fact. This is due to

a design choice we made while randomly choosing the projects

to clone. In particular, we cloned projects during January

2014, excluding projects with a commit history less than one

year from the set of 381,161 Java projects (i.e., projects with

the first commit performed no later than January 2013). This

was needed since, in the context of RQ2, we are interested

in observing migration patterns occurring over the projects’

history. Thus, projects having a very short commit history

were not relevant for the purpose of this study. Moreover,

since in RQ1 we are interested in observing licenses’ usage in

the context of the GitHub’s drastic expansion, we decided to

exclude the 60 projects having the first commit in 2013 from

our analysis due to the severe lack of representation in our

sample despite the continued growth of GitHub.

E. Replication Package

The working data set of our study is available at: http://

www.cs.wm.edu/semeru/data/ICPC15-licensing.

IV. EMPIRICAL RESULTS

This section discusses the achieved results answering the

four research questions formulated in Section III-A.

A. RQ1: What is the usage of different licenses in GitHub?

Fig. 1 depicts the percentage of licenses that were first

introduced into a project in the given year, which we refer to

as relative license usage. We only report the first occurrence

of each license committed to any file of the project. For easier

readability, the bars are grouped by permissive (dashed bars)

or restrictive licenses (solid bars). Additionally, we omit data

prior to 2002 due to the limited number of projects created

during those years in our sampled dataset (see Table II).

In 2002, we observed that restrictive licenses and permissive

licenses have been used approximately equally with a slight

bias toward using restrictive licenses. Although the LGPL-2.1
and LGPL-2.1+ variant are restrictive licenses, they are less

restrictive than their GPL counter-part. It specifically aimed at

ameliorating licensing conflicts that arose when linking code

to a non-(L)GPL system; whereas, the GPL licenses would

require the system to change its license to the GPL or else

the component would not legally be able to be added. Thus,

it suggests a bias toward using less restrictive licenses even

among the typical copy-left licenses. By the subsequent year

(2003), a clear movement toward using less restrictive licenses

can be seen with the wider adoption of the MIT/X11 license

as well as the Apache-1.1 license. Additionally, we observe

that the LGPL is still prominent, while the CMU, CPL-1.0,

and GPL-2.0+ licenses were declining. During the following

five years (2004-2008), the Apache-2.0, CDDL-1.0, EPL-1.0,

GPL-3.0, LGPL-3.0, and DWTFYW-2 licenses were created.

Also during this period, the work of Bavota et al. showed

that the Apache ecosystem grew exponentially [8]. This obser-

vation explains the rapid diffusion of the Apache-2.0 license

among FOSS projects. We observed a growth that resulted

222



in the Apache-2.0 license accounting for approximately 41%

of licensing in 2008. Conversely, we observed a decline in

the relative usage of both GPL and LGPL licenses, excluding

2007. Combined, the two observations suggest a stronger

movement toward permissive licenses since approximately

65% of licenses attributed were permissive for 2005, 2006,

and 2008; while initially it was at approximately 63% in 2004,

the percentage of permissive licenses only dropped below 60%

during 2007 to approximately 55%.
Another interesting observation was that the newer version

of the GPL (GPL-3.0 or GPL-3.0+) had a lower relative

usage compared to its earlier version until 2011. Additionally,

the adoption rate was more gradual than for the Apache-
2.0 license that appears to supersede Apache-1.1 license.

However, the LGPL-3.0 or LGPL-3.0+ does not have more

popularity than prior versions in terms of adoption, despite

the relative decline of the LGPL-2.1’s usage starting in 2010.

Our manual analysis of commits highlighted explicit reasons

that pushed some developers to chose the LGPL license. For

instance, a developer of the hibernate-tools project

when committing the addition of the LGPL-2.1+ license to

her project wrote:

The LGPL guarantees that Hibernate and any mod-
ifications made to Hibernate will stay open source,
protecting our and your work

This commit note indicates that LGPL-2.1+ was chosen as the

best option to balance the freedom for reuse and guarantee that

the software will remain free.
Conversely, we observed the abandonment of licenses as

newer FOSS licenses are introduced. For example, Apache-
1.1 and CPL-1.0 become increasingly less prevalent or no

longer used among the projects. In both cases, a newer license

appears to replace the former license. While the Apache-
2.0 offers increased protections (e.g., protections regarding

patent litigation), the EPL-1.0 primarily resembles a textual

replacement of “Common” in the CPL-1.0 to “Eclipse” in the

EPL as well as altering the copyright by replacing “IBM”

with “The Eclipse Foundation”. Thus, the two licenses are

intrinsically the same from a legal perspective, which explains

why the EPL adoption grew as the CPL usage shrunk.
Finally, we observed fluctuations in the the adoption of the

MIT/X11 license. As the adoption of permissive licenses grew

with the introduction of the Apache-2.0 license, it first declined

in adoption and was followed by growth to approximately its

original adoption. Ultimately, we observed a stabilization of

the MIT/X11 usage at approximately 10% starting in 2007.
Summary for RQ1. We observed a clear trend towards

using permissive licenses like Apache-2.0 and MIT/X11. Ad-

ditionally, the permissiveness or restrictiveness of a license

seems to impact the adoption of newer versions, where permis-

sive licenses are more rapidly adopted. Conversely, restrictive

licenses seem to maintain a greater ability to survive in

usage as compared to the permissive licenses, which become

superseded. Finally, we observed a stabilization in the license

adoption proportions of particular licenses, despite the expo-

nential growth of GitHub.

Fig. 1. Relative License Usage between 2002 and 2012 (dashed pattern
representing permissive licenses).

B. RQ2: What are the most common licensing change pat-
terns?

We analyzed commits where a license change occurred,

with a two-fold goal (i) analyze license change patterns to

understand both the prevalence and types of changes affecting

software systems, and (ii) understand the rationale behind

these changes. Overall, we found 204 different atomic license
change patterns. To analyze them, we considered their preva-

lence across the projects (i.e., global patterns) and within a

project (i.e., local patterns). We sought to distinguish between

dominant global patterns (Table III) and dominant local pat-

terns (Table IV). The former was extracted by identifying

and counting the presence of a pattern only once per project.

The latter was extracted by first identifying and counting the

patterns in a given project; then, those results were compared

for each project to identify the patterns that were dominant in

a local scope (i.e., within a given project).

The most dominant global patterns the projects were either

a change from no license or an unknown license to particular

license, or a change from a particular license to no license

or an unknown license. By particular, we mean that we were

able to extract the license. Table III shows the top 10 global

patterns. We observe that the inclusion of Apache-2.0 was the

most common pattern for unlicensed or unknown code.

Table III also shows the most common global migrations

when focusing the attention on migrations happened between

different licenses. We observe that the migration toward the

more permissive Apache-2.0 was a dominant change among

the top 10 atomic license changes for global license migra-

tions. An interesting observation is the license upgrade and

downgrade between GPL-2.0+ and GPL-3.0+. GPL-3.0 is

considered by the Free Software Foundation as a compatible

license with the Apache-2.0 license. Due to the large usage of

Apache code in Java, this pattern is quite expected. However,

the migration GPL-3.0+ → GPL-2.0+ is interesting since still

allows for the project to be redistributed as GPL-3.0, but

allows for the usage as GPL-2.0, which is less restrictive, as

well.

Table IV shows the most common local migrations. The

223



migrations appear to be toward a less restrictive license or

license version. The low frequency of the atomic license
change local patterns indicates that migrating licenses is non-

trivial. It can also introduce problems with respect to reuse. For

example, we observed a single project where GPL-1.0+ code

was changed to LGPL-2.0+ a total of 9 times. LGPL is less

restrictive than GPL when the code is used as a library. Thus, if

parts of the system are GPL, the developer must comply with

the more restrictive and possibly incompatible constraints.

Until now, we considered atomic license changes among

any file in the repository. This was needed since most of

the analyzed projects lack of a specific file (e.g., license.txt)

declaring the project license. To extract the declared project

license, we considered a file in the top level directory named:

license, copying, copyright, or readme. When just focusing on

projects including such files, we extracted 24 different change

patterns. Table V illustrates the top eight licensing changes

between particular licenses (i.e., we excluded no license or

unknown license from this table) for declared project licenses.

We only considered the top eight, since there was tie between

five other patterns or the next group of change patterns. We

observe that the change from Apache-2.0 → MIT/X11 was the

most prevalent license change pattern, and the co-license of

MIT/X11 with Apache-2.0 is the second most prevalent one.

Interestingly, this pattern was not dominant in our file-level

analysis, although the GT analysis provided us support for this

pattern. The MIT/X11 license was used to allow commercial

reuse, while still maintaining the project’s Open Source nature.

Our third pattern of GPL-2.0+ → GPL-3.0+ in Table V

was expected since it was tied for the most prevalent among

global atomic license changes. Similarly, the patterns of MIT/X
→ Apache-2.0, GPL-3.0+ → Apache-2.0, and Apache-2.0
→ GPL-3.0 were also among the top eight global changes.

Another notable observation is that license changes are fre-

quently toward permissive licenses. Excluding the five changes

from Apache-2.0 → GPL-3.0+, the remaining changes for the

top eight are either a licensing change from a restrictive (or

copyleft) license to a permissive license or a licensing change

between two different permissive licenses.

Summary for RQ2. The key insight from the analysis of

atomic license change patterns is that the licenses tend to

migrate toward less restrictive licenses.

C. RQ3: To what extent are licensing changes documented in
commit messages or issue tracker discussions?

Table VI reports the results of the traceability linking

between licensing changes and commit notes/issue tracker

discussions. We found a clear lack of traceability between

license changes in both the commit message history and the

issue tracker. In both data sources, we first extracted the

instances (i.e., commit messages and issue tracker discussions)

where the keyword “license” appears or where a license name

was mentioned (e.g., “Apache”). In the former case, we are

identifying potential commits or issues that are related to

licensing, while the latter attempts to capture those related

to specific types of licenses.

TABLE III
TOP 10 GLOBAL ATOMIC LICENSE CHANGE PATTERNS.

Top Patterns (Overall) Pattern Occurrences
no license or unknown → Apache-2.0 823
Apache-2.0 → no license or unknown 504
no license or unknown → GPL-3.0+ 269
GPL-3.0+ → no license or unknown 181
no license or unknown → MIT/X11 163
no license or unknown → GPL-2.0+ 113
GPL-2.0+ → no license or unknown 111
MIT/X11 → no license or unknown 98
no license or unknown → EPL-1.0 94
no license or unknown → LGPL-2.1+ 91
Top Patterns Between Different Licenses Pattern Occurrences
GPL-3.0+ → Apache-2.0 25
GPL-2.0+ → GPL-3.0+ 25
Apache-2.0 → GPL-3.0+ 24
GPL-2.0+ → LGPL-2.1+ 22
GPL-3.0+ → GPL-2.0+ 21
LGPL-2.1+ → Apache-2.0 16
GPL-2.0+ → Apache-2.0 15
Apache-2.0 → GPL-2.0+ 13
MPL-1.1 → MIT/X11 11
MIT/X11 → Apache-2.0 11

TABLE IV
TOP 10 LOCAL ATOMIC LICENSE CHANGE PATTERNS BETWEEN DIFFERENT

LICENSES.

Pattern Pattern Occurrences
GPL-2.0+ → GPL-3.0+ 36
GPL-2.0+ → LGPL-3.0+ 15
LGPL-3.0+;Apache-2.0 → Apache-2.0 12
GPL-3.0+;Apache-2.0 → Apache-2.0 12
GPL-2.0+ → LGPL-2.1+ 10
GPL-1.0+ → LGPL-2.0+ 9
GPL-2.0+ → GPL-3.0+ 9
GPL-3.0+ → Apache-2.0 8
GPL-3.0+ → GPL-2.0+ 8
GPL-3.0+ → LGPL-3.0+ 8

TABLE V
TOP 8 LICENSE CHANGE PATTERN IN A DECLARED LICENSE FILE OF A

PROJECT (LICENSE,COPYING,COPYRIGHT, OR README FILE), EXCLUDING

NO LICENSE OR UNKNOWN LICENSE.

Pattern Pattern Occurrences
Apache-2.0 → MIT/X11 12
Apache-2.0 → MIT/X11;Apache-2.0 8
GPL-2.0+ → GPL-3.0+ 7
MIT/X11 → Apache-2.0 6
GPL-3.0+ → Apache-2.0 6
MIT/X11;Apache-2.0 → Apache-2.0 5
Apache-2.0 → GPL-3.0+ 5
GPL-3.0+ → MIT/X11 3

TABLE VI
TRACEABILITY BETWEEN LICENSING CHANGES AND COMMIT MESSAGES

OR ISSUE TRACKER DISCUSSION COMMENTS.
Data
Source

Linking Query Links

Commit Commits with the keyword “license” 70746
Messages Commits containing new license name 519

Commits containing new license name and the keyword “license” 399
Issue Comments from closed issues containing the keyword “license” 0
Tracker Comments from closed issues containing the new license 0
Comment Comments from closed issues containing the new license and the keyword “license” 0
Matching Comments from open issues containing the keyword ”license” 68

Comments from open issues containing the new license 712
Comments from open issues containing the new license and the keyword “license” 16

Issue Closed comments opened before license change and closed before or at license change 197
Tracker Open comments open before the license change 2241
Date-
based

Comments from closed issues open before the license change and closed before or at
the license change with keyword “license”

0

Matching Comments from open issues open before the license change with keyword “license” 0
Issue Comments in closed issues containing the keyword ”Fixed #[issue num]” 66025
and Comments in open issues containing the keyword ”Fixed #[issue num]” 3407
Commit Comments in closed issues containing the commit hash where the license change occurs 0
Matching Comments in open issues containing the commit hash where the license change occurs 1

224



By using the first approach, we retrieved 70,746 commits

and 68 issues, while looking for licenses’ names we identified

519 commits and 712 issues. However, these numbers are in-

flated by false positives (e.g., “Apache” can relate to the license

or it can relate to one of the Apache Foundation’s libraries).

For this reason, we then looked for commit messages and

issue discussions containing both the word “license” as well

as the name of a license. This resulted in a drop of the linked

commit messages to 399 and in zero issue discussions. Such

results highlight that license changes are rarely documented

by developers in commit messages and issues.

We also investigated whether relevant commits and issues

could be linked together. We linked commit messages to issues

when the former explicitly mentions fixing a particular issue

(e.g., “Fixed #7” would denote issue 7 was fixed). We observed

that this technique resulted in a large number of pairs between

issues and commits; thus, our observation of a lack of license

traceability is not only an artifact of poor traceability for these

projects. To further investigate the linking, we extracted the

commit hashes where a license change occurred and attempted

to find these hashes in the issue tracker’s comments. Since

the issue tracker comments contains the abbreviated hash, we

truncated the hashes appropriately prior to linking. Our results

indicated only one match for an open issue and zero matches

for closed issues.

Finally, we attempted to link changes to issues by matching

date ranges of the issues to the commit date of the license

change. The issue had to be open prior to the change and if

the issue had been closed the closing date must have been

after the change. However, we did not find any matches with

a date-based approach.

Summary for RQ3. Both the issue tracker discussions and

commit messages yielded very minimal traceability to license

changes, suggesting that the analysis of licensing requires fine-

grained approaches analyzing the source code.

D. RQ4: What rationale do these sources contain for the
licensing changes?

Given the limited traceability, we investigated both data

sources to understand the quality of the rationale when licens-

ing is mentioned in either the commit messages or the issue

tracker discussions (as explained in our design). We used GT

analysis to create a taxonomy for both data sources.

We initially sampled a filtered subset of 500 commit mes-

sages from the entire set of commit messages among all

the Java projects and distributed it among the authors. We

generated 19 categories from our open coding of the commit

messages and the dominant ones were: License Addition,
Copyright Update, License Change, and False Positive.

The License Addition category represented the commits

that explained that a license, license file, or copyright in-

formation had been added to a project or file headers. This

category has subcategories of License Declaration/Specified
and Generic Addition. The latter represents a generic commit

message of “Created LICENSE.md” that is automatically gen-

erated when a license is added to an existing GitHub project

with GitHub’s licensing feature. Similarly, this category also

contains messages just stating “added license”. The License
Declaration/Specified sub-category includes commit messages

reporting the exact license added (e.g., “Added GPL”). Such

messages make it clear to any individual how the project

or component is licensed, but they still do not explain the

rationale behind the license choice.

Similarly, License Change has a subcategory of License
Declaration/Specified, when the author specifies a new license.

The commit message “Release to public domain” suggests

that the project licensing has been changed to public domain.

In our initial data for the commits, this category also could

have been related to a License Addition. However, we also

observed commits where a different license was chosen (e.g.

“Switched to a BSD-style license”) or the clauses of the license

were modified (e.g. “The NetBSD Foundation has granted

permission to remove clause 3 and 4 from their software”).

Finally, we defined False Positives and Unclear to contain

cases coded as unclear, unrelated, or non-informative. Unclear

or not enough information signified messages that made it un-

able to determine the purpose of the commit from a licensing

perspective. The message “But it still has it’s license! So you

can’t use it exactly how you want!” indicates the presence of

a license, but it does not indicate if it was pre-existing or just

added. Additionally, it does not specify the license type and

so for our purposes it does not offer any rationale.

For the subsequent round of analysis, we specifically tar-

geted commit messages where a licensing change occurred

so that we could understand the rationale behind the change.

We did not apply a keyword for these messages since we

knew they were commits related to changes in licensing. When

reading these commits, we also included the atomic license
change pattern that was observed at that particular commit

to add context. We observed new support for the existing

categories. We refer to new support as messages indicating

new rationale for the existing categories. In addition to the

new rationale, we also observed more support of our previous

analysis, such as “Rewrite to get LGPL code.” or “Changed

license to Apache v2” for the category of Licensing Change.

In the case of Licensing Removal, we observed that licenses

were removed due to code clean up, files deletion, and depen-

dencies removal. For example, we observed the removal of

the GPL-2.0 license with the following commit message, “No

more smoketestclientlib”, indicating a removed, previously

exploited, library. Additionally, licenses were removed as

developers cleaned up the project (e.g. “More cleanup”).

Fix Missing Licensing is related to a license addition, but

it occurred when the author intended to license the file, but

forgot in the initial commit or in the commit introducing the

licensing. For example, one commit message noted, “Added

missing Apache License header.” This observation is important

since it indicates that the available source code may inaccu-

rately seem unlicensed.

An important observation from the second round of our

analysis was the ambiguity of commit messages. For example,

we observed a commit classified as Copyright Update stating,

225



“Updated copyright info.” However, this commit corresponded

to a change in licensing from GPL-2.0 to LGPL-2.1+. This

case both illustrates the lack of detail offered by developers

in commit notes, and it illustrates that an update can be more

significant than adding a header or changing a copyright year.

Since our analysis of commits seemed to hit saturation, we

finally investigated the issue tracker discussions for licensing

related comments. The analysis of these discussions introduced

six new categories: License Clarification, Reuse, Choosing Li-
cense, License Compatibility, and Contributor License Agree-
ment. License Clarifications represents the scenario where a

non-contributor submits an issue to clarify project licensing

or the implications of a license. This category demonstrates

that licensing is not trivial when it comes to code reuse and

developers are not always able to determine the license of a

project. While it is related to reuse when the motivation for the

question is to include the source code in another system, the

category Reuse includes requests for a different license. For

example, we found a developer comment on the issue thread

stating, “I would love to use this library, but the lack of a

license is prohibiting me from doing so.” Similarly, developers

wanting to include code for commercial use would request a

re-license or dual-license of the MIT license.

One interesting observation is that developers also use the

issue tracker to track the initial project licensing. To classify

this scenario, we extracted the category Choosing License. For

example, there was an issue titled “What license to use” that

posed the question of “BSD, GNU GPL, APACHE?” This

observation suggests that the issue tracker is also utilized as a

discussion forum for a subset of projects.

Additionally, we identified the License Compatibility cat-

egory from issues where a non-contributor identified an in-

compatibility in the licensing the project and the project’s de-

pendencies or where a non-contributor recommends a license-

compatible library. The license incompatibility not only cre-

ated a potential license violation for the project but also

prevented the non-contributor from cataloging the system

among projects hosted on F-Droid [2].

Finally, we identified a category of Contributor License
Agreement. This scenario arises when a developer not initially

on the project submits code to the project. In one case, a

developer submitted a patch but it could not be merged into the

system until that developer filled out the Contributor License

Agreement (CLA). A CLA makes it explicit that the author of

a contribution is granting the recipient project the right to reuse

and further distribute such contribution [10]. Thus, it prevents

the contributed code from being grounds for a lawsuit.

Summary for RQ4. While our grounded theory analysis

indicated some lack of documentation (e.g., prevalence of false

positives) and poor quality in documentation with respect to

licensing in both issue tracker discussion and commits mes-

sages, we formally categorized the available rationale. We also

found that the rationale may be incomplete or ambiguously

describe the underlying change (e.g., “Updated copyright info”

representing a change between different licenses). Finally, we

observed that issue trackers also served as conduits for project

authors and external developers to discuss licensing.

V. LESSONS AND IMPLICATIONS

The analysis of the commit messages and atomic license
changes highlighted a gap in the level of detail or information

offered with respect to licensing. A developer interested in

reusing code would be forced to check the source code of

the component to understand the exact licensing or ask for

clarification (using the issue tracker, for example). Addi-

tionally, the reason behind the change is not usually well

documented. This detail is particularly important when a

system uses external/third-party libraries since a license may

change during the addition or removal of those libraries. An

important observation from our GT analysis also stresses the

need for better licensing traceability and aid in explaining the

license grants/restrictions. We found several instances in which

the issue tracker was used to ask for clarifications regarding

licensing from external developers (i.e., not contributors) that

sought to reuse the code; this seems to suggest that code reuse
is problematic for developers due to licensing. Therefore,
our study demonstrates a need for clear and explicit
licensing information for the projects hosted on a forge.

The lack of traceability of licensing changes is also impor-

tant for researchers investigating software licensing on GitHub.

While we cannot generalize to other features, it does suggest

that commit message analysis may be largely incomplete with

respect to details of the changes made during that commit

and ultimately source code analysis is necessary. One way to

achieve this is developers can take advantage of summarization

tools such as ARENA [27] and ChangeScribe [12], [24].

While ARENA analyzes and documents licensing changes at

release level, ChangeScribe automatically generates commit

messages; however, using ChangeScribe would require extend-

ing it to analyze licensing changes at commit level. Another

option is that forges (and software tools in general) verify that

every file contains a license and that every project properly

documents its license (this feature could be optional). It would

greatly improve traceability and assert a consistency among

the repositories. In terms of licensing, it would be beneficial

for developers using another project to be informed when

a licensing change occurs. For example, a developer could

mark specific projects as dependents and receive automated

notifications when particular changes occur. This would be

very beneficial with licensing since a change in the license of

a dependency could result in license incompatibilities.

The GT analysis also suggests that commercial usage of

code is a concern in the open source community. Currently,

the MIT license seems to be the most prominent license for this

purpose. Additionally, it is important to note that the license

might be missing in a file shortly after it’s initial commit.

The lack of a license is an important consideration in open

source development since it suggests that the code may in fact

be closed source (or copyrighted by the original author). The

aforementioned suggestion above would also serve to address

this problem.

226



Finally, it seems that some projects may remain unlicensed

until release. This observation suggests that licensing is im-

portant to developers, but it may not be considered relevant

until the project is intended to be used by others. Thus,

support for licensing existing projects would be beneficial in

automating the declared license and licensing of the source

code to prevent parts of a system from being unlicensed.

This observation might also suggest that some projects in

GitHub,are not intended to be open source.

VI. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-

tween theory and observation, and relate to possible measure-

ment imprecision when extracting data used in this study. In

mining the git repositories, we relied on both the GitHub API

and the git command line utility. These are both tools under

active development and have a community supporting them.

Additionally, the GitHub API is the primary interface to extract

project information. We cannot exclude imprecision due to the

implementation of such API. In terms of license classification,

we rely on Ninka, a state-of-the-art approach that has been

shown to have 95% precision [21]; however, it is not always

capable of identifying the license (15% of the time in that

study). With respect to our developer rationale, we conducted

a formal study using Grounded Theory. We distributed all of

the data among two authors at each stage to ensure consistence

and agreement of the classifications.

Threats to internal validity can be related to confounding

factors, internal to our study, that could have affected the

results. For the atomic licensing changes, we reduced the

threat of having the project size as a confounding factor

by representing the presences of a particular change at each

commit. A license change typically is handled at a given

instance and not frequently. By using commit-level analysis,

we prevent the number of files from inflating the results so that

they do not inappropriately suggest large numbers of changes

occurred in a project. To analyze the changes across projects,

we took a binary approach of analyzing the presence of a

pattern. Therefore, a particular project would not dominate

our results due to size.

Threats to external validity represent the ability to gener-

alize the observations in our study. We do not claim that the

rationale and atomic license change patterns are complete or

consistent across all of the systems, especially projects written

in other programming languages. Additionally, our data set is

representative of only projects hosted on GitHub and written

in Java so we do not claim that the results generalize to any

Java project. GitHub’s exponential growth and popularity as

a public forge indicates that it represents a large portion of

the open source community. While the exponential growth

or relative youth of projects can be seen as impacting the

data, these two characteristics represent the growth of open

source development and should not be discounted. Addition-

ally, GitHub contains a large number of repositories, but it

may not necessarily be a comprehensive set of all open source

projects or even all Java projects. However, the large number

of projects in our dataset (and relatively high diversity metrics

values as shown in Section III-D) gives us enough confidence

about the obtained findings. Further evaluation of projects

across other open source repositories and other programming

languages would be necessary to validate our observations

in a more general context. It is also important to note that

our observations only consider open source projects. Since we

need to extract licenses from source code, we did not consider

any closed source projects and we cannot assert that any of

our results would be representative in closed source projects.

VII. CONCLUSIONS

We empirically studied phenomena related to license usage

and licensing changes in a set of 16,221 Java projects hosted

on GitHub. Quantitative data automatically mined have been

complemented with qualitative analysis manually performed

on commit messages and issue tracker discussions to provide

meaningful explanations to our findings, that are summarized

as following:

• New license versions were quickly adopted by develop-

ers. Additionally, new license versions of restrictive li-

censes (e.g., GPL-3.0 vs GPL-2.0) favored longer survival

of earlier versions, unlike the earlier version of permissive

licenses that seem to disappear;

• Licensing changes are predominantly toward or between

permissive licenses, which ease some kind of derivative

work and redistribution, e.g. within commercial products;

• On the one hand, developers post questions to the issue

tracker to ascertain the project’s license and/or the impli-

cations of the license suggesting that licensing is difficult;

• On the other hand, there is a clear, lack of traceability

between discussions and related license changes.

This work is mainly exploratory in nature as it is aimed at

empirically investigating license usage and licensing changes

from both quantitative and qualitative points of view. Nev-

ertheless, there are different possible uses one can make of

the results of this paper. Our results indicate that developers

frequently deal with licensing-related issues, highlighting the

need for development in (semi)automatic recommendation

systems supporting license compliance verification and man-

agement. Additionally, tools compatible or integrated within

the forge to support licensing documentation, change notifi-

cation, education (i.e., picking the appropriate license), and

compatibility would benefit developers attempting to reuse

code. While working in this direction, one should be aware

of possible factors that could influence the usage of specific

licenses and the factors motivating licensing changes. This

paper provides solid empirical results and analysis of such

factors from real developers.
As part of our future agenda, we are planning on extend our

study to other forges and languages in order to corroborate our

results. Also, we are planning on further investigating licensing

issues across software dependencies.

ACKNOWLEDGEMENTS

This work is supported in part by the NSF CCF-1218129

and NSF CAREER-1253837 grants.

227



REFERENCES

[1] The BSD 2-Clause License. http://opensource.org/licenses/BSD-2-
Clause. Last accessed: 2015/01/15.

[2] F-Droid. https://f-droid.org/. Last accessed: 2015/01/15.
[3] GitHub API. https://developer.github.com/v3/. Last accessed:

2015/01/15.
[4] GNU General Public License. http://www.gnu.org/licenses/gpl.html.

Last accessed: 2015/01/15.
[5] PF: The OpenBSD Packet Filter. http://www.openbsd.org/faq/pf. Last

accessed: 2015/01/15.
[6] Software Package Data Exchange (SPDX). http://spdx.org. Llast ac-

cessed: 2015/01/15.
[7] State of the Octoverse in 2012 https://octoverse.github.com/. Last ac-

cessed: 2015/01/15.
[8] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella. The

evolution of project inter-dependencies in a software ecosystem: The
case of apache. pages 280–289, 2013.

[9] G. Bavota, A. Ciemniewska, I. Chulani, A. De Nigro, M. Di Penta,
D. Galletti, R. Galoppini, T. F. Gordon, P. Kedziora, I. Lener, F. Torelli,
R. Pratola, J. Pukacki, Y. Rebahi, and S. G. Villalonga. The market for
open source: An intelligent virtual open source marketplace. In 2014
Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering, CSMR-WCRE 2014, Antwerp,
Belgium, February 3-6, 2014, pages 399–402, 2014.

[10] A. Brock. Project Harmony: Inbound transfer of rights in FOSS Projects.
Intl. Free and Open Source Software Law Review, 2(2):139–150, 2010.

[11] J. Corbin and A. Strauss. Grounded theory research: Procedures, canons,
and evaluative criteria. Qualitative Sociology, 13(1):3–21, 1990.

[12] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk.
On automatically generating commit messages via summarization of
source code changes. In Source Code Analysis and Manipulation
(SCAM), 2014 IEEE 14th International Working Conference on, pages
275–284. IEEE, 2014.

[13] M. Di Penta, D. M. Germán, and G. Antoniol. Identifying licensing
of jar archives using a code-search approach. In Proceedings of the
7th International Working Conference on Mining Software Repositories,
MSR 2010 (Co-located with ICSE), Cape Town, South Africa, May 2-3,
2010, Proceedings, pages 151–160, 2010.

[14] M. Di Penta, D. M. Germán, Y. Guéhéneuc, and G. Antoniol. An ex-
ploratory study of the evolution of software licensing. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering
- Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pages
145–154, 2010.

[15] B. Doll. The octoverse in 2012 http://tinyurl.com/muyxkru. Last ac-
cessed: 2015/01/15.

[16] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: a language
and infrastructure for analyzing ultra-large-scale software repositories.
In 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, pages 422–431, 2013.

[17] Free Software Foundation. Categories of free and nonfree soft-
ware. https://www.gnu.org/philosophy/categories.html. Last accessed:
2015/01/15.

[18] D. M. Germán, M. Di Penta, and J. Davies. Understanding and
auditing the licensing of open source software distributions. In The

18th IEEE International Conference on Program Comprehension, ICPC
2010, Braga, Minho, Portugal, June 30-July 2, 2010, pages 84–93, 2010.

[19] D. M. Germán, M. Di Penta, Y. Guéhéneuc, and G. Antoniol. Code
siblings: Technical and legal implications of copying code between ap-
plications. In Proceedings of the 6th International Working Conference
on Mining Software Repositories, MSR 2009 (Co-located with ICSE),
Vancouver, BC, Canada, May 16-17, 2009, Proceedings, pages 81–90,
2009.

[20] D. M. Germán and A. E. Hassan. License integration patterns: Ad-
dressing license mismatches in component-based development. In 31st
International Conference on Software Engineering, ICSE 2009, May 16-
24, 2009, Vancouver, Canada, Proceedings, pages 188–198, 2009.

[21] D. M. Germán, Y. Manabe, and K. Inoue. A sentence-matching
method for automatic license identification of source code files. In ASE
2010, 25th IEEE/ACM International Conference on Automated Software
Engineering, Antwerp, Belgium, September 20-24, 2010, pages 437–446,
2010.

[22] R. Gobeille. The FOSSology project. In Proceedings of the 2008
International Working Conference on Mining Software Repositories,
MSR 2008 (Co-located with ICSE), Leipzig, Germany, May 10-11, 2008,
Proceedings, pages 47–50, 2008.

[23] J. Howison, M. Conklin, and K. Crowston. FLOSSmole: a collaborative
repository for FLOSS research data and analyses. IJITWE’06, 1:17–26.

[24] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk.
ChangeScribe: A tool for automatically generating commit messages.
In 37th IEEE/ACM International Conference on Software Engineering
(ICSE’15), Formal Research Tool Demonstration, page to appear, 2015.

[25] Y. Manabe, Y. Hayase, and K. Inoue. Evolutional analysis of licenses
in FOSS. In Proceedings of the Joint ERCIM Workshop on Software
Evolution (EVOL) and International Workshop on Principles of Software
Evolution (IWPSE), Antwerp, Belgium, September 20-21, 2010, pages
83–87. ACM, 2010.

[26] Y. Manabe, Y. Hayase, and K. Inoue. Evolutional analysis of licenses
in FOSS. In Proceedings of the Joint ERCIM Workshop on Software
Evolution (EVOL) and International Workshop on Principles of Software
Evolution (IWPSE), Antwerp, Belgium, September 20-21, 2010., pages
83–87, 2010.

[27] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and
G. Canfora. Automatic generation of release notes. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, (FSE-22), Hong Kong, China, November 16 -
22, 2014, pages 484–495, 2014.

[28] M. Nagappan, T. Zimmermann, and C. Bird. Diversity in software
engineering research. In Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg,
Russian Federation, August 18-26, 2013, pages 466–476, 2013.

[29] Oracle. MySQL - FOSS License Exception. http://www.mysql.com/
about/legal/licensing/foss-exception/. Last accessed: 2015/01/15.

[30] P. Sing and C. Phelps. Networks, social influence, and the choice among
competing innovations: Insights from open source software licenses.
Information Systems Research, 24(3):539–560, 2009.

[31] T. Tuunanen, J. Koskinen, and T. Kärkkäinen. Automated software
license analysis. Autom. Softw. Eng., 16(3-4):455–490, 2009.

228


