
Revelle, Poshyvanyk Submission to the 17th IEEE International Conference on Program Comprehension (ICPC’09)

An Exploratory Study on Assessing Feature Location Techniques

Meghan Revelle and Denys Poshyvanyk

Department of Computer Science

The College of William and Mary

Williamsburg, VA 23185

meghan@cs.wm.edu, denys@cs.wm.edu

Abstract

This paper presents an exploratory study of ten

feature location techniques that use various

combinations of textual, dynamic, and static analyses.

Unlike previous studies, the approaches are evaluated

in terms of finding multiple relevant methods, not just a

single starting point of a feature’s implementation.

Additionally, a new way of applying textual analysis is

introduced by which queries are automatically

composed of the identifiers of a method known to be

relevant to a feature. Our results show that this new

type of query is just as effective as a query formulated

by a human. We also provide insight into situations

when certain feature location approaches work well

and then they fall short. Our results and observations

can be used to guide future research on feature

location techniques that will be able to find near-

complete implementations of features.

1. Introduction

Software maintenance and evolution tasks first

require programmers to understand the implementation

of specific parts of an existing software system [18]. To

do so requires locating the source code that implements

functionality, an activity known as concept assignment

[2] or feature location [31]. Most existing feature

location techniques are quite effective at finding a

starting point of a feature’s implementation, i.e., one

method that is relevant to that feature [16, 19, 20].

However, it is rarely the case that a single method is the

sole contributor to a feature. These techniques leave it

up to programmers to find the other methods that

implement a feature.

For feature location approaches to be truly effective,

they need to find near-complete implementations of

features. We define the term near-complete to denote a

partial but close to total set of methods that implement

a feature since knowing all the methods that implement

a feature is rather subjective. One programmer may

consider a method relevant, while another may not [23].

This paper presents an exploratory study of ten

feature location techniques that use various

combinations of textual, dynamic, and static analyses.

The approaches are evaluated in terms of how well they

locate near-complete implementations of several

features in the jEdit and Eclipse software systems. As

part of the assessment, we designed easy-to-follow

guidelines for evaluating feature location techniques.

Additionally, we explored a new mechanism for

formulating queries used by textual analysis that

automatically constructs a query from the identifiers of a

method. All our data is made publicly available on a

web site.

Our results highlight the challenge of feature

location since no single technique was universally

successful. We provide observations of situations when

the approaches work well and when they fall short.

One promising result is that our new means of

automatically creating a query for textual analysis

performs comparably to a query formed by a human.

Overall, the results of this exploratory study can be

used to improve the development of feature location

techniques so that they are able to find near-complete

implementations of features.

2. Feature location techniques

A feature is a functional requirement of a program

that produces an observable behavior which users can

trigger [8]. Examples include spell checking in a word

processor or drawing a shape in a paint program. The

term feature is intentionally defined weakly in the

literature so it is suitable in many situations [1, 9].

Feature location is the activity of identifying the

source code elements (i.e., methods) that implement a

feature [31]. We investigate several approaches to locate

the source code associated with a feature using textual,

dynamic, and static analyses. Next, we explain each type

of analysis and how we combined them in this work.

2.1. Core techniques

Textual analysis. The implementation of a feature,

even if dispersed among many methods, may use a

consistent vocabulary in terms of identifiers and the

words appearing in comments. One approach to locate

features is to determine textual similarities among a user

Revelle, Poshyvanyk Submission to the 17th IEEE International Conference on Program Comprehension (ICPC’09)

 2

query and source code elements (e.g., methods). A query

is a set of words formulated by a user to describe a

feature. Alternatively, a query can be automatically

comprised of the identifiers and comments in a method

that is known to be relevant to a feature. In either case,

textual analysis and feature location can be performed

using the information retrieval technique known as

Latent Semantic Indexing (LSI) [7]. With LSI, the

relation between terms (words) and documents

(methods) can be discovered. In brief, comments and

identifiers are extracted to form a corpus. LSI indexes

the corpus and creates a signature for each document

(method), and these indices are used to define similarity

measures between methods. Users can formulate queries

in natural language (nl-queries) or by using the

identifiers of a known relevant method (method-queries).

LSI returns a list of all the methods in the software

ranked by textual similarity to the query. An advantage

of this approach is that a working version of the source

code is not required. However, if a program’s identifiers

are not meaningful, the ranking results can be affected.

For large systems, a ranked list with thousands of

methods is a formidable amount of information, unless

the majority of the methods that implement the feature

appear near the top of the ranked list. Often, a threshold

is set to limit the number of methods that users consider.

The threshold may be set by a cut point, as in only the

top n or only the top x percent of results are considered.

The threshold can be set as at a specific value such that

only the results with a similarity greater than or equal to

the threshold are considered. Determining an

appropriate threshold is an open research problem.

Dynamic Analysis. Using dynamic information is

another approach to feature location [31, 32]. Dynamic

information complements textual information since not

all methods relevant to a feature may use a similar

vocabulary, but they may be executed when a system is

run. To collect dynamic information, an executable

version of the system must be available. Users develop

scenarios that trigger a feature. A scenario is a sequence

of user inputs to a system. As scenarios are being

exercised, traces can be collected. A trace is a list of

events that occurred within the system’s execution.

Events can be method invocations, object instantiations,

and variable accesses. In this work, we focus on method

calls only.

There are two types of traces that we consider. A full

trace [31] captures all events from a system’s start-up to

shutdown. A marked trace [16, 25] only captures events

during part of a system’s execution. When the system is

running, users can start and stop tracing. By starting

tracing immediately before triggering a feature and

stopping tracing once the feature’s behavior is observed,

more of the events (methods) listed in the trace should

pertain to the feature.

Static Analysis. Dynamic information is only as good

as the scenarios used to collect traces. If scenarios fail to

invoke a feature in a certain way, relevant methods may

be missing from an execution trace. Since static analysis

does not rely on a program’s execution, statically

collected information can compensate for dynamic

analysis’ weaknesses [11]. Static analysis can provide a

wealth of information on different types of dependencies

such as control flow, data dependence, and inheritance.

For this work, we use light-weight static analysis and

focus on method caller-callee relationships by using a

static program dependency graph (PDG) [5, 13, 21] in

which nodes are methods and edges represent method

invocations. We obtain such a graph using JRipples
1
[4].

Additional methods relevant to a feature can be found

by exploring a PDG. Starting at a seed method, one that

is known to be relevant to a feature, other methods

pertinent to the implementation of the feature can be

discovered by traversing the graph. Executing a program

may not invoke a relevant method, but if that relevant

method has a static dependency with the seed method,

static analysis can locate it. However, in the case that a

method related to a feature has no static dependencies

with the seed, static analysis fails.

2.2. Combined techniques

Textual, dynamic, and static information compliment

each other, so in theory when working in tandem, they

should produce better results than when used

individually. In this work, we investigate the following

combinations of analyses.

Textual Analysis. The first feature location

technique we consider employs only textual analysis, and

we consider it to be our baseline approach. We evaluate

two configurations of textual analysis, one using nl-

queries as in [16] and one using our new method-queries.

We call these approaches IRquery and IRseed, referring to

the fact that the textual analysis used is a form of

information retrieval. The IRquery approach to feature

location was introduced in [17], whereas IRseed is a new

version of this technique.

Textual Analysis plus Dynamic Analysis. We also

examine the combination of textual and dynamic

analysis for feature location. To combine these two

types of information, methods that are not executed are

removed from the ranked list provided by textual

analysis as in [16]. We investigate all configurations of

the different types of queries and traces. Abbreviated,

these configurations are IRquery + Dynmarked, IRquery + Dynfull,

IRseed + Dynfull, and IRseed + Dynfull, where “Dyn” stands for

dynamic analysis and subscripts denote the type of trace

(i.e., full and marked). IRquery + Dynmarked is like the

1 http://jripples.sourceforge.net/ (verified on 01/18/09)

Revelle, Poshyvanyk Submission to the 17th IEEE International Conference on Program Comprehension (ICPC’09)

 3

approach presented in [16], while IRquery + Dynfull is

similar to [19]. The two other approaches are novel

combinations.

Textual, Dynamic, and Static Analyses. The final

feature location technique we evaluate incorporates all

three types of analyses. Again, we investigate all

configurations of queries and traces in conjunction with

static analysis: IRquery + Dynmarked + Static, IRquery + Dynfull +

Static, IRseed + Dynfull + Static, and IRseed + Dynfull + Static.

The IRquery + Dynfull + Static approach is conceptually

similar to Cerberus [8], but instead of using prune-

dependency analysis, it uses light-weight static analysis.

The other three combinations are new.

Unlike with combining textual and dynamic analysis,

utilizing static analysis does not involve pruning an

existing ranked list. Instead, static analysis entails

exploring a PDG to find relevant methods and then

ranking them once exploration stops. Searching begins

at a seed method known to be relevant to the feature.

The static neighbors of the seed (parents and children)

are examined to see if they meet the textual and dynamic

criteria. The textual criterion is a threshold similarity

value, and the dynamic criterion is whether the method

appears in a given trace. If the method’s textual

similarity is above the threshold and it was executed, it is

added to the list of results, and its neighbors are added to

a list of methods to be examined. Once the list of

methods to examine is empty, exploration stops and the

list of results is sorted by textual similarity values.

Cerberus [8] uses all three types of analyses. We did

not use Cerberus because it does not produce a ranked

list of methods and the other techniques in our evaluation

do. Therefore for the sake of comparison, we developed

our own combination of textual, dynamic, and static

analyses.

In total, we investigate ten different feature location

techniques, many of which are novel because they

involve method-queries. There are other possible

combinations of textual, dynamic, and static analysis that

we decided not to study, such as just dynamic and static

analysis together. We decided against including these

other approaches in our study since they do not produce

a ranked list and the results of using standalone versions

of static and dynamic analyses are available elsewhere

[5, 16, 19]. The details of how we evaluated and

compared the ten approaches described above are

provided in the next section.

3. Exploratory study

We performed an exploratory study to evaluate the

feature location techniques mentioned above. The goal

of the study was to determine which combination of

analyses provides the best results and under what

circumstances. This section outlines the subject systems

used in the study, our research goals, and the specifics on

how we used each type of analysis.

3.1. Research questions

We set out to seek the answers to a number of

research questions in this exploratory study. These

research questions (RQ) are as follows:

• RQ1: What is the best combination of textual,

dynamic, and static analyses for feature location?

Specifically, which techniques are most effective at

finding multiple feature-relevant methods?

• RQ2: Which type of IR query produces better results

in terms of finding multiple methods associated with

a feature, an nl-query provided by a user (e.g.

requires human effort in formulating a query) or a

method-query using the text of a seed method

(completely automatic)?

• RQ3: Which type of execution trace, marked or full,

is better at discovering numerous methods that

implement a feature?

Since this study was exploratory in nature, we did not

know what to expect as the outcome, so we did not

formulate any hypotheses. However, intuition and

previous research results led us to conjecture that the

approaches that incorporated more types of analyses

would perform better than those with fewer.

3.2. Subject software systems

For our study, we chose two open-source Java

software systems of different sizes and from different

domains. jEdit
2
 is a highly configurable and

customizable text editor. We used version 4.3pre16 in

our study, which consists of approximately 105KLOC in

910 classes and 5,530 methods. We selected four

features from jEdit to study. These features were chosen

from feature requests with submitted patches in the

“Patches” section of the systems’ tracking software.

• Patch #1608486, Support for “Thick” Caret adds a

configurable option to make the cursor two pixels

wide instead of one so it is easier to see (6 methods

in patch).

• Patch #1818140, Edit History Text adds the ability

to edit the history text of searches (5 methods in

patch).

• Patch #1923613, Reverse Regex Search, adds the

ability to search backwards with regular expressions

(2 methods in patch).

• Patch #1849215, Bracket Matching Enhancements,

adds the ability to match angle brackets (2 methods

in patch).

2 http://www.jedit.org/ (verified on 09/18/08)

Revelle, Poshyvanyk Submission to the 17th IEEE International Conference on Program Comprehension (ICPC’09)

 4

Eclipse
3
, the other system in our study, is a popular

integrated development environment. We used version

2.1, and it contains approximately 2.3MLOC in over

7,000 classes and 89,000 methods. Like with jEdit, we

selected four features from its bug tracking system. With

Eclipse, we chose fixed bugs corresponding to

misbehaving features. These bugs are:

• Bug #5138
4
 – Double-click-drag to select multiple

words is broken (6 methods in patch).

• Bug #31779
5
 – UnifiedTree should ensure file/folder

exists (3 methods in patch).

• Bug #19819
6
 – Add support for Emacs-style

incremental search (19 methods in patch).

• Bug #32712
7
 – Repeated error message when

deleting and file is in use (6 methods in patch).

3.3. Input to the analyses

Textual Analysis. We formulated the nl-queries

used by textual analysis by reviewing the description

and comments in the thread for the patch/bug in jEdit

and Eclipse’s tracking systems. The nl-queries are

listed in Table 1. The method-queries consist of the

identifiers from seed methods also listed in the table.

The seed methods were randomly chosen from the

3 http://www.eclipse.org/ (verified on 09/18/08)
4 https://bugs.eclipse.org/bugs/show_bug.cgi?id=5138
5 https://bugs.eclipse.org/bugs/show_bug.cgi?id=31779
6 https://bugs.eclipse.org/bugs/show_bug.cgi?id=19819
7 https://bugs.eclipse.org/bugs/show_bug.cgi?id=32712

patch for each feature to ensure that they do actually

pertain to the feature.

Dynamic Analysis. We created one usage scenario

per feature to collect traces in this study. Descriptions of

the scenarios are in Table 1. We devised the jEdit

scenarios by reading the description and comments for

the patch in the bug tracking software. For Eclipse, two

bug reports (#5138 and #32712) had steps to reproduce

the errors, and those steps were used as the scenarios for

those two features. The scenario for bug #31779 is

reused from [16]. For Bug #19819, a scenario was

created in which the behaviors of the incremental search

feature, as described in the bug report, were exercised.

Static Analysis. The seed methods used as the

starting point of static analysis are listed in Table 1.

They were the same methods used for constructing the

method-queries and were randomly selected from the

feature’s patch. As explained in Section 2.2, static

analysis starts at the seed method and branches out in

part based on a textual similarity threshold. To

determine the textual similarity threshold to set for

examining neighbors in a PDG, we adapted the gap

threshold technique [17, 33]. A gap threshold is found

by determining the largest difference between two

adjacent textual similarity values in a ranked list. The

threshold is set as the larger of the two values at this

location in the list. We adapted this technique to

incorporate a relaxation strategy. If the size of a ranked

list did not reach our minimum (e.g., ten items), then we

decreased the threshold by 0.05 and repeated the

procedure again.

Table 1. Queries, scenarios and seed methods used for each feature in the case study.

Feature Description Query Scenario Seed Method

jEdit Patch

#1608486

Support for

"thick" caret.

configuration

global option

thick caret text

area block

Start jEdit; click “Global Options” button then “Text Area;” start

tracing; click “thick” checkbox then “OK;” stop tracing; exit.

EditPane.initPainter

(49LOC, 114 terms)

jEdit Patch

#1818140

Edit the entries

in the History

Text.

history text edit

string menu

Start jEdit; click “Find” button; start tracing; right click in text

area; select “Previously entered searches;” delete, insert, and

modify an entry; click “OK;” stop tracing; click “Close;” exit.

ListModelEditor.createTableModel

(9LOC, 18 terms)

jEdit Patch

#1923613

Reverse

searching with

regular

expressions.

reverse regex

search regular

expression

Start jEdit; place cursor at end of file; start tracing; click “Find”

button; select “Regular Expressions” and “Backwards;” enter “[0-

9]+;” click “Find” several times; stop tracing; exit.

SearchDialog.updateEnabled

(30LOC, 53 terms)

jEdit Patch
#1849215

Match angle
brackets.

angle right find
next

Start jEdit; place start tracing; cursor to right of “<” whose match
is on same line; place cursor to right of “<” whose match is on

another line; stop tracing; exit.

TextUtilities.findMatchingBracket
(147LOC, 117 terms)

Eclipse

Bug #5138

Double-click-

drag to select

multiple words.

mouse double

click up down

drag release

Start Eclipse; start tracing; click and release the mouse button;

click a second time quickly and hold the mouse button down, drag

and select some text; release the mouse button; stop tracing, exit.

TextViewer.mouseUp

(11LOC, 36 terms)

Eclipse

Bug #31779

UnifiedTree

should ensure

file/folder exists.

unified tree node

file system folder

location

Start Eclipse; start tracing; create a file from the file system in a

project; refresh; stop tracing; exit.

UnifiedTree.addChildren

(53 LOC, 108 terms)

Eclipse

Bug #19819

Emacs-style

incremental

search.

incremental

search

Start Eclipse; start tracing; press Ctrl+J; type search criteria; use

up and down arrow keys to find matches; stop tracing; exit.

IncrementalFindAction.run

(14LOC, 23 terms)

Eclipse

Bug #32712

Repeated error

message.

delete resource

project file folder

fail

Start Eclipse; create a simple project; add a file; edit foo.doc

externally; start tracing; delete the project; stop tracing, exit.

ResourceTree.standardDeleteProject

(78LOC, 216 terms)

Revelle, Poshyvanyk Submission to the 17th IEEE International Conference on Program Comprehension (ICPC’09)

 5

3.4. Relevancy Assessment

Each combination of analyses is a feature location

technique that produces a ranked list of methods

suggested to be relevant to a feature. We restrict our

evaluation to the top ten methods on each list because

other researchers have shown that users are generally

unlikely to look at more than ten elements on a list [18,

34]. If most of the top ten suggestions provided by a

feature location approach are false positives, then the

effort that would be needed to examine more results

lower in the list is likely to not be worth the cost.

In reviewing the top ten methods returned by each

technique, there needs to be well-defined criteria for

judging whether a method is relevant to a feature or not.

In almost all cases, the methods that implement a feature

are not documented; otherwise feature location would

not be necessary. Therefore, other ways of determining a

method’s relevance to a feature are needed. One option

is to present the top ten suggestions to an expert. If no

expert is available, then if a bug related to the feature has

been fixed, the methods in the patch can be used.

However, the bug may only pertain to a small subset of

the feature’s relevant methods, so relying on a patch may

give an incomplete picture of a feature’s implementation.

For this reason, we decided not to use this evaluation

approach, even though we had patches for each feature.

An alternative is to ask programmers to identify

relevant methods by exploring the source code.

Robillard et al. [23] provided some guidance to

participants asked to locate methods relevant to features.

The participants were instructed to decide if a method

was relevant by asking if it would be useful to know if

the method was related to the feature if the feature had to

be modified in the future. We take a similar but adapted

approach in our evaluation. Instead of asking

programmers to locate relevant methods on their own,

we present them with lists of methods and ask them to

determine the relevance of each method. In our study,

the participants were provided with code and an

executable, a description of a feature and how to invoke

it, and the following guidelines for how to determine if a

method is relevant to the feature or not.

1. Method names that are similar to the words in the

feature's description are good indicators of possibly

relevant code, but the method's source code should

be inspected to ensure the method is actually relevant

to the feature.

2. Determine if the method is relevant to the feature by

asking "Would it be useful to know that this method

is associated with the feature if I had to modify the

feature in the future?"

3. If most of the code in the method seems relevant to

the feature, classify the method as Relevant. If some

code within the method seems relevant but other

code in the method is irrelevant to the feature,

classify the method as Somewhat Relevant. If no

code within the method seems relevant to the feature,

classify it as Not Relevant.

4. If unable to classify the method by reviewing its

code, explore the method's structural dependencies,

i.e. what other methods call it and are called by it. If

the method's dependencies seem relevant, then the

method probably is also.

Having a number of programmers follow these

guidelines and focusing on the agreement between the

programmers eliminates any one individual’s bias.

One of the authors classified every method in the

resulting ranked lists for all eight features without

knowing which technique produced each list. To give

support to the resulting categorizations, we solicited

volunteers to also classify methods and compared them

to the author’s. Four students volunteered to participate

in this study. The students were enrolled in a graduate

software engineering course. They were given ten

ranked lists each containing ten methods. The ten lists

corresponded to the ten different feature location

techniques under evaluation. The students were not

aware to which feature location technique the lists

pertained. They were instructed
8
 to classify the methods

based on the guidelines above, and jEdit’s thick caret

feature was used. The patch for this feature has six

methods, and the feature location techniques were able to

find between one and three of these methods in the top

ten of their ranked lists.

Figure 1 shows the average agreement between the

author’s classifications and the volunteers. To

demonstrate how percent agreement was calculated,

consider the following example. The author classified

four methods from a list of ten as relevant and six as not

relevant, and a volunteer classified only three methods as

relevant and seven as not relevant. The volunteer’s three

methods were included in the four identified by the

author, so the percent agreement is 90%. Nine out of ten

times, both programmers agree that a method either

belonged in the relevant or not relevant categories. The

percent agreement was averaged over all ten lists

generated by the different feature location techniques.

When computing agreement between more than two

programmers, all individuals involved had to categorize

a method in the same way for there to be agreement.

The percent agreement between the author and the

volunteers is high; it is always greater than 70%. The

agreement declines only slightly when more individuals

are taken into account. Agreement about relevant

methods was highest, followed by agreement about

irrelevant methods, suggesting that it is easiest to identify

methods that definitely do or do not implement a feature.

8 See http://www.cs.wm.edu/~meghan/case-study-instructions.html

Revelle, Poshyvanyk Submission to the 17th IEEE International Conference on Program Comprehension (ICPC’09)

 6

 The average agreement among programmers about a

method’s relevance in this study was higher than that

observed by Robillard et al. in [23]. The two approaches

to evaluating method relevance differ: our study

provided lists of methods for programmers to judge

while Robillard et al. asked programmers to find the

methods implementing a feature themselves. Also, our

study allowed programmers to place methods into one of

three categories to allow for uncertainty instead of a

binary yes/no classification.

4. Results

In our study, only the top ten ranked methods

returned by a feature location technique for each feature

were examined. Those methods were then classified

into three categories (relevant, somewhat relevant, not

relevant) as described in the previous section. The

results of the jEdit and Eclipse studies are discussed in

the next sections and are also available online
9
.

4.1. jEdit study findings

The average percentage of relevant, somewhat

relevant, and not relevant methods found in the top ten

lists of each feature location technique are in Table 2.

An in-depth discussion of the results is below.

RQ1. For jEdit, the techniques that found the most

relevant methods on average were IRquery + Dynmarked and

IRquery + Dynmarked + Static with 30% of the top ten methods

being relevant, meaning three methods in the top ten

were relevant on average. These approaches found

nearly double the amount of relevant code than most of

the other techniques which averaged between 12.5% and

20%. Different programmers may consider the methods

classified as somewhat relevant as pertaining to the

implementation of a feature, while others might not. If

the somewhat relevant methods are considered important

to a feature’s implementation, then IRquery + Dynmarked is

9 http://www.cs.wm.edu/~meghan/case-study-results.html

the best performing technique in the jEdit study with

50% of the located methods being relevant on average.

At least for jEdit, the IRquery + Dynmarked feature location

technique is readily able to locate many methods

implementing a feature and not just a single method.

Since the IRquery + Dynmarked and IRquery + Dynmarked +

Static approaches performed the same, these results

suggest that adding static analysis provides no additional

benefits over a combination of only textual and dynamic

analysis. However, the approach that located the most

relevant methods for the edit history text feature was

IRquery + Dynmarked + Static. Seventy percent of the

methods in its top ten list were relevant. The methods

implementing this feature have very clear structural

dependencies because they can be found along the same

branch of the PDG. Therefore, static analysis was easily

able to identify multiple methods related to this feature.

With the three other jEdit features, static analysis did not

perform as expected and improve the number of relevant

methods located. Incorporating static analysis yielded no

more relevant methods than using a combination of

textual and dynamic analysis. For jEdit’s reverse regex

search feature, a different seed than the one listed in

Table 1 was originally selected. However, the seed

method was isolated in the PDG, so static analysis could

not expand far beyond it to locate more potentially

relevant methods. This is one of the observed limitations

of static analysis for feature location.

Another reason static analysis may not produce

improved results is even when there is a dependency

between a seed method and a relevant method, they may

be distant from each other in the PDG. If one method

along a branch in a PDG between the seed and a relevant

method is not executed or has a textual similarity below

the threshold, static analysis will be unable to locate the

relevant method. Therefore, the ranked list is populated

with other, irrelevant methods that meet both the textual

and dynamic criteria when searching the PDG.

In general, combining just textual and dynamic

analysis either did not affect the number of relevant

methods located (reverse regexp feature) or slightly

improved the results (edit history text and angle bracket

matching features) by pruning unexecuted methods from

the ranked list. This result supports the findings of

previous studies [16]. However, the combination of the

two analyses did not find a substantial number of

relevant methods for each feature.

For jEdit’s thick caret feature, surprisingly, we

observed that adding dynamic analysis to textual

produced worse results than textual analysis alone. The

StandaloneTextArea.initPainter method appears to be a

code clone of EditPane.initPainter, the seed method,

meant to be used when jEdit is embedded in another

system. The IRseed approach locates this method, but

60%

70%

80%

90%

100%

One Two Three Four

Number of Students Compared with Author

P
e
rc

e
n

t
A

g
re

e
m

e
n

t

Relevant

Somewhat Relevant

Not Relevant

Figure 1. Percent agreement of the volunteers with
one of the authors for the jEdit thick caret feature.

Revelle, Poshyvanyk Submission to the 17th IEEE International Conference on Program Comprehension (ICPC’09)

 7

neither the IRseed + Dynmarked nor the IRseed + Dynfull

approach can identify this method because it was not

executed. This case highlights a challenge associated

with using dynamic analysis for feature location. One

solution is to create a better scenario, or perhaps when

combining textual and dynamic analysis, if a method has

a high enough textual similarity, the fact that it was not

executed should be ignored.

Our goal was to locate as many methods as relevant

to a feature as possible. If we had set out to find only a

single method to use as a starting point for searching for

more methods associated with a feature, the techniques

we evaluated performed with effectiveness comparable

to that reported in previous studies [16, 19]. On average,

at least one relevant method was found in the top ten for

each feature by every technique. However, since the

average number of relevant methods found by the feature

location techniques is low, this work highlights the fact

that finding a near-complete set of methods that

implement a feature is not simple.

RQ2. Based on the jEdit data, there is no consensus

on whether an nl-query or a method-query is best. For

the reverse regexp feature, the nl-query performed better,

while for the thick caret feature, the method-query was

best. For the two other features, both queries returned

the same number of relevant methods. This result

suggests that using an automatically generated query of

identifiers from a seed method performs just as well as a

query constructed by a human, which could eliminate

much of the subjectivity inherent in formulating a query.

Even though there is no clear winner, some

interesting observations can still be drawn. The nl-

queries consisted of a few words, while the method-

queries were comprised of many identifiers. The larger

the seed methods, the more identifiers there generally

were. The seed methods (refer to Table 1) varied in size

from 9LOC and fewer than 20 identifiers (edit history

text) to 147LOC and over 100 identifiers (match angle

brackets). Considering only the IRquery and IRseed results,

the method-query for the thick caret feature (114 terms)

performed better than the nl-query (8 terms) with 30%

relevant vs. 10%. The wealth of identifiers in larger

methods may aid textual analysis by providing more

query terms, but this trend is not universal. The seed for

the angle bracket matching feature has over 100 terms,

but the two types of queries performed the same.

RQ3. On average, the use of marked traces produced

better results than full traces when locating relevant

methods for features in jEdit, which supports previous

studies as well [16]. Using marked traces limits the

number of methods that appear to be executed, meaning

more irrelevant methods will be pruned from a ranked

list. On the other hand, full traces were better at finding

methods categorized as somewhat relevant. The

methods classified as somewhat relevant generally seem

to be in the call chain of relevant methods but do not

directly implement the feature. We can find no

explanation for why full traces found more somewhat

relevant methods and conjecture it may be coincidental.

The nature of a feature should be considered before

deciding to use marked traces over full traces. A

feature like angle bracket matching that does not have a

menu interface is suitable for marked traces, but for

features that involve setting options in a dialog or

menu, like jEdit’s thick caret and reverse regex

features, full traces might be the better option.

Consider the method TextAreaOptionPane._init that

adds various options for jEdit’s main text area,

including the thick caret option, to a dialog. This

method was executed, but it did not appear in the

marked trace since tracing was started after the dialog

opened. Marked traces run the risk of omitting

initialization code that full traces would not.

4.2. Eclipse study findings

Table 2 lists the average number of relevant,

somewhat relevant, and not relevant methods found in

the top ten lists of each technique in Eclipse. Below, we

discuss the results with regards to our research questions.

RQ1. For Eclipse, there were three approaches that,

on average, performed the best at finding relevant

methods: IRquery + Dynmarked + Static, IRquery + Dynfull + Static,

Table 2. Average percentage of the number of methods classified as relevant, somewhat relevant, and not
relevant in the top ten results returned by each feature location technique for jEdit, Eclipse, and both.

 jEdit Eclipse Both Systems

Feature location technique Relevant
Somewhat
Relevant

Not
Relevant

Relevant
Somewhat
Relevant

Not
Relevant

Relevant
Somewhat
Relevant

Not
Relevant

IRquery [17] 12.5% 15% 72.5% 22.5% 12.5% 65% 17.5% 13.75% 68.75%

IRseed 12.5% 20% 67.5% 12.5% 22.5% 65% 12.5% 21.25% 66.25%

IRquery + Dynmarked [16] 30% 20% 50% 25% 5% 70% 27.5% 12.5% 60%

IRquery + Dynfull [19] 15% 22.5% 62.5% 25% 12.5% 67.5% 17.5% 17.5% 65%

IRseed + Dynmarked 20% 15% 65% 27.5% 25% 47.5% 23.75% 20% 56.25%

IRseed + Dynfull 15% 27.5% 57.5% 27.5% 35% 42.5% 18.75% 31.35% 50%

IRquery + Dynmarked + Static 30% 17.5% 52.5% 30% 12.5% 57.5% 30% 15% 55%

IRquery + Dynfull + Static [8] 12.5% 25% 62.5% 30% 12.5% 57.5% 21.25% 20% 58.75%

IRseed + Dynmarked + Static 17.5% 17.5% 65% 30% 15% 55% 23.75% 25% 51.25%

IRseed + Dynfull + Static 12.5% 30% 57.5% 27.5% 22.5% 50% 20% 26.25% 53.75%

Revelle, Poshyvanyk Submission to the 17th IEEE International Conference on Program Comprehension (ICPC’09)

 8

and IRseed + Dynmarked + Static. Thirty percent of the top

ten methods identified were relevant. When taking both

relevant and somewhat relevant methods into account,

the best performing approach was IRseed + Dynmarked +

Static, with on average 62.5% or slightly better than six

methods out of the top ten.

Unlike in jEdit, these results suggest that static

analysis does aid feature location. Examining individual

features, a mixed story emerges. For bugs #19819 and

#32712, adding static analysis produced no improvement

over a combination of textual and dynamic analysis.

Bug #5138 actually saw the number of relevant methods

decrease when static analysis was used. Combining

textual and dynamic analysis essentially involves

eliminating unexecuted methods from a ranked list, but

using static analysis entails building a new list from

scratch. Only methods with a static dependency to the

seed are included. Therefore, methods that are located

by a combined textual dynamic approach may not be

found by one that uses static analysis. This is exactly

what happened in the case of bug #5138. The seed

method was isolated in the PDG, so static analysis was

not able to branch out very far.

Feature location on bug #31779 resulted in the biggest

improvement when adding static analysis. Ninety

percent of the methods on the top ten list for IRquery +

Dynmarked + Static were relevant, while 100% of the

methods for IRquery + Dynfull + Static were. Static analysis

was able to succeed so well with this feature because

many of the relevant methods were located in the same

class as the seed. The results for these two approaches

for this feature may have skewed Eclipse’s averages.

Nevertheless, this case is an example that it is possible to

locate near-complete feature implementations and that

static analysis is a useful tool to do so.

Overall, the combination of textual and dynamic

information improved results over only textual analysis,

but for one feature the use of textual and dynamic

information caused the number of relevant methods

located to decrease. The IRquery technique identified

JavadocDoubleClickStrategy.doubleClicked as relevant

to bug #5138. However, this method is not executed in

the scenario because no Javadoc comments were double

clicked. Therefore, this method has no chance of being

identified by an approach that uses dynamic analysis

unless a new scenario is used. Alternatively, since this

method has a high textual similarity, a revised

combination of textual and dynamic analysis that allows

for cases when a method is unexecuted but has high

similarity could also solve this problem.

The purpose of this exploratory study was to learn

how effective feature location techniques are at finding

multiple methods relevant to a feature instead of just a

single starting point. In Eclipse, all but one approach had

at least 20% of its top ten located methods categorized as

relevant. Most approaches found closer to 30%. These

results are more encouraging and those for jEdit, but they

still show room for improvement. Being able to fully

locate the implementation of a feature is a difficult

problem that requires further research.

RQ2. The data showed that method-queries perform

comparably to nl-queries. This outcome is similar to

what was observed in jEdit. Considering the IRquery and

IRseed results for bugs #5138 and #19819, the seed

methods were short (11LOC/36 terms and 14LOC/23

terms), and nl-queries performed better for these

features. For bug #31779, the two types of queries

achieved comparable results to each other, but for bug

#32712 (78LOC/216 terms), the method-query was the

winner. This possible trend of method-queries from

longer methods performing better was also seen in jEdit,

adding weight to the idea of automatically constructing

queries from the identifiers of seed methods.

RQ3. In Eclipse, marked traces outperformed full

traces slightly. When the same type of query was used,

marked traces found about 5% more relevant methods

than full traces. We attribute this outcome to marked

traces limiting the method invocations recorded, thus

removing much noise from the resulting trace.

Collecting full traces is difficult because they are very

larger and take time to collect, especially for a system

like Eclipse. This fact plus the better performance of

marked traces make them the ideal choice in most cases.

4.3. Discussion

Based on this exploratory study, we draw a number of

notable conclusions, which are discussed below.

Method-queries perform as well as nl-queries.
There was no clear winner when it comes to nl-queries

vs. method-queries. This result is promising because it

means that automatically generated queries perform just

as well as ones created by humans. We observed that

method-queries from larger seeds seem to perform the

best. These results motivate further exploration into

strategies for formulating queries automatically.

No feature location technique is universally

successful at finding near-complete implementations

of features. At best, they are good at locating a few

relevant methods. This research motivates the need for

feature location techniques that successfully discover as

many feature-relevant methods as possible.

The effectiveness of static analysis might be tied to

the effectiveness of textual analysis. The biggest

difference between the results of the two systems

concerns the use of static analysis. In jEdit, feature

location with static analysis did not produce better results

than approaches without it. In Eclipse, the best

techniques used static analysis. One possible reason for

Revelle, Poshyvanyk Submission to the 17th IEEE International Conference on Program Comprehension (ICPC’09)

 9

this discrepancy stems from textual analysis. Static

exploration of a PDG was performed using textual and

dynamic criteria. If a method did not meet the textual

similarity threshold, then exploration down that path of

the PDG would halt. LSI generated better results for

Eclipse, therefore, it is possible that static analysis was

able to explore a PDG more fully and find more relevant

methods in Eclipse than jEdit. Using additional types of

static dependencies along with light-weight analysis may

improve results.

Marked traces slightly outperform full traces. In

both systems, marked traces were able to find slightly

more relevant methods than full traces due to the fact that

marked traces capture a higher concentration of feature-

relevant methods. However, full traces should be used

for features that are invoked through menus.

 LSI performs better on larger systems. One

difference between the results of the two systems is that

textual analysis yielded better results in Eclipse. There

are two possible reasons for this outcome. First, Eclipse

is a professional-grade system, so the naming

conventions used may be stricter than in jEdit, which

would aid LSI. Another possible reason is that the

performance of LSI has been shown to degrade on

smaller corpora [8]. jEdit’s corpus is small (about 7K

terms and 5K methods) in comparison to Eclipse’s (56K

terms and 89K methods), therefore LSI’s ranking

strategies may be more effective with Eclipse.

 The textual similarity threshold selected by gap
technique was too high. We adapted the gap threshold

technique with a relaxation strategy in the case fewer

than ten methods were found. The initial textual

similarity selected was always too high. The relaxation

strategy that we incorporated had to be used in every

feature location technique involving static exploration of

a PDG. In each case, the threshold had to be lowered

significantly, sometimes by as much as 0.5. This

observation suggests that feature-relevant methods are

not always located close to each other in a PDG.

4.4. Threats to validity

There are several issues that may limit the

generalizations that can be drawn from our results.

Foremost is the subjective manner in which the results

were judged. One author determined the relevance of the

methods found by the feature location techniques. To

minimize bias, the author did not know to which

approach each top ten list belonged. Also, we formalized

how methods were classified by creating guidelines. For

one feature, we also asked several programmers to

categorize the methods and compared them to the

author’s. Since the agreement between the author and the

students was high, it is reasonable to assume that the

author’s classifications are representative of the features.

Another subjective aspect of this work is the

construction of the nl-queries and the selection of the

seed methods. To form the nl-queries, we used words

from the change requests and bug reports. The seed

methods were randomly selected from methods that were

submitted in patches to the features/bugs. Since those

methods had to be changed to perform maintenance on

the features, they must be relevant to the feature.

However, the use of different queries and different seeds

could alter the results.

Another threat to validity is that only one scenario

was used to collect execution traces. Every effort was

made to ensure that the scenarios dependably captured

the behavior of the features, although certain aspects may

have been missed. In many cases, the scenarios were

based on the descriptions given in a bug report.

Finally, we only studied a small number of features

from two systems, both written in Java, limiting the

ability to generalize our results to other types of software

systems. Eclipse is a real-world system, but jEdit is

rather small in comparison. This threat can be reduced if

we experiment on more systems written in other

languages and taken from other domains.

5. Related work

Since feature location is an important part of software

maintenance, there are many existing techniques. This

section reviews some of these approaches by

categorizing them as either static, dynamic, or hybrid

feature location. A more complete discussion of feature

location approaches can be found in [1], while [6, 30]

provide comparisons and evaluations of techniques.

Most static feature location techniques are either

structural or textual. Structural approaches [3, 5, 15, 22,

29]. Textual approaches use comments and identifiers to

locate code relevant to a feature by utilizing such

techniques as information retrieval [17, 20], independent

component analysis [12], and natural language [27]. A

number of tools use both structural and textual

information to locate pertinent code [13, 33] by using

textual information to prune irrelevant structural

relationships, or vice versa.

Some of the earliest work on feature location was

software reconnaissance [31], a dynamic approach that

compares a trace of a program when a feature is invoked

to a trace when the feature is not executed. Software

reconnaissance has been recently expanded and

improved [1, 10]. Other dynamic approaches focus on

feature interactions [26] and aspect mining [28].

Hybrid feature location approaches seek to leverage

the benefits provided by both static and dynamic analysis

[24]. Eisenbarth et al. [9, 14] developed a technique that

is mostly dynamic and applies formal concept analysis to

traces to produce a mapping of features to the program's

Revelle, Poshyvanyk Submission to the 17th IEEE International Conference on Program Comprehension (ICPC’09)

 10

methods. Several approaches combine LSI and dynamic

information. In PROMESIR [19], LSI is combined with

a dynamic analysis technique known as SPR [1] to give a

ranking of methods likely relevant to a feature. In SITIR

[16], a single execution trace can be filtered using LSI to

extract code relevant to the feature of interest.

Cerberus [8] is the only approach we are aware of that

combines three types of analyses for feature location.

Our work is different from Cerberus as we are

investigating several alternative combinations because

Cerberus is not always able to locate methods relevant to

some features. We also distinguish ourselves from

Cerberus by examining the trade-offs of using textual,

dynamic, and static analyzes for feature location and by

evaluating our approaches on small and large systems.

6. Conclusion

This paper presented an exploratory study evaluating

the effectiveness of ten feature location approaches

locating near-complete implementations of features.

Although we did not discover an approach that clearly

works best in all situations, we did observe that

combining analyses generally improves the results. One

promising result is that method-queries perform

comparably to a queries formed by a human. We also

summarized cases in which certain combinations of

analyses were more effective than others. These

observations can be used in future research on improving

feature location techniques.

Acknowledgements

We acknowledge David Coppit for contributions to a

previous version of this research and Huzefa Kagdi for

his helpful comments. We thank Maksym Petrenko for

his help with JRipples and the students in the Software

Evolution and Maintenance course at W&M for taking

part in the study.

References

[1] Antoniol, G. and Guéhéneuc, Y. G., "Feature Identification: An Epidemiological

Metaphor", IEEE TSE, vol. 32, no. 9, 2006, pp. 627-641.

[2] Biggerstaff, T. J., Mitbander, B. G., and Webster, D. E., "The Concept

Assignment Problem in Program Understanding", in Proc. of IEEE/ACM ICSE

May 17-21 1994, pp. 482-498.

[3] Binkley, D., Gold, G., Harman, M., Li, Z., and Mahdavi, K., "An empirical study

of the relationship between the concepts expressed in source code and dependence",

The Journal of Systems and Software, vol. 81, 2008, pp. 2287–2298.

[4] Buckner, J., Buchta, J., Petrenko, M., and Rajlich, V., "JRipples: A Tool for

Program Comprehension during Incremental Change", in Proc. of IEEE IWPC,

May 15-16 2005, pp. 149-152.

[5] Chen, K. and Rajlich, V., "Case Study of Feature Location Using Dependence

Graph", in Proc. of IEEE IWPC, Limerick, Ireland, June 2000, pp. 241-249.

[6] Cleary, B., Exton, C., Buckley, J., and English, M., "An empirical analysis of

information retrieval based concept location techniques in software comprehension",

Empirical Software Engineering vol. 14, no. 1, 2009, pp. 93-130.

[7] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R.,

"Indexing by Latent Semantic Analysis", Journal of the American Society for

Information Science, vol. 41, 1990, pp. 391-407.

[8] Eaddy, M., Aho, A. V., Antoniol, G., and Guéhéneuc, Y. G., "CERBERUS:

Tracing Requirements to Source Code Using Information Retrieval, Dynamic

Analysis, and Program Analysis", in Proc. of IEEE ICPC, 2008.

[9] Eisenbarth, T., Koschke, R., and Simon, D., "Locating Features in Source Code",

IEEE TSE, vol. 29, no. 3, March 2003, pp. 210 - 224.

[10] Eisenberg, A. D. and De Volder, K., "Dynamic Feature Traces: Finding Features

in Unfamiliar Code", in Proc. of 21st IEEE ICSM, Sept. 25-30 2005, pp. 337-346.

[11] Ernst, M., "Static and Dynamic Analysis: Synergy and Duality", in Proc. of

ICSE WODA'03, Portland, OR, May 2003, pp. 24-27.

[12] Grant, S., Cordy, J. R., and Skillicorn, D. B., "Automated Concept Location

Using Independent Component Analysis ", in Proc. of WCRE, 2008.

[13] Hill, E., Pollock, L., and Vijay-Shanker, K., "Exploring the Neighborhood with

Dora to Expedite Software Maintenance", in Proc. of IEEE/ACM ASE, Nov. 2007.

[14] Koschke, R. and Quante, J., "On dynamic feature location", in Proc. of

IEEE/ACM ASE, Long Beach, CA, USA, 2005, pp. 86-95.

[15] Kothari, J., Denton, T., Mancoridis, S., and Shokoufandeh, A., "Reducing

Program Comprehension Effort in Evolving Software by Recognizing Feature

Implementation Convergence", in Proc. of IEEE ICPC, Banff, Canada, June 2007.

[16] Liu, D., Marcus, A., Poshyvanyk, D., and Rajlich, V., "Feature Location via

Information Retrieval based Filtering of a Single Scenario Execution Trace", in Proc.

of IEEE/ACM ASE'07, Atlanta, Georgia, November 5-9 2007, pp. 234-243.

[17] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., "An Information Retrieval

Approach to Concept Location in Source Code", in Proc. of IEEE WCRE, Nov. 9-

12 2004, pp. 214-223.

[18] Petrenko, M., Rajlich, V., and Vanciu, R., "Partial Domain Comprehension in

Software Evolution and Maintenance", in Proc. of ICPC, 2008.

[19] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G., and Rajlich, V.,

"Feature Location using Probabilistic Ranking of Methods based on Execution

Scenarios and Information Retrieval", IEEE TSE vol. 33, no. 6, June 2007.

[20] Poshyvanyk, D. and Marcus, D., "Combining Formal Concept Analysis with

Information Retrieval for Concept Location in Source Code", in Proc. of IEEE

ICPC'07, Banff, Alberta, Canada, June 2007, pp. 37-48.

[21] Robillard, M. P., "Topology Analysis of Software Dependencies", ACM

TOSEM vol. 17, no. 4, August 2008.

[22] Robillard, M. P. and Murphy, G. C., "Concern Graphs: Finding and describing

concerns using structural program dependencies", in Proc. of ICSE, 2002.

[23] Robillard, M. P., Shepherd, D., Hill, E., Vijay-Shanker, K., and Pollock, L., "An

Empirical Study of the Concept Assignment Problem", McGill University June

2007.

[24] Rohatgi, A., Hamou-Lhadj, A., and Rilling, J., "An Approach for Mapping

Features to Code Based on Static and Dynamic Analysis", in Proc. of IEEE ICPC,

2008, pp. 236-241.

[25] Salah, M. and Mancoridis, S., "A hierarchy of dynamic software views: from

object-interactions to feature-interactions", in Proc. of IEEE ICSM'04, Chicago, IL,

September 11-14 2004, pp. 72-81.

[26] Salah, M., Mancoridis, S., Antoniol, G., and Di Penta, M., "Scenario-driven

dynamic analysis for comprehending large software systems", in Proc. of IEEE

CSMR'06, March 22-24 2006, pp. 71-80.

[27] Shepherd, D., Fry, Z., Gibson, E., Pollock, L., and Vijay-Shanker, K., "Using

Natural Language Program Analysis to Locate and Understand Action-Oriented

Concerns", in Proc. of AOSD, 2007, pp. 212-224.

[28] Tonella, P. and Ceccato, M., "Aspect Mining through the Formal Concept

Analysis of Execution Traces", in Proc. of IEEE WCRE'04, 2004, pp. 112 - 121

[29] Weigand-Warr, F. and Robillard, M. P., "Suade: Topology-Based Searches for

Software Investigation", in Proc. of ICSE, May 2008, pp. 780-783.

[30] Wilde, N., Buckellew, M., Page, H., Rajlich, V., and Pounds, L., "A Comparison

of Methods for Locating Features in Legacy Software", Journal of Systems and

Software, vol. 65, no. 2, February 15 2003, pp. 105-114.

[31] Wilde, N. and Scully, M., "Software Reconnaissance: Mapping Program

Features to Code", Software Maintenance: Research and Practice, vol. 7, 1995.

[32] Wong, W. E., Gokhale, S. S., Horgan, J. R., and Trivedi, K. S., "Locating

program features using execution slices", in Proc. of IEEE ASSET, March 1999.

[33] Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F., "SNIAFL: Towards a Static

Non-interactive Approach to Feature Location", ACM TOSEM, vol. 15, no. 2, 2006.

[34] Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S., "Mining Version

Histories to Guide Software Changes", IEEE TSE, vol. 31, no. 6, June 2005.

