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Abstract 

This paper presents an exploratory study of ten 

feature location techniques that use various 

combinations of textual, dynamic, and static analyses.  

Unlike previous studies, the approaches are evaluated 

in terms of finding multiple relevant methods, not just a 

single starting point of a feature’s implementation.  

Additionally, a new way of applying textual analysis is 

introduced by which queries are automatically 

composed of the identifiers of a method known to be 

relevant to a feature.  Our results show that this new 

type of query is just as effective as a query formulated 

by a human.  We also provide insight into situations 

when certain feature location approaches work well 

and then they fall short.  Our results and observations 

can be used to guide future research on feature 

location techniques that will be able to find near-

complete implementations of features. 

1. Introduction 

Software maintenance and evolution tasks first 

require programmers to understand the implementation 

of specific parts of an existing software system [18]. To 

do so requires locating the source code that implements 

functionality, an activity known as concept assignment 

[2] or feature location [31].  Most existing feature 

location techniques are quite effective at finding a 

starting point of a feature’s implementation, i.e., one 

method that is relevant to that feature [16, 19, 20].  

However, it is rarely the case that a single method is the 

sole contributor to a feature.  These techniques leave it 

up to programmers to find the other methods that 

implement a feature.   

For feature location approaches to be truly effective, 

they need to find near-complete implementations of 

features.  We define the term near-complete to denote a 

partial but close to total set of methods that implement 

a feature since knowing all the methods that implement 

a feature is rather subjective.  One programmer may 

consider a method relevant, while another may not [23].   

This paper presents an exploratory study of ten 

feature location techniques that use various 

combinations of textual, dynamic, and static analyses.  

The approaches are evaluated in terms of how well they 

locate near-complete implementations of several 

features in the jEdit and Eclipse software systems.  As 

part of the assessment, we designed easy-to-follow 

guidelines for evaluating feature location techniques.  

Additionally, we explored a new mechanism for 

formulating queries used by textual analysis that 

automatically constructs a query from the identifiers of a 

method.  All our data is made publicly available on a 

web site.      

Our results highlight the challenge of feature 

location since no single technique was universally 

successful.  We provide observations of situations when 

the approaches work well and when they fall short.  

One promising result is that our new means of 

automatically creating a query for textual analysis 

performs comparably to a query formed by a human.  

Overall, the results of this exploratory study can be 

used to improve the development of feature location 

techniques so that they are able to find near-complete 

implementations of features.   

2. Feature location techniques 

A feature is a functional requirement of a program 

that produces an observable behavior which users can 

trigger [8].  Examples include spell checking in a word 

processor or drawing a shape in a paint program.  The 

term feature is intentionally defined weakly in the 

literature so it is suitable in many situations [1, 9].   

Feature location is the activity of identifying the 

source code elements (i.e., methods) that implement a 

feature [31].  We investigate several approaches to locate 

the source code associated with a feature using textual, 

dynamic, and static analyses.  Next, we explain each type 

of analysis and how we combined them in this work. 

2.1. Core techniques 

Textual analysis.  The implementation of a feature, 

even if dispersed among many methods, may use a 

consistent vocabulary in terms of identifiers and the 

words appearing in comments.  One approach to locate 

features is to determine textual similarities among a user 
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query and source code elements (e.g., methods).  A query 

is a set of words formulated by a user to describe a 

feature.  Alternatively, a query can be automatically 

comprised of the identifiers and comments in a method 

that is known to be relevant to a feature.  In either case, 

textual analysis and feature location can be performed 

using the information retrieval technique known as 

Latent Semantic Indexing (LSI) [7].  With LSI, the 

relation between terms (words) and documents 

(methods) can be discovered.  In brief, comments and 

identifiers are extracted to form a corpus.  LSI indexes 

the corpus and creates a signature for each document 

(method), and these indices are used to define similarity 

measures between methods.  Users can formulate queries 

in natural language (nl-queries) or by using the 

identifiers of a known relevant method (method-queries). 

LSI returns a list of all the methods in the software 

ranked by textual similarity to the query.  An advantage 

of this approach is that a working version of the source 

code is not required.  However, if a program’s identifiers 

are not meaningful, the ranking results can be affected. 

For large systems, a ranked list with thousands of 

methods is a formidable amount of information, unless 

the majority of the methods that implement the feature 

appear near the top of the ranked list.  Often, a threshold 

is set to limit the number of methods that users consider.  

The threshold may be set by a cut point, as in only the 

top n or only the top x percent of results are considered.  

The threshold can be set as at a specific value such that 

only the results with a similarity greater than or equal to 

the threshold are considered.  Determining an 

appropriate threshold is an open research problem.   

Dynamic Analysis. Using dynamic information is 

another approach to feature location [31, 32].  Dynamic 

information complements textual information since not 

all methods relevant to a feature may use a similar 

vocabulary, but they may be executed when a system is 

run.  To collect dynamic information, an executable 

version of the system must be available.  Users develop 

scenarios that trigger a feature.  A scenario is a sequence 

of user inputs to a system.  As scenarios are being 

exercised, traces can be collected.  A trace is a list of 

events that occurred within the system’s execution.  

Events can be method invocations, object instantiations, 

and variable accesses.  In this work, we focus on method 

calls only. 

There are two types of traces that we consider.  A full 

trace [31] captures all events from a system’s start-up to 

shutdown.  A marked trace [16, 25] only captures events 

during part of a system’s execution.  When the system is 

running, users can start and stop tracing.  By starting 

tracing immediately before triggering a feature and 

stopping tracing once the feature’s behavior is observed, 

more of the events (methods) listed in the trace should 

pertain to the feature.   

Static Analysis. Dynamic information is only as good 

as the scenarios used to collect traces.  If scenarios fail to 

invoke a feature in a certain way, relevant methods may 

be missing from an execution trace.  Since static analysis 

does not rely on a program’s execution, statically 

collected information can compensate for dynamic 

analysis’ weaknesses [11].  Static analysis can provide a 

wealth of information on different types of dependencies 

such as control flow, data dependence, and inheritance.  

For this work, we use light-weight static analysis and 

focus on method caller-callee relationships by using a 

static program dependency graph (PDG) [5, 13, 21] in 

which nodes are methods and edges represent method 

invocations.  We obtain such a graph using JRipples
1
[4]. 

Additional methods relevant to a feature can be found 

by exploring a PDG.  Starting at a seed method, one that 

is known to be relevant to a feature, other methods 

pertinent to the implementation of the feature can be 

discovered by traversing the graph.  Executing a program 

may not invoke a relevant method, but if that relevant 

method has a static dependency with the seed method, 

static analysis can locate it.  However, in the case that a 

method related to a feature has no static dependencies 

with the seed, static analysis fails. 

2.2. Combined techniques 

Textual, dynamic, and static information compliment 

each other, so in theory when working in tandem, they 

should produce better results than when used 

individually.   In this work, we investigate the following 

combinations of analyses. 

Textual Analysis.  The first feature location 

technique we consider employs only textual analysis, and 

we consider it to be our baseline approach.  We evaluate 

two configurations of textual analysis, one using nl-

queries as in [16] and one using our new method-queries.  

We call these approaches IRquery and IRseed, referring to 

the fact that the textual analysis used is a form of 

information retrieval.  The IRquery approach to feature 

location was introduced in [17], whereas IRseed is a new 

version of this technique.      

Textual Analysis plus Dynamic Analysis.  We also 

examine the combination of textual and dynamic 

analysis for feature location.  To combine these two 

types of information, methods that are not executed are 

removed from the ranked list provided by textual 

analysis as in [16].  We investigate all configurations of 

the different types of queries and traces.  Abbreviated, 

these configurations are IRquery + Dynmarked, IRquery + Dynfull, 

IRseed + Dynfull, and IRseed + Dynfull, where “Dyn” stands for 

dynamic analysis and subscripts denote the type of trace 

(i.e., full and marked).  IRquery + Dynmarked is like the 

                                                           
1 http://jripples.sourceforge.net/ (verified on 01/18/09) 
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approach presented in [16], while IRquery + Dynfull is 

similar to [19].  The two other approaches are novel 

combinations. 

Textual, Dynamic, and Static Analyses.  The final 

feature location technique we evaluate incorporates all 

three types of analyses.  Again, we investigate all 

configurations of queries and traces in conjunction with 

static analysis:  IRquery + Dynmarked + Static, IRquery + Dynfull + 

Static, IRseed + Dynfull + Static, and IRseed + Dynfull + Static.    

The IRquery + Dynfull + Static approach is conceptually 

similar to Cerberus [8], but instead of using prune-

dependency analysis, it uses light-weight static analysis.  

The other three combinations are new. 

Unlike with combining textual and dynamic analysis, 

utilizing static analysis does not involve pruning an 

existing ranked list.  Instead, static analysis entails 

exploring a PDG to find relevant methods and then 

ranking them once exploration stops.  Searching begins 

at a seed method known to be relevant to the feature.  

The static neighbors of the seed (parents and children) 

are examined to see if they meet the textual and dynamic 

criteria.  The textual criterion is a threshold similarity 

value, and the dynamic criterion is whether the method 

appears in a given trace.  If the method’s textual 

similarity is above the threshold and it was executed, it is 

added to the list of results, and its neighbors are added to 

a list of methods to be examined.  Once the list of 

methods to examine is empty, exploration stops and the 

list of results is sorted by textual similarity values.       

Cerberus [8] uses all three types of analyses.  We did 

not use Cerberus because it does not produce a ranked 

list of methods and the other techniques in our evaluation 

do.  Therefore for the sake of comparison, we developed 

our own combination of textual, dynamic, and static 

analyses. 

In total, we investigate ten different feature location 

techniques, many of which are novel because they 

involve method-queries.  There are other possible 

combinations of textual, dynamic, and static analysis that 

we decided not to study, such as just dynamic and static 

analysis together.  We decided against including these 

other approaches in our study since they do not produce 

a ranked list and the results of using standalone versions 

of static and dynamic analyses are available elsewhere 

[5, 16, 19].  The details of how we evaluated and 

compared the ten approaches described above are 

provided in the next section. 

3. Exploratory study 

We performed an exploratory study to evaluate the 

feature location techniques mentioned above.  The goal 

of the study was to determine which combination of 

analyses provides the best results and under what 

circumstances.  This section outlines the subject systems 

used in the study, our research goals, and the specifics on 

how we used each type of analysis.    

3.1. Research questions 

We set out to seek the answers to a number of 

research questions in this exploratory study.  These 

research questions (RQ) are as follows:   

• RQ1: What is the best combination of textual, 

dynamic, and static analyses for feature location?  

Specifically, which techniques are most effective at 

finding multiple feature-relevant methods? 

• RQ2: Which type of IR query produces better results 

in terms of finding multiple methods associated with 

a feature, an nl-query provided by a user (e.g. 

requires human effort in formulating a query) or a 

method-query using the text of a seed method 

(completely automatic)? 

• RQ3: Which type of execution trace, marked or full, 

is better at discovering numerous methods that 

implement a feature? 

Since this study was exploratory in nature, we did not 

know what to expect as the outcome, so we did not 

formulate any hypotheses.  However, intuition and 

previous research results led us to conjecture that the 

approaches that incorporated more types of analyses 

would perform better than those with fewer. 

3.2. Subject software systems 

For our study, we chose two open-source Java 

software systems of different sizes and from different 

domains.  jEdit
2
 is a highly configurable and 

customizable text editor.   We used version 4.3pre16 in 

our study, which consists of approximately 105KLOC in 

910 classes and 5,530 methods.  We selected four 

features from jEdit to study.  These features were chosen 

from feature requests with submitted patches in the 

“Patches” section of the systems’ tracking software. 

• Patch #1608486, Support for “Thick” Caret adds a 

configurable option to make the cursor two pixels 

wide instead of one so it is easier to see (6 methods 

in patch). 

• Patch #1818140, Edit History Text adds the ability 

to edit the history text of searches (5 methods in 

patch). 

• Patch #1923613, Reverse Regex Search, adds the 

ability to search backwards with regular expressions 

(2 methods in patch). 

• Patch #1849215, Bracket Matching Enhancements, 

adds the ability to match angle brackets (2 methods 

in patch). 

                                                           
2 http://www.jedit.org/ (verified on 09/18/08) 
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Eclipse
3
, the other system in our study, is a popular 

integrated development environment.  We used version 

2.1, and it contains approximately 2.3MLOC in over 

7,000 classes and 89,000 methods.  Like with jEdit, we 

selected four features from its bug tracking system.  With 

Eclipse, we chose fixed bugs corresponding to 

misbehaving features.  These bugs are: 

• Bug #5138
4
 – Double-click-drag to select multiple 

words is broken (6 methods in patch). 

• Bug #31779
5
 – UnifiedTree should ensure file/folder 

exists (3 methods in patch). 

• Bug #19819
6
 – Add support for Emacs-style 

incremental search (19 methods in patch). 

• Bug #32712
7
 – Repeated error message when 

deleting and file is in use (6 methods in patch). 

3.3. Input to the analyses 

Textual Analysis. We formulated the nl-queries 

used by textual analysis by reviewing the description 

and comments in the thread for the patch/bug in jEdit 

and Eclipse’s tracking systems.  The nl-queries are 

listed in Table 1.  The method-queries consist of the 

identifiers from seed methods also listed in the table.  

The seed methods were randomly chosen from the 

                                                           
3 http://www.eclipse.org/ (verified on 09/18/08) 
4 https://bugs.eclipse.org/bugs/show_bug.cgi?id=5138 
5 https://bugs.eclipse.org/bugs/show_bug.cgi?id=31779 
6 https://bugs.eclipse.org/bugs/show_bug.cgi?id=19819 
7 https://bugs.eclipse.org/bugs/show_bug.cgi?id=32712  

 

patch for each feature to ensure that they do actually 

pertain to the feature. 

Dynamic Analysis. We created one usage scenario 

per feature to collect traces in this study.  Descriptions of 

the scenarios are in Table 1.  We devised the jEdit 

scenarios by reading the description and comments for 

the patch in the bug tracking software.  For Eclipse, two 

bug reports (#5138 and #32712) had steps to reproduce 

the errors, and those steps were used as the scenarios for 

those two features.  The scenario for bug #31779 is 

reused from [16].  For Bug #19819, a scenario was 

created in which the behaviors of the incremental search 

feature, as described in the bug report, were exercised.  

Static Analysis. The seed methods used as the 

starting point of static analysis are listed in Table 1.  

They were the same methods used for constructing the 

method-queries and were randomly selected from the 

feature’s patch.  As explained in Section 2.2, static 

analysis starts at the seed method and branches out in 

part based on a textual similarity threshold.  To 

determine the textual similarity threshold to set for 

examining neighbors in a PDG, we adapted the gap 

threshold technique [17, 33].  A gap threshold is found 

by determining the largest difference between two 

adjacent textual similarity values in a ranked list.  The 

threshold is set as the larger of the two values at this 

location in the list.  We adapted this technique to 

incorporate a relaxation strategy.  If the size of a ranked 

list did not reach our minimum (e.g., ten items), then we 

decreased the threshold by 0.05 and repeated the 

procedure again.   

Table 1. Queries, scenarios and seed methods used for each feature in the case study. 

Feature Description Query Scenario Seed Method 

jEdit Patch 

#1608486 

Support for 

"thick" caret. 

configuration 

global option 

thick caret text 

area block 

Start jEdit; click “Global Options” button then “Text Area;” start 

tracing; click “thick” checkbox then “OK;” stop tracing; exit. 

EditPane.initPainter 

(49LOC, 114 terms) 

jEdit Patch 

#1818140 

Edit the entries 

in the History 

Text. 

history text edit 

string menu 

Start jEdit; click “Find” button; start tracing; right click in text 

area; select “Previously entered searches;” delete, insert, and 

modify an entry; click “OK;” stop tracing; click “Close;” exit. 

ListModelEditor.createTableModel 

(9LOC, 18 terms) 

jEdit Patch 

#1923613 

Reverse 

searching with 

regular 

expressions. 

reverse regex 

search regular 

expression 

Start jEdit; place cursor at end of file; start tracing; click “Find” 

button; select “Regular Expressions” and “Backwards;” enter “[0-

9]+;” click “Find” several times; stop tracing; exit. 

SearchDialog.updateEnabled 

(30LOC, 53 terms) 

jEdit Patch 
#1849215 

Match angle 
brackets. 

angle right find 
next 

Start jEdit; place start tracing; cursor to right of “<” whose match 
is on same line; place cursor to right of “<” whose match is on 

another line; stop tracing; exit. 

TextUtilities.findMatchingBracket 
(147LOC, 117 terms) 

Eclipse 

Bug #5138 

Double-click-

drag to select 

multiple words. 

mouse double 

click up down 

drag release 

Start Eclipse; start tracing; click and release the mouse button; 

click a second time quickly and hold the mouse button down, drag 

and select some text; release the mouse button; stop tracing, exit. 

TextViewer.mouseUp 

(11LOC, 36 terms) 

Eclipse 

Bug #31779 

UnifiedTree 

should ensure 

file/folder exists. 

unified tree node 

file system folder  

location 

Start Eclipse; start tracing; create a file from the file system in a 

project; refresh; stop tracing; exit. 

UnifiedTree.addChildren 

(53 LOC, 108 terms) 

Eclipse 

Bug #19819 

Emacs-style 

incremental 

search. 

incremental 

search 

Start Eclipse; start tracing; press Ctrl+J; type search criteria; use 

up and down arrow keys to find matches; stop tracing; exit. 

IncrementalFindAction.run 

(14LOC, 23 terms) 

Eclipse 

Bug #32712 

Repeated error 

message. 

delete resource 

project file folder 

fail 

Start Eclipse; create a simple project; add a file; edit foo.doc 

externally; start tracing; delete the project; stop tracing, exit. 

ResourceTree.standardDeleteProject 

(78LOC, 216 terms) 
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3.4. Relevancy Assessment 

Each combination of analyses is a feature location 

technique that produces a ranked list of methods 

suggested to be relevant to a feature.  We restrict our 

evaluation to the top ten methods on each list because 

other researchers have shown that users are generally 

unlikely to look at more than ten elements on a list [18, 

34].  If most of the top ten suggestions provided by a 

feature location approach are false positives, then the 

effort that would be needed to examine more results 

lower in the list is likely to not be worth the cost. 

In reviewing the top ten methods returned by each 

technique, there needs to be well-defined criteria for 

judging whether a method is relevant to a feature or not.  

In almost all cases, the methods that implement a feature 

are not documented; otherwise feature location would 

not be necessary.  Therefore, other ways of determining a 

method’s relevance to a feature are needed.  One option 

is to present the top ten suggestions to an expert.  If no 

expert is available, then if a bug related to the feature has 

been fixed, the methods in the patch can be used.  

However, the bug may only pertain to a small subset of 

the feature’s relevant methods, so relying on a patch may 

give an incomplete picture of a feature’s implementation.  

For this reason, we decided not to use this evaluation 

approach, even though we had patches for each feature.    

An alternative is to ask programmers to identify 

relevant methods by exploring the source code.  

Robillard et al. [23] provided some guidance to 

participants asked to locate methods relevant to features.  

The participants were instructed to decide if a method 

was relevant by asking if it would be useful to know if 

the method was related to the feature if the feature had to 

be modified in the future.  We take a similar but adapted 

approach in our evaluation.  Instead of asking 

programmers to locate relevant methods on their own, 

we present them with lists of methods and ask them to 

determine the relevance of each method.  In our study, 

the participants were provided with code and an 

executable, a description of a feature and how to invoke 

it, and the following guidelines for how to determine if a 

method is relevant to the feature or not. 

1. Method names that are similar to the words in the 

feature's description are good indicators of possibly 

relevant code, but the method's source code should 

be inspected to ensure the method is actually relevant 

to the feature.  

2. Determine if the method is relevant to the feature by 

asking "Would it be useful to know that this method 

is associated with the feature if I had to modify the 

feature in the future?"  

3. If most of the code in the method seems relevant to 

the feature, classify the method as Relevant. If some 

code within the method seems relevant but other 

code in the method is irrelevant to the feature, 

classify the method as Somewhat Relevant. If no 

code within the method seems relevant to the feature, 

classify it as Not Relevant.  

4. If unable to classify the method by reviewing its 

code, explore the method's structural dependencies, 

i.e. what other methods call it and are called by it. If 

the method's dependencies seem relevant, then the 

method probably is also. 

Having a number of programmers follow these 

guidelines and focusing on the agreement between the 

programmers eliminates any one individual’s bias. 

One of the authors classified every method in the 

resulting ranked lists for all eight features without 

knowing which technique produced each list.  To give 

support to the resulting categorizations, we solicited 

volunteers to also classify methods and compared them 

to the author’s.  Four students volunteered to participate 

in this study.  The students were enrolled in a graduate 

software engineering course.  They were given ten 

ranked lists each containing ten methods.  The ten lists 

corresponded to the ten different feature location 

techniques under evaluation.  The students were not 

aware to which feature location technique the lists 

pertained.  They were instructed
8
 to classify the methods 

based on the guidelines above, and jEdit’s thick caret 

feature was used. The patch for this feature has six 

methods, and the feature location techniques were able to 

find between one and three of these methods in the top 

ten of their ranked lists. 

Figure 1 shows the average agreement between the 

author’s classifications and the volunteers. To 

demonstrate how percent agreement was calculated, 

consider the following example. The author classified 

four methods from a list of ten as relevant and six as not 

relevant, and a volunteer classified only three methods as 

relevant and seven as not relevant.  The volunteer’s three 

methods were included in the four identified by the 

author, so the percent agreement is 90%.  Nine out of ten 

times, both programmers agree that a method either 

belonged in the relevant or not relevant categories.  The 

percent agreement was averaged over all ten lists 

generated by the different feature location techniques.  

When computing agreement between more than two 

programmers, all individuals involved had to categorize 

a method in the same way for there to be agreement.       

The percent agreement between the author and the 

volunteers is high; it is always greater than 70%.  The 

agreement declines only slightly when more individuals 

are taken into account. Agreement about relevant 

methods was highest, followed by agreement about 

irrelevant methods, suggesting that it is easiest to identify 

methods that definitely do or do not implement a feature. 

                                                           
8 See http://www.cs.wm.edu/~meghan/case-study-instructions.html 
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     The average agreement among programmers about a 

method’s relevance in this study was higher than that 

observed by Robillard et al. in [23].  The two approaches 

to evaluating method relevance differ: our study 

provided lists of methods for programmers to judge 

while Robillard et al. asked programmers to find the 

methods implementing a feature themselves.  Also, our 

study allowed programmers to place methods into one of 

three categories to allow for uncertainty instead of a 

binary yes/no classification.     

4. Results 

In our study, only the top ten ranked methods 

returned by a feature location technique for each feature 

were examined.  Those methods were then classified 

into three categories (relevant, somewhat relevant, not 

relevant) as described in the previous section.  The 

results of the jEdit and Eclipse studies are discussed in 

the next sections and are also available online
9
. 

4.1. jEdit study findings 

The average percentage of relevant, somewhat 

relevant, and not relevant methods found in the top ten 

lists of each feature location technique are in Table 2.  

An in-depth discussion of the results is below. 

RQ1.  For jEdit, the techniques that found the most 

relevant methods on average were IRquery + Dynmarked and 

IRquery + Dynmarked + Static with 30% of the top ten methods 

being relevant, meaning three methods in the top ten 

were relevant on average.  These approaches found 

nearly double the amount of relevant code than most of 

the other techniques which averaged between 12.5% and 

20%.  Different programmers may consider the methods 

classified as somewhat relevant as pertaining to the 

implementation of a feature, while others might not.  If 

the somewhat relevant methods are considered important 

to a feature’s implementation, then IRquery + Dynmarked is 

                                                           
9 http://www.cs.wm.edu/~meghan/case-study-results.html 

the best performing technique in the jEdit study with 

50% of the located methods being relevant on average.  

At least for jEdit, the IRquery + Dynmarked feature location 

technique is readily able to locate many methods 

implementing a feature and not just a single method.    

Since the IRquery + Dynmarked and IRquery + Dynmarked + 

Static approaches performed the same, these results 

suggest that adding static analysis provides no additional 

benefits over a combination of only textual and dynamic 

analysis.  However, the approach that located the most 

relevant methods for the edit history text feature was 

IRquery + Dynmarked + Static.  Seventy percent of the 

methods in its top ten list were relevant.  The methods 

implementing this feature have very clear structural 

dependencies because they can be found along the same 

branch of the PDG.  Therefore, static analysis was easily 

able to identify multiple methods related to this feature.  

With the three other jEdit features, static analysis did not 

perform as expected and improve the number of relevant 

methods located.  Incorporating static analysis yielded no 

more relevant methods than using a combination of 

textual and dynamic analysis.  For jEdit’s reverse regex 

search feature, a different seed than the one listed in 

Table 1 was originally selected.  However, the seed 

method was isolated in the PDG, so static analysis could 

not expand far beyond it to locate more potentially 

relevant methods.  This is one of the observed limitations 

of static analysis for feature location.     

Another reason static analysis may not produce 

improved results is even when there is a dependency 

between a seed method and a relevant method, they may 

be distant from each other in the PDG.  If one method 

along a branch in a PDG between the seed and a relevant 

method is not executed or has a textual similarity below 

the threshold, static analysis will be unable to locate the 

relevant method.  Therefore, the ranked list is populated 

with other, irrelevant methods that meet both the textual 

and dynamic criteria when searching the PDG.   

In general, combining just textual and dynamic 

analysis either did not affect the number of relevant 

methods located (reverse regexp feature) or slightly 

improved the results (edit history text and angle bracket 

matching features) by pruning unexecuted methods from 

the ranked list.  This result supports the findings of 

previous studies [16].   However, the combination of the 

two analyses did not find a substantial number of 

relevant methods for each feature.   

For jEdit’s thick caret feature, surprisingly, we 

observed that adding dynamic analysis to textual 

produced worse results than textual analysis alone.  The 

StandaloneTextArea.initPainter method appears to be a 

code clone of EditPane.initPainter, the seed method, 

meant to be used when jEdit is embedded in another 

system.  The IRseed approach locates this method, but 
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Figure 1. Percent agreement of the volunteers with 
one of the authors for the jEdit  thick caret feature. 
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neither the IRseed + Dynmarked nor the IRseed + Dynfull 

approach can identify this method because it was not 

executed.  This case highlights a challenge associated 

with using dynamic analysis for feature location.  One 

solution is to create a better scenario, or perhaps when 

combining textual and dynamic analysis, if a method has 

a high enough textual similarity, the fact that it was not 

executed should be ignored.       

Our goal was to locate as many methods as relevant 

to a feature as possible.  If we had set out to find only a 

single method to use as a starting point for searching for 

more methods associated with a feature, the techniques 

we evaluated performed with effectiveness comparable 

to that reported in previous studies [16, 19].  On average, 

at least one relevant method was found in the top ten for 

each feature by every technique.  However, since the 

average number of relevant methods found by the feature 

location techniques is low, this work highlights the fact 

that finding a near-complete set of methods that 

implement a feature is not simple.   

RQ2.  Based on the jEdit data, there is no consensus 

on whether an nl-query or a method-query is best.  For 

the reverse regexp feature, the nl-query performed better, 

while for the thick caret feature, the method-query was 

best.  For the two other features, both queries returned 

the same number of relevant methods.  This result 

suggests that using an automatically generated query of 

identifiers from a seed method performs just as well as a 

query constructed by a human, which could eliminate 

much of the subjectivity inherent in formulating a query. 

Even though there is no clear winner, some 

interesting observations can still be drawn.  The nl-

queries consisted of a few words, while the method-

queries were comprised of many identifiers.  The larger 

the seed methods, the more identifiers there generally 

were.  The seed methods (refer to Table 1) varied in size 

from 9LOC and fewer than 20 identifiers (edit history 

text) to 147LOC and over 100 identifiers (match angle 

brackets).  Considering only the IRquery and IRseed results, 

the method-query for the thick caret feature (114 terms) 

performed better than the nl-query (8 terms) with 30% 

relevant vs. 10%.   The wealth of identifiers in larger 

methods may aid textual analysis by providing more 

query terms, but this trend is not universal.  The seed for 

the angle bracket matching feature has over 100 terms, 

but the two types of queries performed the same.     

RQ3.  On average, the use of marked traces produced 

better results than full traces when locating relevant 

methods for features in jEdit, which supports previous 

studies as well [16].  Using marked traces limits the 

number of methods that appear to be executed, meaning 

more irrelevant methods will be pruned from a ranked 

list.  On the other hand, full traces were better at finding 

methods categorized as somewhat relevant.  The 

methods classified as somewhat relevant generally seem 

to be in the call chain of relevant methods but do not 

directly implement the feature.  We can find no 

explanation for why full traces found more somewhat 

relevant methods and conjecture it may be coincidental.    

The nature of a feature should be considered before 

deciding to use marked traces over full traces.  A 

feature like angle bracket matching that does not have a 

menu interface is suitable for marked traces, but for 

features that involve setting options in a dialog or 

menu, like jEdit’s thick caret and reverse regex 

features, full traces might be the better option.  

Consider the method TextAreaOptionPane._init that 

adds various options for jEdit’s main text area, 

including the thick caret option, to a dialog.  This 

method was executed, but it did not appear in the 

marked trace since tracing was started after the dialog 

opened.  Marked traces run the risk of omitting 

initialization code that full traces would not.   

4.2. Eclipse study findings 

Table 2 lists the average number of relevant, 

somewhat relevant, and not relevant methods found in 

the top ten lists of each technique in Eclipse.  Below, we 

discuss the results with regards to our research questions. 

RQ1. For Eclipse, there were three approaches that, 

on average, performed the best at finding relevant 

methods: IRquery + Dynmarked + Static, IRquery + Dynfull + Static, 

Table 2. Average percentage of the number of methods classified as relevant, somewhat relevant, and not 
relevant in the top ten results returned by each feature location technique for jEdit, Eclipse, and both. 

 jEdit Eclipse Both Systems 

Feature location technique Relevant 
Somewhat 
Relevant 

Not 
Relevant 

Relevant 
Somewhat 
Relevant 

Not 
Relevant 

Relevant 
Somewhat 
Relevant 

Not 
Relevant 

IRquery [17] 12.5% 15% 72.5% 22.5% 12.5% 65% 17.5% 13.75% 68.75% 

IRseed 12.5% 20% 67.5% 12.5% 22.5% 65% 12.5% 21.25% 66.25% 

IRquery + Dynmarked [16] 30% 20% 50% 25% 5% 70% 27.5% 12.5% 60% 

IRquery + Dynfull [19] 15% 22.5% 62.5% 25% 12.5% 67.5% 17.5% 17.5% 65% 

IRseed + Dynmarked 20% 15% 65% 27.5% 25% 47.5% 23.75% 20% 56.25% 

IRseed + Dynfull 15% 27.5% 57.5% 27.5% 35% 42.5% 18.75% 31.35% 50% 

IRquery + Dynmarked + Static 30% 17.5% 52.5% 30% 12.5% 57.5% 30% 15% 55% 

IRquery + Dynfull + Static [8] 12.5% 25% 62.5% 30% 12.5% 57.5% 21.25% 20% 58.75% 

IRseed + Dynmarked + Static 17.5% 17.5% 65% 30% 15% 55% 23.75% 25% 51.25% 

IRseed + Dynfull + Static 12.5% 30% 57.5% 27.5% 22.5% 50% 20% 26.25% 53.75% 
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and IRseed + Dynmarked + Static.   Thirty percent of the top 

ten methods identified were relevant. When taking both 

relevant and somewhat relevant methods into account, 

the best performing approach was IRseed + Dynmarked + 

Static, with on average 62.5% or slightly better than six 

methods out of the top ten.   

Unlike in jEdit, these results suggest that static 

analysis does aid feature location.  Examining individual 

features, a mixed story emerges.  For bugs #19819 and 

#32712, adding static analysis produced no improvement 

over a combination of textual and dynamic analysis.  

Bug #5138 actually saw the number of relevant methods 

decrease when static analysis was used.  Combining 

textual and dynamic analysis essentially involves 

eliminating unexecuted methods from a ranked list, but 

using static analysis entails building a new list from 

scratch.  Only methods with a static dependency to the 

seed are included.  Therefore, methods that are located 

by a combined textual dynamic approach may not be 

found by one that uses static analysis.  This is exactly 

what happened in the case of bug #5138.  The seed 

method was isolated in the PDG, so static analysis was 

not able to branch out very far.     

Feature location on bug #31779 resulted in the biggest 

improvement when adding static analysis.  Ninety 

percent of the methods on the top ten list for IRquery + 

Dynmarked + Static were relevant, while 100% of the 

methods for IRquery + Dynfull + Static were.  Static analysis 

was able to succeed so well with this feature because 

many of the relevant methods were located in the same 

class as the seed.  The results for these two approaches 

for this feature may have skewed Eclipse’s averages.  

Nevertheless, this case is an example that it is possible to 

locate near-complete feature implementations and that 

static analysis is a useful tool to do so. 

Overall, the combination of textual and dynamic 

information improved results over only textual analysis, 

but for one feature the use of textual and dynamic 

information caused the number of relevant methods 

located to decrease.  The IRquery technique identified 

JavadocDoubleClickStrategy.doubleClicked as relevant 

to bug #5138.  However, this method is not executed in 

the scenario because no Javadoc comments were double 

clicked.  Therefore, this method has no chance of being 

identified by an approach that uses dynamic analysis 

unless a new scenario is used.  Alternatively, since this 

method has a high textual similarity, a revised 

combination of textual and dynamic analysis that allows 

for cases when a method is unexecuted but has high 

similarity could also solve this problem. 

The purpose of this exploratory study was to learn 

how effective feature location techniques are at finding 

multiple methods relevant to a feature instead of just a 

single starting point.  In Eclipse, all but one approach had 

at least 20% of its top ten located methods categorized as 

relevant.  Most approaches found closer to 30%.  These 

results are more encouraging and those for jEdit, but they 

still show room for improvement.  Being able to fully 

locate the implementation of a feature is a difficult 

problem that requires further research. 

RQ2. The data showed that method-queries perform 

comparably to nl-queries. This outcome is similar to 

what was observed in jEdit. Considering the IRquery and 

IRseed results for bugs #5138 and #19819, the seed 

methods were short (11LOC/36 terms and 14LOC/23 

terms), and nl-queries performed better for these 

features.  For bug #31779, the two types of queries 

achieved comparable results to each other, but for bug 

#32712 (78LOC/216 terms), the method-query was the 

winner.  This possible trend of method-queries from 

longer methods performing better was also seen in jEdit, 

adding weight to the idea of automatically constructing 

queries from the identifiers of seed methods.     

RQ3.  In Eclipse, marked traces outperformed full 

traces slightly.  When the same type of query was used, 

marked traces found about 5% more relevant methods 

than full traces.  We attribute this outcome to marked 

traces limiting the method invocations recorded, thus 

removing much noise from the resulting trace.  

Collecting full traces is difficult because they are very 

larger and take time to collect, especially for a system 

like Eclipse.  This fact plus the better performance of 

marked traces make them the ideal choice in most cases.  

4.3. Discussion 

Based on this exploratory study, we draw a number of 

notable conclusions, which are discussed below. 

Method-queries perform as well as nl-queries. 
There was no clear winner when it comes to nl-queries 

vs. method-queries.   This result is promising because it 

means that automatically generated queries perform just 

as well as ones created by humans.  We observed that 

method-queries from larger seeds seem to perform the 

best.  These results motivate further exploration into 

strategies for formulating queries automatically.    

No feature location technique is universally 

successful at finding near-complete implementations 

of features.  At best, they are good at locating a few 

relevant methods.  This research motivates the need for 

feature location techniques that successfully discover as 

many feature-relevant methods as possible. 

The effectiveness of static analysis might be tied to 

the effectiveness of textual analysis.  The biggest 

difference between the results of the two systems 

concerns the use of static analysis.  In jEdit, feature 

location with static analysis did not produce better results 

than approaches without it.  In Eclipse, the best 

techniques used static analysis.  One possible reason for 
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this discrepancy stems from textual analysis.  Static 

exploration of a PDG was performed using textual and 

dynamic criteria.  If a method did not meet the textual 

similarity threshold, then exploration down that path of 

the PDG would halt.  LSI generated better results for 

Eclipse, therefore, it is possible that static analysis was 

able to explore a PDG more fully and find more relevant 

methods in Eclipse than jEdit.  Using additional types of 

static dependencies along with light-weight analysis may 

improve results. 

Marked traces slightly outperform full traces.  In 

both systems, marked traces were able to find slightly 

more relevant methods than full traces due to the fact that 

marked traces capture a higher concentration of feature-

relevant methods.  However, full traces should be used 

for features that are invoked through menus.  

 LSI performs better on larger systems.  One 

difference between the results of the two systems is that 

textual analysis yielded better results in Eclipse.  There 

are two possible reasons for this outcome.  First, Eclipse 

is a professional-grade system, so the naming 

conventions used may be stricter than in jEdit, which 

would aid LSI.  Another possible reason is that the 

performance of LSI has been shown to degrade on 

smaller corpora [8].  jEdit’s corpus is small (about 7K 

terms and 5K methods) in comparison to Eclipse’s (56K 

terms and 89K methods), therefore LSI’s ranking 

strategies may be more effective with Eclipse. 

 The textual similarity threshold selected by gap 
technique was too high.  We adapted the gap threshold 

technique with a relaxation strategy in the case fewer 

than ten methods were found.  The initial textual 

similarity selected was always too high.  The relaxation 

strategy that we incorporated had to be used in every 

feature location technique involving static exploration of 

a PDG.  In each case, the threshold had to be lowered 

significantly, sometimes by as much as 0.5.  This 

observation suggests that feature-relevant methods are 

not always located close to each other in a PDG. 

4.4. Threats to validity  

There are several issues that may limit the 

generalizations that can be drawn from our results.  

Foremost is the subjective manner in which the results 

were judged. One author determined the relevance of the 

methods found by the feature location techniques. To 

minimize bias, the author did not know to which 

approach each top ten list belonged. Also, we formalized 

how methods were classified by creating guidelines. For 

one feature, we also asked several programmers to 

categorize the methods and compared them to the 

author’s. Since the agreement between the author and the 

students was high, it is reasonable to assume that the 

author’s classifications are representative of the features. 

Another subjective aspect of this work is the 

construction of the nl-queries and the selection of the 

seed methods.  To form the nl-queries, we used words 

from the change requests and bug reports.  The seed 

methods were randomly selected from methods that were 

submitted in patches to the features/bugs.  Since those 

methods had to be changed to perform maintenance on 

the features, they must be relevant to the feature.  

However, the use of different queries and different seeds 

could alter the results. 

Another threat to validity is that only one scenario 

was used to collect execution traces.  Every effort was 

made to ensure that the scenarios dependably captured 

the behavior of the features, although certain aspects may 

have been missed.  In many cases, the scenarios were 

based on the descriptions given in a bug report.   

Finally, we only studied a small number of features 

from two systems, both written in Java, limiting the 

ability to generalize our results to other types of software 

systems.  Eclipse is a real-world system, but jEdit is 

rather small in comparison.  This threat can be reduced if 

we experiment on more systems written in other 

languages and taken from other domains. 

5. Related work 

Since feature location is an important part of software 

maintenance, there are many existing techniques. This 

section reviews some of these approaches by 

categorizing them as either static, dynamic, or hybrid 

feature location.  A more complete discussion of feature 

location approaches can be found in [1], while [6, 30] 

provide comparisons and evaluations of techniques. 

Most static feature location techniques are either 

structural or textual. Structural approaches [3, 5, 15, 22, 

29]. Textual approaches use comments and identifiers to 

locate code relevant to a feature by utilizing such 

techniques as information retrieval [17, 20], independent 

component analysis [12], and natural language [27].  A 

number of tools use both structural and textual 

information to locate pertinent code [13, 33] by using 

textual information to prune irrelevant structural 

relationships, or vice versa.  

Some of the earliest work on feature location was 

software reconnaissance [31], a dynamic approach that 

compares a trace of a program when a feature is invoked 

to a trace when the feature is not executed. Software 

reconnaissance has been recently expanded and 

improved [1, 10]. Other dynamic approaches focus on 

feature interactions [26] and aspect mining [28].  

Hybrid feature location approaches seek to leverage 

the benefits provided by both static and dynamic analysis 

[24]. Eisenbarth et al. [9, 14] developed a technique that 

is mostly dynamic and applies formal concept analysis to 

traces to produce a mapping of features to the program's 
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methods.  Several approaches combine LSI and dynamic 

information.  In PROMESIR [19], LSI is combined with 

a dynamic analysis technique known as SPR [1] to give a 

ranking of methods likely relevant to a feature.  In SITIR 

[16], a single execution trace can be filtered using LSI to 

extract code relevant to the feature of interest.  

Cerberus [8] is the only approach we are aware of that 

combines three types of analyses for feature location.  

Our work is different from Cerberus as we are 

investigating several alternative combinations because 

Cerberus is not always able to locate methods relevant to 

some features.  We also distinguish ourselves from 

Cerberus by examining the trade-offs of using textual, 

dynamic, and static analyzes for feature location and by 

evaluating our approaches on small and large systems.     

6. Conclusion 

This paper presented an exploratory study evaluating 

the effectiveness of ten feature location approaches 

locating near-complete implementations of features.  

Although we did not discover an approach that clearly 

works best in all situations, we did observe that 

combining analyses generally improves the results.  One 

promising result is that method-queries perform 

comparably to a queries formed by a human. We also 

summarized cases in which certain combinations of 

analyses were more effective than others. These 

observations can be used in future research on improving 

feature location techniques.    
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