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Abstract 

 When programmers develop or maintain software, 
they instinctively sense that there are fragments of code 
that other developers implemented somewhere, and 
these code fragments could be reused if found. 

In this paper, we propose a novel solution that 
addresses the fundamental questions of searching, 
selecting, and synthesizing (S3) software based on the 
analysis of Application Programming Interface (API) 
calls as units of abstractions that implement high-level 
concepts (e.g., the API call EncryptData implements a 
cryptographic concept).  This paper outlines the details 
behind S3, analyzes current challenges and describes 
evaluation plans.    

1. Introduction 

Creating software from existing components rather 
than building it from scratch is a fundamental problem 
of software reuse.  Currently, the source code of 
hundreds of thousands of applications is publicly 
available to programmers for reuse.  It is estimated that 
around one trillion lines of code have been written to 
date with 35 billion lines of source code being written 
every year (see Grady Booch's keynote speech at 
AOSD'05 on "The Complexity of Programming 
Models").  Naturally, when programmers develop 
software, they instinctively sense that there are 
fragments of code that other programmers wrote, and 
these fragments can be reused.   

The there main problems that inhibit effective 
mainstream software reuse practices are how to search 
source code effectively, how to select retrieved code 
snippets from relevant retrieved applications, and how 
to bridge the abstraction gap between design and low 
level implementations.  Moreover, source code 
repositories are polluted with poorly functioning 
projects with incomplete descriptions or 
documentation, if present at all.  State-of-the-art code 
search engines (e.g., Google Code Search) match words 
from search queries to the identifiers or words in 
comments in open-source projects. Unfortunately, these 

engines provide no guarantee that found code snippets 
implement concepts or features described in queries.   

Even if relevant source code fragments are located 
precisely in billions of lines of existing open-source 
code, developers face another daunting task of moving 
these fragments into their software by hand as these 
code fragments may exhibit completely different 
behavior in the contexts of different applications.  In 
addition, synthesizing new code by composing selected 
code fragments with each other requires sophisticated 
reasoning about the behavior of the fragments and the 
resulting code.  The result of this process is 
overwhelming complexity, steep learning curve, and 
the significant cost of building customized software. 

We propose a novel approach that addresses the 
fundamental questions of searching, selecting, and 
synthesizing software based on a common abstraction 
and behavior-specific compositional mechanisms.  This 
approach is based on the fact that programs heavily use 
well-known third-part API calls to implement high-
level requirements.  These API calls represent units of 
abstractions, and these abstractions describe common 
requirements (e.g., encrypting and sending XML data 
over the network). Using these abstractions unifies 
searching (S1), selecting (S2), and synthesizing (S3) 
applications in a novel and promising way: searching 
returns applications that contain API calls that 
implement requirements specified in the search query, 
selecting code fragments is centered on these located 
API calls and dataflow dependencies among them, and 
code synthesis exploits static program analysis and 
runtime information to guide programmers in 
composing code fragments effectively.  

2. Searching, selecting, and synthesizing  

Using APIs has become a large part of everyday 
programming for millions of software developers [24].  
The number of API calls that are exposed by different 
software packages is measured in hundreds of 
thousands.  For instance, Microsoft Windows and Java 
Development Kits have collectively over 50,000 API 
calls, and their number is growing on a daily basis.  
Retrieving, indexing, and analyzing information about 



 

  

API calls is necessary to support developers who create 
and maintain large software systems since these 
systems utilize various APIs. In order to 
comprehensively address the challenges of searching, 
selecting, and synthesizing code, an approach should 
rely on the information which is derived from analysis 
of API calls described in the software documentation.  

We observe that relations between concepts that are 
entered as keywords in queries are often preserved as 
dataflow links between API calls that implement these 
concepts in source code.  This observation is closely 
related to the concept of  software reflection models, 
formulated by Murphy, Notkin, and Sullivan, where 
relations between elements of high-level models are 
preserved in their implementations in source code [17].  
Our idea of improving the relevance of search results is 
to determine relations (i.e., dataflow links) between 
API calls in retrieved applications.  If a dataflow link is 
present between two API calls in the code of one 
application and there is no link between the same API 
calls in some other application, then the former 
application should have a higher ranking than the latter.  
We hypothesize that it is possible to achieve a higher 
precision in finding relevant applications by using this 
heuristic to rank applications, and we are planning on 
thoroughly evaluating our hypothesis.   

The initial step while using the S1 (i.e., searching) 
component of S3 is in indexing databases of help 
documents with a help page processor.  A help page 
processor is a crawler that indexes help documents (1) 
that come from the Java API documentation1, MSDN 
library2 as well as documentation from other third-party 
vendors.  The output (2) of the help page processor is a 
dictionary of API calls, which is represented by a set of 
tuples ((word1, . . ., wordn), API call) linking API calls 
with their descriptions (i.e., set of words) that are 
extracted from help documents.  Once the dictionary of 
APIs is constructed (or updated), the system can accept 
queries from users.  Our approach for mapping words 
                                                           
1 http://java.sun.com/j2se/1.4.2/docs/api/ 
2 http://msdn.microsoft.com/en-us/library/ 

to API calls is different from the keyword programming 
technique [14], since we derive mappings between 
words and APIs from external documentation rather 
than source code. 

When a user issues a query (4) into S1, it is passed to 
API call lookup and Source code search engines.  
Subsequently, the lookup engine scans the API calls 
dictionary using the words from the query as keys and 
outputs the set of API calls, which contains words in 
the descriptions that match the words in the original 
user query (5).   

To accomplish searching, we use two Information 
Retrieval (IR) methods: Latent Semantic Indexing [5] 
and index-based retrieval (e.g., Apache Lucene3).  In 
addition, we use the Google Code search4 to retrieve a 
set of initial software applications (7).  We are also 
building and testing our version of a source code 
crawler for downloading, extracting and indexing open-
source applications from open-source repositories, such 
as sourceforge5 [7].  The progress on downloading and 
indexing open-source software is presented in Table 1.   

Once the database is populated with projects from 
open-source repositories, we will run a set of case 
studies for evaluating and fine-tuning different 
heuristics for retrieving relevant applications. 

The next step in using S1 is to execute the API 
dataflow link heuristics with a Static Analyzer on 
retrieved applications to generate applications 
metadata.  The application metadata contains dataflow 
links between different API calls, which appear in the 
source code of retrieved applications. 

Both the API calls from step (6) and applications 
metadata from step (11) are supplied into a Ranking 
Engine as an input.  The engine uses a set of ranking 
heuristics to match the API calls that are relevant to 
user queries with API calls, which appear in the source.  
The engine ranks all retrieved applications based on the 
frequencies of occurrences of the relevant API as well 
as the API data flow connectivity measures.  The idea 

                                                           
3 http://lucene.apache.org/ 
4 http://www.google.com/codesearch 
5 http://sourceforge.net/ 
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Figure 1. Overview of the S3 architecture 

Table 1. Statistics on downloading and indexing open-
source projects from Sourceforge.net as of 11/26/08 

Items  Count 

Java projects  21,934 

Files  38,330 

Files downloaded (*.zip, *.tar.gz, etc)  31,371 

Files skipped (*.exe, *.dmg, *.pdf, etc)  6,959 

GB downloaded  105.62Gb 

GB skipped  45.71Gb 

Files indexed in Lucene  10,897 

Java docs in index  100,866 



 

  

behind this ranking mechanism is that the software 
applications that use APIs which are relevant to user 
queries are ranked higher.   

Once the list of candidate relevant applications is 
obtained, users inspect them and select code fragments 
that are relevant to the initial queries.  Our idea behind 
the S2 (i.e., selecting) component of S3 is to use data 
that is extracted using textual, static, and dynamic 
analyses (e.g., using an existing feature location 
technique [18]) as well as additional information on 
connectivity and distributions of API calls, which is 
retrieved using S1, to identify relevant code fragments 
in source code.  We will investigate the complementary 
roles for the different sources of information used in the 
implementation of S2: textual, dynamic as well as 
information on relevant API calls detected in retrieved 
software systems.   

Once a code fragment is selected and extracted using 
S2, it will be saved as a function with input and output 
parameters and synthesized using S3 component.  
Currently, we are exploring some of the existing 
solutions for traceability link recovery, specifically the 
LeanArt approach [8], in the context of code synthesis, 
which is based on a combination of program analysis, 
run-time monitoring, and machine learning techniques.    

3. Evaluation Plans 

Further research activities include rigorous empirical 
validation of the proposed S3 approach and its 
accompanying techniques.  Among several available 
empirical techniques, case studies are predominantly 
suitable for the validation of the proposed research.  
Case studies are used superlatively in contexts where 
there is little control over variables [29].  We are 
planning a set of exploratory and descriptive case 
studies aimed at building, explaining, and validating the 
proposed technique.  The following research questions 
pertinent to S3 will be studied: (1) how does S3 improve 
user searches for relevant applications, and through 
them how does it impact software reuse?; (2) which 
ranking heuristics are best suited for retrieving relevant 
applications using S1?; (3) how to present relevant code 
fragments to software developers using S2 and how to 
verify that behavior of the selected code fragments is 
correct?; (4) how to overcome a cognitive distance for 
selecting and synthesizing code fragments using S2 and 
S3?; (5) how to assist software developers in 
synthesizing selected fragments S3 into a working copy 
of a software system?  The case study designs will 
contain research questions, study propositions, units of 
analysis logic of linking the data to the propositions, 
and criteria for interpreting the findings [29]. 

4. Related Work 

In this section, we summarize related work to each 
part of the S3 approach: approaches that search source 
code for reuse, approaches that locate and select 
fragments of relevant source code, and some of the 
related work on code synthesis. 

Different code mining techniques and tools have 
been proposed to retrieve relevant software components 
from different repositories.  Some of these tools are 
CodeFinder [9], CodeBroker [28], Mica [25], 
Prospector [15], Hipikat [4], xSnippet [21], Starthcona 
[12], AMC [11], SPARS-J [13], Google code search, 
Sourcerer [2], Exemplar [7] and ParseWeb [26].  These 
tools can be broadly classified by the granularity of the 
search: fragments of source code [11, 12, 15, 21, 25, 
26], modules [9, 28], applications [2, 4]; scope of the 
search: source code [2, 11, 12, 15, 25, 26], 
documentation [9, 21, 28] or both [4]; granularity of 
input queries: APIs [11, 12, 15, 21, 26] or natural 
language keywords [9] [2, 4, 25, 26, 28].  The S1

 

component is different from these existing search tools 
as it allows searchers to use both granularities 
(fragments and applications), flexible user queries 
consisting of API calls and keywords, and it utilizes not 
only source code but also its documentation. 

Existing approaches to concept location, which are 
pertinent to the S2 component, can be broadly classified 
into three categories based on the type of information 
that they use: static [16] [22] [3] [20] [19], dynamic [1, 
27] and hybrid [6] [18] [10, 30] methods which 
combine static and dynamic analyses.  Selecting 
pertinent code fragments (or complete features) from 
retrieved applications is a research goal behind the S2 
component.  While existing feature location techniques 
mainly aim at identifying a small number of feature 
components (e.g., methods) in a single software project, 
the proposed research on S2 aims at locating relevant 
code fragments in a set of retrieved applications. 

While several existing solutions to code synthesis 
have been proposed in the literature [15] [23] that are 
directly related to S3 component of the model, our 
solution to synthesizing selected code fragments will be 
based on the existing solution combining program 
analysis, run-time monitoring, and machine learning, 
implemented in the LeanArt approach [8]. 

5. Conclusions and Future Work 

This paper proposes a novel approach, namely S3, 
that unifies searching, selecting, and synthesizing 
applications in a powerful and novel way: searching 
returns applications that contain API calls that 
implement requirements specified in a search query, 
selecting code fragments is centered around found API 



 

  

calls and dependencies (textual, structural, and 
dynamic) among them, and code synthesis exploits 
static program analysis, runtime information and 
machine learning to guide programmers in composing 
these code fragments more effectively.  This paper 
outlines some of the plans for evaluating the proposed 
S3 technique together with existing challenges for 
implementing different components of the model. 
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