

Creating and Evolving Software by Searching, Selecting and Synthesizing
Relevant Source Code

Denys Poshyvanyk1, Mark Grechanik2, 3

1Computer Science Department
The College of William and Mary

Williamsburg, VA 23185
denys@cs.wm.edu

2Accenture Technology Labs
Chicago, IL 60657

mark.grechanik@accenture.com

3Computer Science Department
University of Illinois, Chicago,

drmark@uic.edu

Abstract

 When programmers develop or maintain software,
they instinctively sense that there are fragments of code
that other developers implemented somewhere, and
these code fragments could be reused if found.

In this paper, we propose a novel solution that
addresses the fundamental questions of searching,
selecting, and synthesizing (S3) software based on the
analysis of Application Programming Interface (API)
calls as units of abstractions that implement high-level
concepts (e.g., the API call EncryptData implements a
cryptographic concept). This paper outlines the details
behind S3, analyzes current challenges and describes
evaluation plans.

1. Introduction

Creating software from existing components rather
than building it from scratch is a fundamental problem
of software reuse. Currently, the source code of
hundreds of thousands of applications is publicly
available to programmers for reuse. It is estimated that
around one trillion lines of code have been written to
date with 35 billion lines of source code being written
every year (see Grady Booch's keynote speech at
AOSD'05 on "The Complexity of Programming
Models"). Naturally, when programmers develop
software, they instinctively sense that there are
fragments of code that other programmers wrote, and
these fragments can be reused.

The there main problems that inhibit effective
mainstream software reuse practices are how to search
source code effectively, how to select retrieved code
snippets from relevant retrieved applications, and how
to bridge the abstraction gap between design and low
level implementations. Moreover, source code
repositories are polluted with poorly functioning
projects with incomplete descriptions or
documentation, if present at all. State-of-the-art code
search engines (e.g., Google Code Search) match words
from search queries to the identifiers or words in
comments in open-source projects. Unfortunately, these

engines provide no guarantee that found code snippets
implement concepts or features described in queries.

Even if relevant source code fragments are located
precisely in billions of lines of existing open-source
code, developers face another daunting task of moving
these fragments into their software by hand as these
code fragments may exhibit completely different
behavior in the contexts of different applications. In
addition, synthesizing new code by composing selected
code fragments with each other requires sophisticated
reasoning about the behavior of the fragments and the
resulting code. The result of this process is
overwhelming complexity, steep learning curve, and
the significant cost of building customized software.

We propose a novel approach that addresses the
fundamental questions of searching, selecting, and
synthesizing software based on a common abstraction
and behavior-specific compositional mechanisms. This
approach is based on the fact that programs heavily use
well-known third-part API calls to implement high-
level requirements. These API calls represent units of
abstractions, and these abstractions describe common
requirements (e.g., encrypting and sending XML data
over the network). Using these abstractions unifies
searching (S1), selecting (S2), and synthesizing (S3)
applications in a novel and promising way: searching
returns applications that contain API calls that
implement requirements specified in the search query,
selecting code fragments is centered on these located
API calls and dataflow dependencies among them, and
code synthesis exploits static program analysis and
runtime information to guide programmers in
composing code fragments effectively.

2. Searching, selecting, and synthesizing

Using APIs has become a large part of everyday
programming for millions of software developers [24].
The number of API calls that are exposed by different
software packages is measured in hundreds of
thousands. For instance, Microsoft Windows and Java
Development Kits have collectively over 50,000 API
calls, and their number is growing on a daily basis.
Retrieving, indexing, and analyzing information about

API calls is necessary to support developers who create
and maintain large software systems since these
systems utilize various APIs. In order to
comprehensively address the challenges of searching,
selecting, and synthesizing code, an approach should
rely on the information which is derived from analysis
of API calls described in the software documentation.

We observe that relations between concepts that are
entered as keywords in queries are often preserved as
dataflow links between API calls that implement these
concepts in source code. This observation is closely
related to the concept of software reflection models,
formulated by Murphy, Notkin, and Sullivan, where
relations between elements of high-level models are
preserved in their implementations in source code [17].
Our idea of improving the relevance of search results is
to determine relations (i.e., dataflow links) between
API calls in retrieved applications. If a dataflow link is
present between two API calls in the code of one
application and there is no link between the same API
calls in some other application, then the former
application should have a higher ranking than the latter.
We hypothesize that it is possible to achieve a higher
precision in finding relevant applications by using this
heuristic to rank applications, and we are planning on
thoroughly evaluating our hypothesis.

The initial step while using the S1 (i.e., searching)
component of S3 is in indexing databases of help
documents with a help page processor. A help page
processor is a crawler that indexes help documents (1)
that come from the Java API documentation1, MSDN
library2 as well as documentation from other third-party
vendors. The output (2) of the help page processor is a
dictionary of API calls, which is represented by a set of
tuples ((word1, . . ., wordn), API call) linking API calls
with their descriptions (i.e., set of words) that are
extracted from help documents. Once the dictionary of
APIs is constructed (or updated), the system can accept
queries from users. Our approach for mapping words

1 http://java.sun.com/j2se/1.4.2/docs/api/
2 http://msdn.microsoft.com/en-us/library/

to API calls is different from the keyword programming
technique [14], since we derive mappings between
words and APIs from external documentation rather
than source code.

When a user issues a query (4) into S1, it is passed to
API call lookup and Source code search engines.
Subsequently, the lookup engine scans the API calls
dictionary using the words from the query as keys and
outputs the set of API calls, which contains words in
the descriptions that match the words in the original
user query (5).

To accomplish searching, we use two Information
Retrieval (IR) methods: Latent Semantic Indexing [5]
and index-based retrieval (e.g., Apache Lucene3). In
addition, we use the Google Code search4 to retrieve a
set of initial software applications (7). We are also
building and testing our version of a source code
crawler for downloading, extracting and indexing open-
source applications from open-source repositories, such
as sourceforge5 [7]. The progress on downloading and
indexing open-source software is presented in Table 1.

Once the database is populated with projects from
open-source repositories, we will run a set of case
studies for evaluating and fine-tuning different
heuristics for retrieving relevant applications.

The next step in using S1 is to execute the API
dataflow link heuristics with a Static Analyzer on
retrieved applications to generate applications
metadata. The application metadata contains dataflow
links between different API calls, which appear in the
source code of retrieved applications.

Both the API calls from step (6) and applications
metadata from step (11) are supplied into a Ranking
Engine as an input. The engine uses a set of ranking
heuristics to match the API calls that are relevant to
user queries with API calls, which appear in the source.
The engine ranks all retrieved applications based on the
frequencies of occurrences of the relevant API as well
as the API data flow connectivity measures. The idea

3 http://lucene.apache.org/
4 http://www.google.com/codesearch
5 http://sourceforge.net/

Relevant
Applications

Help
pages

Help page
processor

API calls
Dictionary

API call
lookup

API calls Ranking
Engine

Application
metadata

Static
Analyzer

Retrieved
applications

Source code
search
engine

User

1

2

3

4

5 6

7

9

8

10

11

12

Relevant
Source Code
Fragments

Source code
selection

engine

Code
Synthesizer

1314

15

Source code
crawler

Archive of
software
projects

Figure 1. Overview of the S3 architecture

Table 1. Statistics on downloading and indexing open-
source projects from Sourceforge.net as of 11/26/08

Items Count

Java projects 21,934

Files 38,330

Files downloaded (*.zip, *.tar.gz, etc) 31,371

Files skipped (*.exe, *.dmg, *.pdf, etc) 6,959

GB downloaded 105.62Gb

GB skipped 45.71Gb

Files indexed in Lucene 10,897

Java docs in index 100,866

behind this ranking mechanism is that the software
applications that use APIs which are relevant to user
queries are ranked higher.

Once the list of candidate relevant applications is
obtained, users inspect them and select code fragments
that are relevant to the initial queries. Our idea behind
the S2 (i.e., selecting) component of S3 is to use data
that is extracted using textual, static, and dynamic
analyses (e.g., using an existing feature location
technique [18]) as well as additional information on
connectivity and distributions of API calls, which is
retrieved using S1, to identify relevant code fragments
in source code. We will investigate the complementary
roles for the different sources of information used in the
implementation of S2: textual, dynamic as well as
information on relevant API calls detected in retrieved
software systems.

Once a code fragment is selected and extracted using
S2, it will be saved as a function with input and output
parameters and synthesized using S3 component.
Currently, we are exploring some of the existing
solutions for traceability link recovery, specifically the
LeanArt approach [8], in the context of code synthesis,
which is based on a combination of program analysis,
run-time monitoring, and machine learning techniques.

3. Evaluation Plans

Further research activities include rigorous empirical
validation of the proposed S3 approach and its
accompanying techniques. Among several available
empirical techniques, case studies are predominantly
suitable for the validation of the proposed research.
Case studies are used superlatively in contexts where
there is little control over variables [29]. We are
planning a set of exploratory and descriptive case
studies aimed at building, explaining, and validating the
proposed technique. The following research questions
pertinent to S3 will be studied: (1) how does S3 improve
user searches for relevant applications, and through
them how does it impact software reuse?; (2) which
ranking heuristics are best suited for retrieving relevant
applications using S1?; (3) how to present relevant code
fragments to software developers using S2 and how to
verify that behavior of the selected code fragments is
correct?; (4) how to overcome a cognitive distance for
selecting and synthesizing code fragments using S2 and
S3?; (5) how to assist software developers in
synthesizing selected fragments S3 into a working copy
of a software system? The case study designs will
contain research questions, study propositions, units of
analysis logic of linking the data to the propositions,
and criteria for interpreting the findings [29].

4. Related Work

In this section, we summarize related work to each
part of the S3 approach: approaches that search source
code for reuse, approaches that locate and select
fragments of relevant source code, and some of the
related work on code synthesis.

Different code mining techniques and tools have
been proposed to retrieve relevant software components
from different repositories. Some of these tools are
CodeFinder [9], CodeBroker [28], Mica [25],
Prospector [15], Hipikat [4], xSnippet [21], Starthcona
[12], AMC [11], SPARS-J [13], Google code search,
Sourcerer [2], Exemplar [7] and ParseWeb [26]. These
tools can be broadly classified by the granularity of the
search: fragments of source code [11, 12, 15, 21, 25,
26], modules [9, 28], applications [2, 4]; scope of the
search: source code [2, 11, 12, 15, 25, 26],
documentation [9, 21, 28] or both [4]; granularity of
input queries: APIs [11, 12, 15, 21, 26] or natural
language keywords [9] [2, 4, 25, 26, 28]. The S1

component is different from these existing search tools
as it allows searchers to use both granularities
(fragments and applications), flexible user queries
consisting of API calls and keywords, and it utilizes not
only source code but also its documentation.

Existing approaches to concept location, which are
pertinent to the S2 component, can be broadly classified
into three categories based on the type of information
that they use: static [16] [22] [3] [20] [19], dynamic [1,
27] and hybrid [6] [18] [10, 30] methods which
combine static and dynamic analyses. Selecting
pertinent code fragments (or complete features) from
retrieved applications is a research goal behind the S2
component. While existing feature location techniques
mainly aim at identifying a small number of feature
components (e.g., methods) in a single software project,
the proposed research on S2 aims at locating relevant
code fragments in a set of retrieved applications.

While several existing solutions to code synthesis
have been proposed in the literature [15] [23] that are
directly related to S3 component of the model, our
solution to synthesizing selected code fragments will be
based on the existing solution combining program
analysis, run-time monitoring, and machine learning,
implemented in the LeanArt approach [8].

5. Conclusions and Future Work

This paper proposes a novel approach, namely S3,
that unifies searching, selecting, and synthesizing
applications in a powerful and novel way: searching
returns applications that contain API calls that
implement requirements specified in a search query,
selecting code fragments is centered around found API

calls and dependencies (textual, structural, and
dynamic) among them, and code synthesis exploits
static program analysis, runtime information and
machine learning to guide programmers in composing
these code fragments more effectively. This paper
outlines some of the plans for evaluating the proposed
S3 technique together with existing challenges for
implementing different components of the model.

6. Acknowledgements

This research was supported in part by the United
States Air Force Office of Scientific Research under
grant number FA9550-07-1-0030.

7. References
[1] Antoniol, G. and Guéhéneuc, Y. G., "Feature Identification: An

Epidemiological Metaphor", IEEE Transactions on Software
Engineering, vol. 32, no. 9, 2006, pp. 627-641.

[2] Baldi, P., Linstead, E., Lopes, C., and Bajracharya, S., "A Theory
of Aspects as Latent Topics", in Proc. of ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages and Applications, Nashville, TN, 2008, pp. 543-562.

[3] Chen, K. and Rajlich, V., "Case Study of Feature Location Using
Dependence Graph", in Proc. of 8th IEEE International Workshop
on Program Comprehension, Limerick, June 2000, pp. 241-249.

[4] Cubranic, D., Murphy, G. C., Singer, J., and Booth, K. S.,
"Hipikat: A Project Memory for Software Development", IEEE
Transactions on Software Engineering, vol. 31, no. 6, June 2005,
pp. 446-465.

[5] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K.,
and Harshman, R., "Indexing by Latent Semantic Analysis",
Journal of the American Society for Information Science, vol. 41,
1990, pp. 391-407.

[6] Eisenbarth, T., Koschke, R., and Simon, D., "Locating Features in
Source Code", IEEE Transactions on Software Engineering, vol.
29, no. 3, March 2003, pp. 210 - 224.

[7] Grechanik, M., Conroy, K. M., and Probst, K. A., "Finding
Relevant Applications for Prototyping", in Proc. of 4th IEEE
International Workshop on Mining Software Repositories
(MSR'07), Minneapolis, MN, 2007, pp. 12-15.

[8] Grechanik, M., McKinley, K. S., and Perry, D., "Recovering and
using use-case-diagram-to-source-code traceability links", in Proc.
of 6th European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE'07), 2007, pp. 95-104.

[9] Henninger, S., "Supporting the construction and evolution of
component repositories", in Proc. of 18th IEEE/ACM International
Conference on Software Engineering, 1996, pp. 279 - 288.

[10] Hill, E., Pollock, L., and Vijay-Shanker, K., "Exploring the
Neighborhood with Dora to Expedite Software Maintenance", in
Proc. of 22nd IEEE/ACM International Conference on Automated
Software Engineering (ASE'07), November 2007, pp. 14-23.

[11] Hill, R. and Rideout, J., "Automatic Method Completion", in
Proc. of 19th International Conference on Automated Software
Engineering (ASE'04), September 20-24 2004, pp. 228- 235.

[12] Holmes, R., Walker, R. J., and Murphy, G. C., "Approximate
Structural Context Matching: An Approach to Recommend
Relevant Examples", IEEE Transactions on Software Engineering,
vol. 32, no. 12, Dec. 2006, pp. 952-970.

[13] Inoue, K., Yokomori, R., Yamamoto, T., Matsushita, M., and
Kusumoto, S., "Ranking significance of software components

based on use relations", IEEE Transactions on Software
Engineering (TSE), vol. 31, no. 3, March 2005, pp. 213- 225.

[14] Little, G. and Miller, R. C., "Keyword programming in java", in
Proc. of 22nd IEEE/ACM International Conference on Automated
Software Engineering (ASE'07), Atlanta, GA, 2007, pp. 84-93.

[15] Mandelin, D., Xu, L., Bodík, R., and Kimelman, D., "Jungloid
mining: helping to navigate the API jungle", in Proc. of ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI'05), 2005, pp. 48 - 61.

[16] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., "An
Information Retrieval Approach to Concept Location in Source
Code", in Proc. of 11th IEEE Working Conference on Reverse
Engineering, Delft, Netherlands, Nov. 9-12 2004, pp. 214-223.

[17] Murphy, G. C., Notkin, D., and Sullivan, K. J., "Software
Reflexion Models: Bridging the Gap between Design and
Implementation", IEEE Transactions on Software Engineering vol.
27, no. 4, 2001, pp. 364-380.

[18] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G.,
and Rajlich, V., "Feature Location using Probabilistic Ranking of
Methods based on Execution Scenarios and Information
Retrieval", IEEE Transactions on Software Engineering, vol. 33,
no. 6, June 2007, pp. 420-432.

[19] Robillard, M. P., "Topology Analysis of Software
Dependencies", ACM Transactions on Software Engineering and
Methodology, vol. 17, no. 4, August 2008.

[20] Robillard, M. P. and Murphy, G. C., "Concern Graphs: Finding
and describing concerns using structural program dependencies",
in Proc. of IEEE/ACM ICSE'02, pp. 406–416.

[21] Sahavechaphan, N. and Claypool, K., "XSnippet: mining for
sample code", in Proc. of Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA'06), 2006, pp. 413 - 430.

[22] Shepherd, D., Fry, Z., Gibson, E., Pollock, L., and Vijay-
Shanker, K., "Using Natural Language Program Analysis to Locate
and Understand Action-Oriented Concerns", in Proc. of
International Conference on Aspect Oriented Software
Development (AOSD'07), 2007, pp. 212-224.

[23] Solar-Lezama, A., Arnold, G., Tancau, L., Bodik, R., Saraswat,
V., and Seshia, S., "Sketching stencils", in Proc. of ACM
SIGPLAN Conference on Programming Language Design and
Implementation, San Diego, California, USA, 2007, pp. 167-178.

[24] Stylos, J. and Myers, B., "The Implications of Method Placement
on API Learnability", in Proc. of 16th ACM SIGSOFT
Symposium on Foundations of Software Engineering (FSE'08),
Atlanta, GA, November 9-14 2008.

[25] Stylos, J. and Myers, B. A., "Mica: A Web-Search Tool for
Finding API Components and Examples", in Proc. of IEEE
Symposium on Visual Languages and Human-Centric Computing,
2006, pp. 195- 202.

[26] Thummalapenta, S. and Xie, T., "Parseweb: a Programmer
Assistant for Reusing Open Source Code on the Web", in Proc. of
22nd IEEE/ACM International Conference on Automated
Software Engineering (ASE '07), Atlanta, GA, 2007, pp. 204-213.

[27] Wilde, N., Gomez, J. A., Gust, T., and Strasburg, D., "Locating
User Functionality in Old Code", in Proc. of IEEE International
Conference on Software Maintenance (ICSM'92), Orlando, FL,
November 1992, pp. 200-205.

[28] Ye, Y. and Fischer, G., "Reuse-Conducive Development
Environments", Journal Automated Software Engineering, vol. 12,
no. 2, 2005, pp. 199-235.

[29] Yin, R. K., Applications of Case Study Research, 2 ed ed., CA,
USA, Sage Publications, Inc, 2003.

[30] Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F., "SNIAFL:
Towards a Static Non-interactive Approach to Feature Location",
ACM Transactions on Software Engineering and Methodologies
(TOSEM), vol. 15, no. 2, 2006, pp. 195-226.

