
Improving Traceability Link Recovery Methods through
Software Artifact Summarization

Jairo Aponte
Dept. de Ingeniería de Sistemas e Industrial

Universidad Nacional de Colombia
Bogotá, Colombia

jhapontem@unal.edu.co

Andrian Marcus
Department of Computer Science

Wayne State University
Detroit, MI, USA

amarcus@wayne.edu

ABSTRACT
Analyzing candidate traceability links is a difficult, time
consuming and error prone task, as it usually requires a detailed
study of a long list of software artifacts of various kinds. One
option to alleviate this problem is to select the most important
features of the software artifacts that the developers would
investigate. We discuss in this position paper how text
summarization techniques could be used to address this problem.
The potential gains in using summaries are both in terms of time
and correctness of the traceability link recovery process.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – documentation, enhancement, restructuring,
reverse engineering, and reengineering.

General Terms
Algorithms, Measurement, Documentation, Performance, Design,
Experimentation, Human Factors, Verification

Keywords
Summarization, Program Comprehension, Information Retrieval,
Traceability Management

1. PROBLEM DESCRIPTION
The importance and benefits of recovering and managing
traceability links between software artifacts during software
evolution has been long establish in the research community and
industry. The TEFSE Workshop series is testimony to that and
also to the challenges raised by these processes.
Many solutions to the traceability link recovery problem are
based on the use of text retrieval techniques [1,7,8,10,11,16],
under the assumption that extracting and analyzing textual
information contained in the software artifacts is an effective way
to determine whether they are related. Most such methods consist
of several key steps organized in a pipeline architecture, where
the output from each step constitutes the input for the next one.
In broad terms, the four major steps proposed are: document
parsing, extraction and pre-processing; corpus indexing with an

IR method; ranked list generation; and analysis of candidate links.
During the last step a list of candidate links is provided to
software engineers for examination. They have to review each
candidate link in order to determine those that are correct links
and discard the false positives. This is a laborious activity that is
not undertaken with enthusiasm by developers or other
stakeholders.
The main challenges in the analysis of candidate links are:
1. It requires a detailed study of a long list of software artifacts

of various kinds. The size of these artifacts ranges from one
line of text to dozens of pages or more.

2. Most text retrieval techniques are based on rather complex
algorithms and the end results are not transparent to the
developers. In other words, it is hard for the developers to
determine what attributes of the artifacts determined the
algorithm to decide that they are related and should be
linked.

3. The list of candidate links often has too many false positives.
In this position paper we propose and discuss solutions to address
problem #1 in the above list. Specifically, we propose
automatically generating summaries (i.e., concise descriptions) of
software artifacts, and offering developers these summaries as a
first tool during candidate link analysis. Small artifacts (e.g., a
method with less than ten lines of code; a short section in a
document; etc.) do not require such summaries as they are easy to
read by the developers. Large artifacts (e.g., a class with
hundreds of methods; a long chapter in a document; etc.), on the
other hand, can benefits from summarization. We expect that
developers would be able to make proper decisions on many
candidate links, without reading in details the original artifacts,
but only their summaries instead. Some of the summaries will not
be informative enough to help in these decisions, so developers
would still have to read the original artifact. The overhead in
such cases is minimal (i.e., reading the summary in addition to the
artifact) and it is outweighed significantly by the potential
benefits in the other cases.

2. SOLUTION
We propose using techniques from text summarization in order to
create summaries for text based software artifacts. For mixed
artifacts, such as, the source code, we need hybrid summarization
techniques that combine textual and structural information.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
TEFSE'11, May 23, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0589-1/11/05... $10.00.

The main issues we are discussing in this paper are how to
generate the summaries and then how to evaluate them in the
context of the traceability link recovery process.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TEFSE’11, May 23, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0589-1/11/05 ...$10.00

46

2.1 Summarization of Software Artifacts
One of the most promising applications of summarization is as a
complement or a second level of abstraction for information
retrieval tools, since often they return a large number of
documents that overwhelm their users. For instance, automated
summarizing tools are needed by internet users who would like to
utilize summaries as an instrument for knowing the structure or
content of the returned documents, in advance, and in that way, be
able to effectively filter out irrelevant results.
Within the software engineering field, researchers have
investigated whether it is possible and useful to summarize
software artifacts automatically and help developers offering them
an exact and concise representation of the content of the originals
[3,4,5,12,14,15,17]. Supporting software comprehension tasks
has been the primary use suggested for such summaries, which
are based mostly on text retrieval, machine learning, and natural
language processing techniques. Some of these summarization
solutions are suitable for our proposed solution, however, we need
to answer the following questions before research can move
forward.

2.1.1 What Kind of Summaries to Generate?
We argue for the generation of informative summaries, which
should be capable to represent the original artifacts. An
informative summary provides succinct description of the original
document, giving an idea of what the whole content of document
is all about and what is its structure. This type of summaries are
particularly suited for analyzing candidate traceability links, as in
an ideal situation the generated summary should substitute the
original document entirely, and therefore, the software engineer
would be able to use the summary instead of the full artifact.
From the point of view of their relationship to the source, the
summaries we plan to create can be extracts or abstracts,
depending on the type of artifact. Abstractive summaries are
meant to produce important information about the document in a
new way, at a higher level of abstraction than the original
document and usually include information which is not present in
it. Such summaries are suitable to offer developers a high-level
view of the role of a software entity in the system, by using
information about how this entity is being used by other entities
and the semantic relationships that define this usage. Extractive
summaries, on the other hand, are obtained from the content of a
document by identifying its most important sections and
reproducing them verbatim (e.g. paragraphs, sentences, clauses,
signatures, terms, etc.).

2.1.2 What Should be Included in the Summaries?
The major challenge is summarizing mixed artifacts, such as,
source code, where information is encoded differently than in
natural text documents. One issue that we need to address is
determining what is relevant in source code and should be
included in the summaries. Clearly the answer would be different
for various source code elements (i.e., class vs. method) and also
may differ between programming languages.
One way to address this issue is through empirical studies. Two
types of studies can be used: one in which we ask developers to
provide answers to question about what they think should be
included in a summary; and another one where we can ask
developers to manually write summaries of source code elements
and then determine what they used in these summaries. Also,

developers will be required to evaluate summaries with different
content.
During these studies, we will answer research questions like:
Where does the information included by developers in summaries
come from? What type of lexical and semantic information do
developers favor for generating summaries? What type of
structural information do developers include in their summaries?
How long are the summaries generated by developers? The
outcome of the studies will indicate what information should be
(ideally) included in the automatically generated summaries.

2.1.3 What Kind of Artifacts Should be Summarized?
The majority of IR-based traceability recovery approaches have
been applied to software artifacts, such as, requirements, source
code, external documentation, design documentation, test cases,
and bug reports [1,7,8,10,11,16]. Therefore, generating
summaries for a wide variety of software artifacts, which have
different formats, abstraction levels and granularities, is needed.
Many artifacts are formed essentially of free text documents (e.g.,
stakeholder requests, documents that capture the business context
of the system, user manual pages, mailing lists, bug discussions,
interviews, etc.). These are obvious candidates for summarization
and for such artifacts we can utilize existing automatic text
summarization techniques, created by natural language processing
research community over the last 50 years [9]. One note
mentioned before has to do with the length of each artifact. The
document granularity is usually determined before the text
retrieval technique is used to generate the candidate links. Short
artifacts will not require summaries, whereas long ones will do.
Source code artifacts (e.g., methods, classes, packages, etc.) are
another category of artifacts that should be summarized. Once
again, the granularity is determined before the candidate link
generation. Different source code artifacts will require different
summarization techniques.
Finally, other mixed artifacts, such as diagrams can be considered
for summarization. The challenge here is that usually, most
diagrams are already visual summaries of more complex
structures. How to summarize such artifacts is an issue open to
debate and probably harder to answer than for the previously
mentioned type of artifacts.

2.1.4 What Summarization Techniques to Use?
As mentioned, for the text-based artifacts we can use extractive
approaches to text summarization using statistical methods, since
they do not require heavy processing for language generation and
have produced satisfactory results in large-scale applications [9].
Most of these artifacts are based on natural language document,
which have been the subject of many summarization studies in the
past.
For source code artifacts, the summarization tools we envision
will generate the summaries in several stages:

• Text retrieval. Extract most relevant terms using text
retrieval techniques. These can be the same used to generate
the candidate links or different ones.

• Structure based vocabulary. Extract most relevant terms
based on their purpose in the code (i.e., method name, class
name, etc.).

• Natural language processing. Convert a subset (or all) of the
text based summary into human readable sentences.

47

• Structural information. Add additional structural
information about source code artifacts (e.g., super class,
callees, callers, etc.).

The textual and structural components of the source code
summaries should be separated. More than that, the user should
have the option of seeing them together or separate.
Feedback mechanisms should also be incorporated. Specifically,
the user should be able to select parts of the summaries that
should not be included in the future, or which should be
emphasized. Also, the user should be able to indicate additional
information that should be included in the summaries.
One issue that also needs to be addressed in this application is
how to present the summaries to the developers. The answer to
this problem is easier to find when the final content of the
summaries is established.

2.1.5 How to Evaluate the Summaries?
Summaries of source code artifacts can be evaluated independent
of the traceability context.
We can use intrinsic evaluation techniques, common in the field
of text summarization, to measure how much an automatic
summary resembles summaries generated by humans. Two
approaches can be used: offline, also called automatic evaluation,
as it does not require human intervention and usually involves the
comparison between the system’s output and a gold standard and
online, which requires humans to assess the output of the
summarization system according to some predefined guidelines.
For the intrinsic offline evaluation (that is, target-based-
evaluation) we need to use the developer created summaries as a
gold standard, that is, an “ideal summary” for each software
artifact. Using this gold standard, we can assess the quality of the
automatic summaries using several measures from text
summarization, such as: Precision, Recall, Cosine Similarity, the
Pyramid method, Rouge, etc [9]. This type of evaluation offers
an objective view of the quality of automatic summaries.
The intrinsic online evaluation (known as direct evaluation)
involves developers analyzing and rating automatic summaries
using a Likert scale, according to the ability of the summaries to
depict the intent of the software entity they summarize. Once
again, developers need to be involved. This evaluation will help
determine which summarization approach developers believe
approximates the best the intent of software entities.
Based on the results of this intrinsic evaluation, we can choose the
summarization approaches to use as a support for analyzing
candidate traceability links, as performance in an intrinsic
evaluation often predicts real-world usefulness. Moreover, these
techniques provide repeatable, inexpensive, and automatically-
scorable evaluations, whose results are useful for tool
development in terms of offering feedback as to how we might
improve summarization tools.

2.2 Evaluation in Context
The ultimate goal is to determine the effects of summarization on
the task of analyzing candidate traceability links (i.e. extrinsic
evaluation). Specifically, to assess the impact of various software
artifact summarizers on the decision process that a software
engineer employs during candidate link selection. Such an
empirical evaluation needs the followings:

• Datasets containing a variety of software artifact types
including requirements, design documents, and source code.

Ideally, each dataset used in the evaluation will be associated
with a trace matrix that defines the set of correct traceability
links between the artifacts in the system.

• Subjects who will analyze candidate links, provided by IR-
based traceability recovery methods, and determine those
that are actual links. They should be divided to work under
different conditions, including a full-artifact condition
(where the subjects have access to the original artifacts), a
tool condition (where the subjects have access only to the
automatically generated summaries from the originals), a
human condition (where the subjects have access only to the
sentence-based human generated summaries).

• Traceability link recovery tools that implement different IR
methods to generate ranked lists of candidate links based on
their similarities.

• Metrics that allow us to assess the effect of using summaries
on the performance - in terms of retrieval accuracy - of an
IR-based traceability recovery method. Measures commonly
used are: Precision, Recall, and F-Measure. Time and effort
based metrics should also be used.

• Post-task questionnaires to get information from each
participant regarding the usefulness of summaries during the
experiments, what further information they would have liked
within the summaries, and additional information that allow
us to analyze the work done by them.

3. RELATED WORK
Summarization technology has been recently applied to several
types of software artifacts with promising results. For instance,
brief and accurate descriptions of various source code artifacts
have been proposed as a suitable tool to support program
comprehension [3,4]; abstracts of bug report discussions,
generated using conversation-based classifiers, were proposed as
a suitable instrument during bug report triage activities [15]; the
summarization of the content of large execution traces was
suggested as an tool that can help programmers to understand the
main behavioral aspects of a software system [5]; an abbreviated
and accurate description of the effect of a software change on the
run time behavior of a program was proposed to help developers
validating software changes and understanding modifications [2];
high level descriptions of software concerns were designed for
raising the level of abstraction and improving the productivity of
developers, while working on evolution tasks [14]. Moreover,
natural language-based documentation such as requirement
records, user stories, manual pages and e-mail conversations can
be summarized using general purpose text summarization
techniques, in order to reduce the effort and time spent by
developers reading, understanding and evolving the artifacts of a
software project [9,19].
Regarding evaluation of summaries, it is worth noting that, within
the broad field of summarization research, this is one of the most
difficult, controversial and challenging tasks, since in most of the
cases there is no clear idea of what constitutes a good summary, it
is possible to obtain more than one correct summary for the
original source, and subjectivity of humans judges has negative
effects on the results. Despite of these problems, several
approaches have tried to assess the quality of the summaries
either intrinsically, by measuring their inner quality usually

48

against an ideal summary, or extrinsically by measuring their
effectiveness for a given task [6].
Within software engineering research, most of the approaches for
assessing summaries are informal. For example, in [17] the
authors present an approach to generate comments for methods by
identifying and lexicalizing the most relevant units. The
generated comments were evaluated by asking developers how
much accurate, adequate and concise those descriptions were. An
exception to this informal situation is [15], where bug reports
summaries were evaluated by using intrinsic measures such as
Precision, Recall, F-score and Pyramid method, to assess the
informativeness, redundancy, irrelevant content and coherence.
Then, these results were compared against scores assigned by
human judges to the same features. In that sense, the term-based
summaries created in [3] from source code using information-
retrieval techniques were evaluated using the Pyramid method.
Also, the descriptions of source code produced in [4] underwent
intrinsic-online evaluation for assessing the agreement between
developers.

4. BEYOND TRACEABILITY
In addition to the potential benefits of the software summaries in
the candidate link selection process, we believe they could be
consumed not just by developers, but also by tools. For example,
we envision using the source code summaries to support tools for
automatic reverse engineering of legacy code, re-documentation,
etc. We expect the summaries to be used by existing software
searching and navigation tools.

5. ACKNOWLEDGEMENTS
Andrian Marcus was supported in part through grants from the US
National Science Foundation (CCF-1017263; CCF-0845706;
CCF-0820133).

6. REFERENCES
[1] Antoniol, G., Canfora, G., Casazza, G., Lucia, A. D. and

Merlo, E. 2002. Recovering Traceability Links between
Code and Documentation. IEEE Trans. Softw. Eng., 28, 10
(October 2002), 970-983.

[2] Buse, R. and Weimer, W. 2010. Automatically documenting
program changes. In Proceedings of the IEEE/ACM
International Conference on Automated Software
Engineering. ACM, New York, NY, USA, 33-42.

[3] Haiduc, S., Aponte, J. and Marcus, A. 2010. Supporting
Program Comprehension with Source Code Summarization.
In Proceedings of the ACM/IEEE 32nd International
Conference on Software Engineering – Volume 2. ACM,
New York, NY, USA, 223-226.

[4] Haiduc, S., Aponte, J., Moreno, L. and Marcus, A. 2010. On
the Use of Automated Text Summarization Techniques for
Summarizing Source Code. In Proceedings of the 17th
Working Conference on Reverse Engineering, 35-44.

[5] Hamou-Lhadj, A. and Lethbridge, T. 2006. Summarizing the
Content of Large Traces to Facilitate the Understanding of
the Behaviour of a Software System. In Proceedings of the
14th IEEE International Conference on Program
Comprehension. IEEE Computer Society, Washington, DC,
USA, 181-190.

[6] Hariharan, S. and Srinivasan, R. 2010. Studies on intrinsic
summary evaluation. Int. J. Artif. Intell. Soft Comput., 2, 1/2
(April 2010), 58-76.

[7] Hayes, J. H., Dekhtyar, A. and Osborne, J. 2003. Improving
Requirements Tracing via Information Retrieval. In
Proceedings of the 11th IEEE International Conference on
Requirements Engineering. IEEE Computer Society,
Washington, DC, USA, 138- 147.

[8] Hayes, J. H., Dekhtyar, A. and Sundaram, S. K. 2006.
Advancing Candidate Link Generation for Requirements
Tracing: The Study of Methods. IEEE Trans. Softw. Eng.,
32, 1 (January 2006), 4-19.

[9] Jones, K. S. 2007. Automatic summarising: The state of the
art. Inf. Process. Manage., 43, 6 (November 2007), 1449-
1481.

[10] Lormans, M. and Deursen, A. V. 2006. Can LSI help
Reconstructing Requirements Traceability in Design and
Test? In Proceedings of the Conference on Software
Maintenance and Reengineering. IEEE Computer Society,
Washington, DC, USA, 47-56.

[11] Marcus, A. and Maletic, J. I. 2003. Recovering
Documentation-to-Source-Code Traceability Links using
Latent Semantic Indexing. In Proceedings of the 25th
International Conference on Software Engineering, IEEE
Computer Society, Washington, DC, USA, 125-135.

[12] Murphy, G. C. 1996. Lightweight Structural Summarization
as an Aid to Software Evolution. PhD Thesis, University of
Washington, 1996.

[13] Putrycz, E. and Kark, A. 2008. Connecting Legacy Code,
Business Rules and Documentation. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2008.

[14] Rastkar, S. 2010. Summarizing software concerns. In
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2. ACM,
New York, NY, USA, 527-528.

[15] Rastkar, S., Murphy, G. C. and Murray, G. 2010.
Summarizing Software Artifacts: A Case Study of Bug
Reports. In Proceedings of the International Conference on
Software Engineering. ACM, New York, NY, USA, 505-
514.

[16] Settimi, R., Cleland-Huang, J., Khadra, O. B., Mody, J.,
Lukasik, W. and DePalma, C. 2004. Supporting Software
Evolution through Dynamically Retrieving Traces to UML
Artifacts. In Proceedings of the Principles of Software
Evolution, 7th International Workshop. IEEE Computer
Society, Washington, DC, USA, 49-54.

[17] Sridhara, G., Hill, E., Muppaneni, D., Pollock, L. and Vijay-
Shanker, K. 2010. Towards automatically generating
summary comments for Java methods. In Proceedings of the
IEEE/ACM International Conference on Automated Software
Engineering. ACM, New York, NY, USA, 43-52.

[18] Witte, R., Li, Q., Zhang, Y. and Rilling, J. 2008. Text mining
and software engineering: an integrated source code and
document analysis approach. IET Software, 2, 1 (February
2008), 3-16.

[19] Zhou, X. 2008. Discovering and summarizing email
conversations. PhD Thesis, University Of British Columbia,
2008.

49

