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Abstract—A growing number of vehicles are being transformed
into semi-autonomous vehicles (Level 2 autonomy) by relying
on advanced driver assistance systems (ADAS) to improve the
driving experience. However, the increasing complexity and
connectivity of ADAS expose the vehicles to safety-critical faults
and attacks. This paper investigates the resilience of a widely-
used ADAS against safety-critical attacks that target the control
system at opportune times during different driving scenarios and
cause accidents. Experimental results show that our proposed
Context-Aware attacks can achieve an 83.4% success rate in
causing hazards, 99.7% of which occur without any warnings.
These results highlight the intolerance of ADAS to safety-critical
attacks and the importance of timely interventions by human
drivers or automated recovery mechanisms to prevent accidents.

Index Terms—Attack, Fault injection, Hazard Analysis, CPS,
Safety Validation, Autonomous Vehicle, ADAS

I. INTRODUCTION

Over 3.5 million passenger cars worldwide are equipped
with level 2 autonomous driving features such as Automated
Lane Centering (ALC), Adaptive Cruise Control (ACC), and
lane change assistance [1], [2]. With level 2 autonomy, the
human driver must always be ready to take over the control
of the car at any time. Many past studies have shown that
unforeseen faults and/or malicious attacks can cause unsafe
operation of the autonomous driver assistance systems (ADAS)
with catastrophic consequences [3]–[8].

There are a variety of vulnerable components within a
vehicle that can be targets for attacks, including Electronic
Control Units (ECUs), sensors, in-vehicle networks, and V2X
(Vehicle-to-Everything) communication [9]–[12]. Protecting
the in-vehicle communication networks is of particular im-
portance because they transmit sensor data, actuator com-
mands, and other safety-critical information among various
components. For example, some ADAS (e.g., OpenPilot from
Comma.ai [13]) are integrated with the control system of
existing vehicles by tapping into the Controller Area Network
(CAN) bus interface through the On-Board Diagnostics (OBD)
II port [14]. Additionally, critical information is shared through
publisher-subscriber messaging systems, such as ROS [15],
[16] or Cereal [17] which are shown to be vulnerable to a
variety of attacks [18]. Despite efforts towards protecting these
communication channels using techniques such as encryption
and intrusion detection [19], [20], these protections either
cannot detect attacks of a specific type or frequency or
are not implemented in most vehicles on the road due to

computational costs and the real-time constraints of the vehicle
control systems [11], [21]–[23].

Recent works on autonomous vehicle (AV) safety and
security have focused on assessing the impact of hardware
faults and physical attacks on the ML accelerators [24] and
inputs [3], [8], sensor attacks [25], [26], and attacks targeting
the controller [27], [28]. But less attention has been paid
to targeted safety-critical attacks on the ADAS output and
actuator commands sent over the vulnerable communication
channels that might go undetected by the existing safety
mechanisms or cannot be acted on by a human driver.

More recently, studies have shown the benefit of contextual
information and dynamic AV models [3], [5], [6] in designing
effective fault injection and attack strategies that result in high
hazard coverage. Machine learning (ML) methods such as
Bayesian networks [5], neural networks [6], and reinforcement
learning [29] are used to explore the fault parameter space and
identify the most salient fault and attack scenarios with adverse
impacts on safety. However, such approaches depend on large
amounts of data from random fault injection experiments for
model training.

In this paper, we use an orthogonal model-driven approach
to the above data-driven techniques. Instead of focusing on
exploring the entirety of the fault parameter space, we focus
on a systematic characterization of the effect of the values of
the parameter space (e.g., start time and duration of faults) in
conjunction with the dynamic state of the vehicle to identify
the most opportune system contexts to launch the attacks. We
propose a Context-Aware safety-critical attack that can find
the most critical context during a driving scenario to activate
attacks that strategically corrupt the ADAS outputs, with the
goal of (1) maximizing the chance of hazards and (2) causing
hazards as soon as possible, before being detected/mitigated
by the human driver or the ADAS safety mechanisms. We
base this approach on the high-level control-theoretic hazard
analysis [30] and specification of context-dependent safety re-
quirements [3], [31] for a typical ADAS, which is applicable to
any ADAS with the same functional and safety specifications.

We assess the resilience of OpenPilot [13], a widely-used
ADAS, against such safety-critical attacks by demonstrating
that system hardware and software components can be ex-
ploited, and actuator commands can be strategically modified
to implement such malicious attacks and cause highly effective
targeted hazards and accidents such as collision with other
vehicles or road-side objects.



Fig. 1: Overview of the control structure of an ADAS with ACC and
ALC, and the proposed attack engine.

Our study shows that the proposed Context-Aware strat-
egy judiciously selects the most opportune start times and
durations for attacks and is efficient in exploiting the safety-
critical states of ADAS. We also find that lane invasions are
common and can happen even without injecting faults, that the
forward collision warning is not activated at all during attacks,
and that the steering angle is the most vulnerable target. Our
experimental results further highlight the importance of driver
alertness for timely intervention and hazard prevention and
the importance of robust automated safety mechanisms at the
latest computational stage, just before execution on actuators.

II. PRELIMINARIES

A. Advanced Driver Assistance Systems: OpenPilot

Fig. 1 presents the overall structure of an ADAS that
includes sensing, perception, prediction, planning, and control
units. ADAS features such as ALC and ACC rely on machine
learning (ML) to perceive the vehicle state and surrounding
environment using different sensors (e.g., camera, RADAR,
GPS) [32]. Planning and control algorithms are used to adjust
gas, brake, and steering to achieve target speed while keeping
a safe distance from other vehicles, road lanes, and objects on
the road.

OpenPilot is an alpha quality open-source ADAS that per-
forms the functions of ALC and ACC for over 150 supported
car makes and models, including Honda, Toyota, Hyundai,
Nissan, Kia, Chrysler, Lexus, Acura, Audi, and VW [13].
In the past six years, over 1,500 monthly active users have
collectively driven more than 40 million autonomous miles
using OpenPilot. User driving data (e.g., camera, CAN, GPS,
operating system logs) are collected by Comma.ai [33] and
are used to train and test machine learning models.

Safety Mechanisms: OpenPilot is designed as a fail-safe
passive system that requires the driver to be alert at all times.
To enforce driver alertness, it also provides a monitoring
feature that warns (jolts) the driver when distracted.

The following safety principles (as required by international
standards, e.g., ISO 22179) are incorporated into the design of

OpenPilot to ensure that the vehicle does not alter its trajectory
too quickly, therefore allowing the driver to safely react [34]:
• The maximum acceleration limit is set to 2m/s² and

maximum deceleration is set to -3.5m/s².
• There is a 1-second delay before the vehicle significantly

deviates from its original path (e.g., crosses lane lines),
allowing the driver time to react to an erroneous steering
command.

• The driver can override OpenPilot with minimal effort,
i.e., less than 3Nm extra torque on the steering wheel.

OpenPilot and the firmware used in some of the car mod-
els controlled by OpenPilot also implement additional auto-
mated safety mechanisms such as Forward Collision Warning
(FCW) [35] and Autonomous Emergency Braking (AEB) [36].

B. Cyber-Physical System Context

An ADAS is designed by the tight integration of cyber
and physical components with a human in the loop. Safety,
as an emergent property of Cyber-Physical Systems (CPS),
is context-dependent and should be controlled by enforcing
constraints on the system behavior and control actions given
the overall system state [31], [37]. In every control cycle t,
an ADAS uses sensor measurements to estimate the physical
system state xt (e.g., current speed, relative distance to lead
vehicle) and decides on a control action, ut, from a finite set
of high-level control actions (e.g., Acceleration, Deceleration,
or Steering). The high-level control actions issued by ADAS
are then translated by a low-level controller into control com-
mands (e.g., gas and brake) which are sent to the actuators.
Upon execution of the control command by the actuators, the
physical system transitions to a new state xt+1.

A sequence of cyber control actions Ut =
{ut−k+1, ..., ut−1, ut} issued in k consecutive control
cycles is unsafe if upon its execution in a given state
sequence Xt = {xt−k+1, ..., xt−1, xt}, the system eventually
transitions to a state xt′ that is hazardous [31] (e.g., too
close to the lead vehicle). Thus, both the current system
state and the control commands issued by ADAS contribute
to the vehicle safety status. We use this insight to design
a Context-Aware safety-critical attack that infers the most
critical states during vehicle operation to strategically corrupt
the control commands that are sent to the actuators.

Previous studies have shown that there is often a time gap
between the activation of faults and the final propagation of
unsafe control commands to the physical layer, resulting in
hazards [31], [38]. We define the time between activation of
an attack to the occurrence of a hazard as Time-to-Hazard
(TTH) which indicates the maximum time budget for detecting
anomalies and engaging in mitigation actions (see Fig. 2).

The Driver Reaction Time is defined as the time difference
between the perception of an alert or anomaly (e.g., seeing
an alert raised by the ADAS or recognizing an anomaly)
and the start of physically taking an action (e.g., hitting the
brake). In the AV literature, the overall driver reaction time
(perception and reaction) is reported to be 2.5 seconds on
average [8], [39]. We define the Mitigation Time as the time it

2



Fig. 2: Timeline of attack propagation. (ta: Attack activated; td:
Attack is detected by the ADAS or the anomaly is sensed by the
human driver; tex: Human driver starts to engage; tem: End of
mitigation; th: Hazard occurs.)
takes for any corrective actions (e.g., braking) to be completed.
This timing provides a window of opportunity for attackers to
cause hazards before being overruled by the human driver or
automated safety mechanisms. Fig. 2 shows an example where
mitigation successfully completed before the occurrence of the
hazard (tem < th). A successful attack should evade detection
and/or lead to hazards before the ADAS or the driver engage
(th < tex) or complete any mitigation actions (tex<th < tem).

III. TECHNICAL APPROACH

This section describes the proposed Context-Aware attack
strategy and the capabilities and actions needed by an attacker
to implement it on OpenPilot.
A. Context-Aware Attack Strategy

The attacker’s goal is to manipulate the control commands,
including gas, brake, and steering angle, to maximize the
chance of hazard occurrence (e.g., violating longitudinal or
lateral safety distance) while avoiding detection by the ADAS
safety mechanisms and the human driver. The attacker is
interested in causing one of the following accidents:
• A1: Collision with the lead vehicle.
• A2: Rear-end collision, causing traffic congestion.
• A3: Collision with road-side objects or other vehicles in

the neighboring lane.
by forcing the system to transition into one of the following
hazardous states:
• H1: AV violates safe following-distance constraints with

the lead vehicle, which may result in A1.
• H2: AV decelerates to a complete stop although there is

no lead vehicle, which may lead to A2.
• H3: AV drives out of lane, which may lead to A3.
To increase the chance of hazards, we adopt a control-

theoretic hazard analysis method [30] to identify the specific
combinations of system states and control actions that most
likely lead to hazards. Table I shows an example context table
that describes unsafe system contexts, including the specific
high-level system context under which specific types of control
actions may be unsafe and lead to safety hazards. For example,

TABLE I: Safety context table for an ADAS with ALC and ACC
Rule System Context Control Action Potential Hazard

1 HWT 6 tsafe ∧RS > 0 u1 H1
2 HWT > tsafe ∧RS 6 0 ∧ Speed > β1 u2 H2
3 dleft 6 0.1m ∧ Speed > β2 u3 H3
4 dright 6 0.1m ∧ Speed > β2 u4 H3

* HWT: Headway Time = Relative Distance/Current Speed;
* RS: Relative Speed = Current Speed - Lead Speed;
* dleft, dright: Distance to the left/right edge of current lane;
* u1,2,3,4: Acceleration, Deceleration, Steering Left, Steering Right.
* tsafe ∈ [2, 3]s, β1, β2 ∈ [20, 35]mph

row 1 states that when the Headway Time is less than a safety
limit tsafe (e.g., 2s), and the AV speed is faster than that of
the lead vehicle (RS > 0), an Acceleration control action is
unsafe as it will result in a forward collision with the lead
vehicle. This high-level identification of context-dependent
unsafe control actions can be done by an attacker based on
the knowledge of typical functionality of an ADAS and be
applied to any ADAS with the same functional specification.
The unknown thresholds tsafe, β1 and β2 can be specified
based on domain knowledge or past data [31].

Our proposed Context-Aware attack strategy uses the critical
system contexts described in Table I as the trigger for injecting
unsafe control commands [40]. To evade detection, the control
actions generated by the attack must be within the limits that
are not noticeable to a human operator and are checked by
the ADAS safety mechanisms, while minimizing the Time
to Hazard (TTH) (see Fig. 2) and maximizing the chance of
resulting in any hazards. To achieve these goals, the following
optimization problem is formulated:

minimize
TTH

max{Pr{xt+TTH
∈ Hazardous}} (1)

s.t. brake ≥ limitbrake
accel 6 limitaccel

∆steering < limitsteer

v̂t+1 6 1.1vcruise

v̂t+1|t = v̂t + accel ∗∆t (2)
v̂t+1 = v̂t+1|t +Kt ∗ (vt+1 − v̂t+1|t) (3)

where brake, accel, and steering indicate the modified values
of control commands, and v̂t+1 represents the predicted speed
of the Ego vehicle at the next time step, which can be
estimated using Eq. 2 that approximates the dynamics of the
vehicle by assuming linear acceleration for a short time period
∆t (10 ms). A Kalman filter [41] (with the Kalman Gain
parameter Kt, see Eq. 3) is used to update the estimation using
the measured speed vt+1 at the next time step. limitaccel,
limitbrake, limitsteer are the constraints on the output control
commands defined by the safety checking rules of the target
vehicle, including those of its ADAS.

B. Attack Model

To implement the Context-Aware attack strategy, the at-
tacker needs 1) access to the sensor measurements and/or
information shared through the in-vehicle communication net-
work to estimate the current system state and 2) the capability
of modifying the actuator commands with faulty values. Possi-
ble entry points for executing such malicious actions include
the wireless networks [42], in-vehicle networks (e.g., CAN,
FlexRay, Ethernet, Bluetooth, or telematics devices) [11], [43],
the passive keyless entry and start system [44], the vehicle to
everything communication, and/or vulnerable components sup-
plied by different vendors [45], [46]. The attackers can gather
information about the system configuration by monitoring and
decoding the communication traffic and can identify potential
vulnerabilities through publicly available documents such as
open-source code [13].
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Fig. 3: Cereal messaging eavesdropping.

For example, the attack can be designed based on offline
code/data analysis to infer the safety constraints and parame-
ters described in Equations (1)-(3). It can then be implemented
as a malware which is deployed via compromising over-
the-air updates and, thus, can be activated on multiple cars
running the same ADAS to maximize damage. Once deployed,
the malware injects malicious commands at critical times by
strategically selecting unsafe values to maximize the chance of
evading detection by ADAS safety mechanisms while avoiding
mitigation by the driver, i.e., hazards occur within a period that
is shorter than the driver reaction time.

C. Attack Procedure

The overall procedure and steps for executing Context-
Aware attacks are summarized as follows:

Eavesdropping: This step is accomplished by listening
to the sensor sockets and the in-vehicle communication net-
work, decoding the messages passed among different software
components, and extracting the sensor data and critical state
information. In OpenPilot, this can be achieved through local
or remote subscriptions to the messaging system used for
internal packet communication, called Cereal [17]. Cereal
is a publisher-subscriber messaging specification for robotic
systems (similar to ROS [15]), which is used for publishing
messages by sensing and perception modules (e.g., GPS,
Radar) and can be subscribed to by other OpenPilot modules
(e.g., ACC, ALC) and any malicious software (see Fig. 3).

Since OpenPilot is open-source, the format of cereal mes-
sages is publicly available [47]. An example of eavesdropping
on the GPS messages is shown in Fig. 3. To extract the infor-
mation needed for safety context inference, the attacker needs
to subscribe to the following events: 1) “gpsLocationExternal”
events to learn the speed of the Ego vehicle published by GPS;
2) “modelV2” events to receive messages from the perception
module to learn the lane line positions; 3) “radarState” events
published by the RADAR to learn the relative speed and
distance of the lead vehicle.

Safety Context Inference: Next, the attacker uses the basic
state information xt, including the speed of the Ego vehicle,
the vehicle’s lateral position, the lane line positions, and the
relative distance to the lead vehicle, to infer the more complex
and human-interpretable state variables described in the safety

Fig. 4: An example of changing a steering output CAN message.

specification (Table I). For example, the headway time (HWT)
is an important metric for identifying critical system context
and can be calculated based on the Ego vehicle’s current speed
and relative distance to the lead vehicle.

Attack Type and Activation Time Selection: A context
matcher detects whether the current system state matches
any of the critical system contexts specified in Table I. If a
matching case is found, the attack engine decides on the attack
action (e.g., Acceleration) based on the unsafe action specified
for the context and activates the attack. Table II lists the
attack types to be activated based on different contexts. If two
different context conditions are simultaneously detected, both
control actions (e.g., Acceleration and Steering) are activated.

Strategic Value Corruption: In the last step, the selected
attack type (e.g., Acceleration) is translated into low-level
control commands (e.g., maximum gas and zero brake). The
attack engine dynamically corrupts the control command val-
ues to not exceed the safety limits checked by OpenPilot’s
safety mechanisms (see Eq. 1-3). These safety limits are
identified and encoded offline based on open-source code and
publicly available documentations. Table III shows the specific
safety limits we used for the attack types shown in Table II.

Finally, the faulty commands are sent to the target actuators
by manipulating CAN messages. The information in a CAN
bus message can be decoded using reverse engineering and
the open-source Database Container (DBC) [48] configura-
tion [49] of a specific car model. The attack engine then
corrupts the specific CAN message that carries a target control
command using the command’s unique identifier (e.g., 0xE4
for steering as shown in Fig. 4). The attacker also updates the
checksum after corrupting targeted control commands, so the
integrity of the corrupted CAN message is maintained.

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed Context-
Aware attack, we develop a simulation platform consisting of
the OpenPilot control software integrated with the CARLA
urban driving simulator [50], a driver reaction simulator, and
a software-implemented fault injection engine. The platform
architecture is shown in Fig. 5 and is described next.

The OpenPilot safety mechanisms (see Section II-A) are
implemented in its control software and the Panda CAN
interface. Panda is a universal OBD adapter developed by
Comma.ai [51] that provides access to almost all car sensors

4



Fig. 5: Overall architecture of OpenPilot, integrated with CARLA,
the driver reaction simulator, and the fault injection engine. [Online
Available: https://github.com/UVA-DSA/openpilot-CARLA].

through the CAN bus. When integrated with the CARLA
driving simulator, the Panda software and hardware are not
utilized by OpenPilot. Therefore, Panda safety checks are not
enforced. Here, we consider all safety limits checked by Panda
as constraints for generating faulty values for the Context-
Aware attacks so that they evade detection by Panda when it
is engaged in actual driving (Eq. 1).

Our experiments are done on Ubuntu 20.04 LTS, with
OpenPilot v0.8.9 and CARLA v9.11. A single simulation of
OpenPilot contains 5000 time-steps, each step lasts about 10
ms, which in total equals 50 seconds.

A. Driving Scenarios

Using the CARLA simulator, we create different driving
scenarios where the Ego vehicle, cruising at 60mph from
50, 70, or 100 meters away, approaches a lead vehicle with
different behaviors as follows.
• S1: Lead vehicle cruises at the speed of 35 mph;
• S2: Lead vehicle cruises at the speed of 50 mph;
• S3: Lead vehicle slows down from an initial speed of 50

mph to 35 mph;
• S4: Lead vehicle accelerates from an initial speed of 35

mph to 50 mph.
Fig. 6(a-b) show different views of a simulated scenario.

B. Driver Reaction Simulator

To mimic the situation where the human driver takes
over the control of the vehicle in an emergency situation,

(a) An example initial position of Ego
Vehicle (EV) and other reference vehicles.

(b) The user interface of OpenPilot
during the simulation.

(c) EV collides with the lead vehicle. (d) EV collides with the guardrail.

Fig. 6: Driving scenarios in OpenPilot.

TABLE II: Fault injection experiments
Attack Type Accel Brake Steering Angle No. Attacks
Acceleration limitaccel 0 60
Deceleration 0 limitbrake 60
Steering-Left -limitsteer 60
Steering-Right limitsteer 60
Acceleration-Steering limitaccel 0 ±limitsteer 60
Deceleration-Steering 0 limitbrake ±limitsteer 60

we designed a driver reaction simulator (see Fig. 5). The
simulated driver is alerted when the ADAS raises any safety
alarms (e.g., FCW) or the driver observes any anomalies
in the vehicle status that last for a noticeable period of
time (i.e., at least 1 second). Anomalies include hard brake
(|Brake| > |limitbrake|), unexpected increase in acceleration
(Accel > limitaccel) or steering (Steering > limitsteer), or
the vehicle speed exceeding cruising speed by more than 10%
(Speed > 1.1vcruise). To make the attack more challenging,
anomalies that occur within one simulation time step (10ms)
attract the driver’s attention. The driver physically takes action
after 2.5 seconds (the average driver reaction time) to process
an alert or anomaly [39]).

Typically human drivers respond to sudden unintended ac-
celeration with a hard brake within 1.5 seconds. We model this
using an exponential function that approximates the general
brake curve as follows [52]:

brake = e10t−12/(1 + e10t−12) (4)

We also apply the same reaction to sudden steering. The attack
engine stops the attack as soon as the driver engages.

C. Attack Types

For each driving scenario, we simulate six types of attacks
(see Table II) by injecting faults into each output variable as
well as their combinations. For example, for the Acceleration-
Steering attack, we inject faults to Gas and Steering Angle
(either left or right angle). We limit the injected values within
the acceptable ranges by the OpenPilot control software. Each
scenario is tested with three different initial positions for the
lead vehicle and is repeated 20 times to capture variations due
to changes in the simulated driving environment and attack
timings. This results in 60 (20 × 3) simulations per attack type
and a total number of 1,440 (60 × 6 × 4) for all simulated
attacks and driving scenarios.

D. Baselines

In addition to the Context-Aware strategy, we design three
baseline strategies to test the ADAS resilience to different at-
tacks (see Table III). The first baseline (referred to as Random-
ST+DUR) uses a random start time uniformly distributed
within [5, 40] seconds (5 seconds after the start of simulation

TABLE III: Overview of attack strategies
Attack Strategy Start Time Duration Attack Values No. Attacks
Random-ST+DUR Uniform [5,40]s Uniform [0.5,2.5]s Fixed1 14,400
Random-ST Uniform [5,40]s 2.5s Fixed 1,440
Random-DUR Context-Aware Uniform [0.5,2.5]s Fixed 1,440
Context-Aware Context-Aware Context-Aware Strategic2 1,440
1 Fixed: use the maximum limit of each output command defined in OpenPilot: limitsteer = 0.5◦,
limitbrake = −4m/s2, limitaccel = 2.4m/s2.

2 Strategic: dynamically choose the attack value according to Eq. 1-3 (limitsteer = 0.25◦,
limitbrake = −3.5m/s2, limitaccel = 2m/s2).
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TABLE IV: Attack strategy comparisons with an alert driver.
Attack Strategy Alerts Hazards Accident Hazards&

no Alerts
LaneInvasion
(No. Event/s)

TTH(s)
(Avg. ± Std.)

No Attacks 2
(0.1%) 0 0 0 0.46

Random-ST+DUR 3248
(22.6%)

5727
(39.8%)

3293
(22.9%)

3083
(21.4%) 1.03 1.61±1.96

Random-ST 346
(24.0%)

771
(53.5%)

516
(35.8%)

474
(32.9%) 0.68 1.49±0.73

Random_DUR 210
(14.6%)

388
(26.9%)

332
(23.1%)

229
(15.9%) 0.46 1.92±1.17

Context-Aware 4
(0.3%)

1201
(83.4%)

641
(44.5%)

1197
(83.1%) 0.66 2.43±1.29

till 10 seconds before the end), with attack duration uni-
formly distributed within [0.5, 2.5] seconds. We run Random-
ST+DUR strategy for 14,400 simulations to maximize cover-
age of the critical attack parameters. For the second baseline
(referred to as Random-ST), we randomly choose a start time
but fix the attack duration to be equal to the average driver
reaction time (2.5 seconds). To test the relationship between
hazards and attack duration, we also design a third baseline
(referred to as Random-DUR) by randomly choosing the attack
duration from a range of [0.5, 2.5] seconds with the start time
inferred based on context. All the attack values are within
the range of OpenPilot safety checks. Note that aggressive
random attacks (e.g., bombarding the CAN-bus with out-
of-the-range values) may get detected by existing intrusion
detection mechanisms for in-vehicular networks [11], [19] and
the OpenPilot safety checks, so they are not considered here.

E. Results

1) System Resilience Evaluation: We evaluate the resilience
of OpenPilot in presence of an alert driver by running the
simulations with and without the attacks. Table IV shows that
under normal system operation, when no attacks are engaged,
no hazards or accidents occur. However, 2 steer saturated
alerts were raised due to the steering angle exceeding the pre-
defined safety limits in OpenPilot. Fig. 7 shows an example
of the performance of the ALC system. We observe that the
ALC system does not keep the Ego vehicle in the center of
the lane at all times, and lane invasions occur with an average
frequency of 0.46 times per second, which can lead to out-of-
lane hazards or collision with road-side objects. This indicates
that the ALC and ACC systems do not cooperate well, which
is a defect in the control software and needs to be fixed.

Observation 1: Lane invasions can happen even without
any attacks.
2) Comparison to Random Attack Strategies: Table IV also

shows that the Context-Aware strategy outperforms the three
random strategies and achieves the highest hazard coverage of
83.4%, with 99.7% (1197/1201) of hazards occurring without
any alerts. Note that 53.4% (641/1201) of hazards result in
accidents, including collision with the lead vehicle and road-
side objects (see Fig. 6(c-d)). In these cases, the alert raised by
ADAS is the steer saturated warning, while the more relevant

Fig. 7: Trajectory of the Ego Vehicle during an attack-free simulation.

forward collision warning (FCW) is not activated as the brake
output is kept less than the safety threshold of OpenPilot. We
also observe an increased number of lane invasions per second
for almost all attacks due to the occurrence of out-of-lane
hazards. Despite achieving the highest hazard coverage, the
Context-Aware attacks keep the number of lane invasions and
alerts low because of the strategic value corruption.

Observation 2: The Context-Aware attack strategy is
efficient in exploiting safety critical states of ADAS.
During attacks, the forward collision warning does not
get activated at all.
From Table IV we also see that the average TTH of Context-

Aware attack is larger than the Random attacks due to a higher
hazard rate in Acceleration attack that has a longer TTH.

3) Evaluation of Attack Duration and Start Time: To further
evaluate the importance of attack duration and start time, we
assess the coverage of the fault parameter space by different
attack strategies. Fig. 8 illustrates a sample parameter space
for durations between 0.5 to 2.5 seconds and start times
between 5 to 35 seconds for the Acceleration attack type. Each
dot in this figure represents an attack simulation. The solid
dots represent simulations with hazards. This figure illustrates
that an attack does not result in any hazard if not activated
within a critical time window (after dashed line at about 24-25
seconds), regardless of how long the attack lasts. After finding
the critical launch moment, the attack needs to last for a time
period (at least 1.5 seconds) to cause a hazard. Therefore, it
is important to find both the opportune time to start an attack
and the required duration to increase the hazard success rate.

We also observe that the Context-Aware strategy (marked
by orange diamonds) are all solid (hazardous) and located
within the critical time window. The dots that correspond to
Random-ST and Random-DUR strategies result in a significant
number of non-hazardous cases. This figure further attests the
efficiency of the proposed Context-Aware strategy.

Observation 3: Context-Aware selection of start time
and duration does not waste resources on non-
hazardous random injections.
4) Evaluation of the Strategic Value Corruption: In this

set of experiments, we further evaluate the performance of
the Context-Aware strategy with and without the strategic
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Fig. 8: State space of “Attack start time" and “Duration" for Acceler-
ation attacks (solid shapes correspond to hazardous results and empty
ones to non-hazardous).
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TABLE V: Context-aware attack with or without strategic value corruption and with an alert driver.

Attack Type
No Strategic Value Corruption With Strategic Value Corruption

Alerts Hazards Accident TTH(s)
(Avg. ± Std.)

Prevented
Hazards

New
Hazards

Prevented
Accidents

Reduced
Accidents Alerts Hazards Accident TTH(s)

(Avg. ± Std.)
Driver

Prevention*

Acceleration 4
(1.7%)

200
(83.3%)

120
(50.0%) 3.33±0.23 200

(83.3%)
160

(66.7%)
200

(83.3%)
120

(50%)
1

(0.4%)
160

(66.7%)
160

(66.7%) 5.03±1.22 1/1

Deceleration 1
(0.4%)

99
(41.2%)

0
(0.0%) 2.62±0.04 141

(58.8%) 0 0 0 0
(0.0%)

231
(96.2%)

0
(0.0%) 2.77±0.10 0/0

Steering-Left 122
(50.8%)

187
(77.9%)

175
(72.9%) 1.11±0.86 0 0 0 0 1

(0.4%)
90

(37.5%)
1

(0.4%) 1.33±0.17 0/0

Steering-Right 2
(0.8%)

240
(100.0%)

240
(100.0%) 1.63±0.08 0 0 0 0 0

(0.0%)
240

(100.0%)
240

(100.0%) 1.39±0.10 0/0

Acceleration-Steering 2
(0.8%)

240
(100.0%)

240
(100.0%) 1.51±0.15 0 0 0 -1

(0.4%)
2

(0.8%)
240

(100.0%)
240

(100.0%) 1.47±0.26 0/0

Deceleration-Steering 3
(1.2%)

138
(57.5%)

17
(7.1%) 2.63±0.02 170

(70.8%)
68

(28.3%) 0 -17
(7.1%)

0
(0.0%)

240
(100.0%)

0
(0.0%) 2.77±0.06 0/0

Total 142
(9.9%)

1104
(76.6%)

792
(55.0%) 2.04±1.10 511

(36.8%)
228

(16.4%)
200

(22.4%)
102

(11.4%)
4

(0.3%)
1201

(83.4%)
641

(44.5%) 2.43±1.29 1/1

* The number of hazards/accidents prevented when a human driver simulator is added in the simulation.

value selection. Note that the attacks without strategic value
corruption may be detected by Panda’s safety checks, if
deployed on an actual vehicle. But Panda’s safety checks could
also be disabled by the attacker or bypassed if the attack is
launched after the safety checks (e.g., on the OBD II port).

Table V shows the results across different attack types, in-
cluding the number of hazards that are prevented by the driver.
For timely hazard mitigation, the driver reaction/mitigation
times should be shorter than the Time-to-Hazard (TTH) (See
average TTHs in Table V). Our experiments indicate that
without the driver reaction, the attacks without strategic value
corruption could achieve very high hazard and accident suc-
cess rates (almost 100% for all attack types; not shown in
the table due to space limits). However, when simulating the
human driver reaction, 83.3% of hazards are prevented for the
Acceleration attack, reducing 50% of collision events. Similar
hazard reductions are observed for the Deceleration (58.8%)
and Deceleration-Steering (70.8%) attacks.

Observation 4: Human alertness for timely intervention
is important in preventing hazards and accidents.
However, the driver reaction does not prevent Steering at-

tacks (zero hazards prevented for steering attacks in Table V),
and these attacks still achieve very high hazard and accident
success rates (e.g., 100% for Steering-Right and Acceleration-
Steering). This is because hazards happen in less than 1.63s,
which is much less than the average human driver reaction
time (2.5s), indicating that attacks targeting the steering angle
are the most difficult to be mitigated by the driver. It should be
noted that the Steering-Left attacks achieve lower success in
causing hazards compared to Steering-Right attacks (77.9% vs.
100%) because the Ego vehicle is initialized to a lane closer
to the right guardrail while it travels on a left-curved road.

Observation 5: Steering is the most effective attack type
that cannot be easily halted by the human driver.
Although driver intervention reduces hazard and accident

rates, it may also introduce new hazards. For example, to avoid
a collision with the lead vehicle, the Ego vehicle may stop in
the middle of a lane causing a rear collision, or collide with
curb objects. Table V shows that up to 66.7% new hazards
happened after preventing attacks on the gas output.

After adding the strategic value corruption, even though
there is an overall 6.8% increase in hazard success rates
(76.6% to 83.4%), the total number of alerts generated by the

ADAS decreases to 4, and only less than 0.1% of the induced
hazards are prevented by the driver, even for the cases where
the average TTH is longer than the average driver reaction
time (2.5s) (e.g., Acceleration, Deceleration and Deceleration-
Steering attacks). This further illustrates the effectiveness of
the Context-Aware strategy for evading detection by the ADAS
and/or the human driver.

Observation 6: The strategic value corruption is ef-
fective in evading human driver detection and safety
checks of ADAS.

V. THREATS TO VALIDITY

Although our attack strategy is efficient in finding potential
weaknesses in the ADAS control software, its robustness and
efficacy might be affected by the quality of sensor data used
for context inference or by existing defense mechanisms (e.g.,
control invariant detection [53] or context-aware monitoring
[31]). Our simulations consider OpenPilot safety checks and
human driver interventions. But other safety and security
mechanisms that can be implemented in firmware or hardware
interface of the car (e.g., Panda’s safety checks, AEB, encryp-
tion, or intrusion detection) are not included in this study.
Further evaluation of the robustness and detectability of the
attacks are directions of future work.

VI. CONCLUSION

This paper presents a strategic Context-Aware attack that
targets control commands within an ADAS. This attack finds
the most critical times during a driving scenario to activate
attacks, as well as the attack durations, which can cause
hazards before a human driver or the ADAS safety mechanism
can correct the behavior. The proposed attack is efficient since
large numbers of random fault injections are not needed to
guide the approach. Our experimental results and observations
show that steering is particularly vulnerable and that the
existing warning system for forward collisions is insufficient.
Our results also highlight the importance of human alertness
for timely intervention for preventing hazards and accidents,
and the importance of automated safety mechanisms that can
check the control actions issued by ADAS.
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