CSci 243 Homework 1

Your name

Today's date

PROBLEM 1. Give the truth table for $\phi = (\neg p \lor q \lor r) \land (p \lor q \lor \neg r)$. SOLUTION:

р	q	r	$\neg p \lor q \lor r$	$p \lor q \lor \neg r$	¢
0	0	0	1	1	1
0	0	1	1	0	0
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

PROBLEM 2. Prove that any nonempty tree has one more nodes than it has edges.

PROOF. We prove by structual induction that for a nonempty tree T with n nodes and e edges, n = e + 1.

Basis step: The basis case is n = 1. Obviously, a tree with only one node does not have any edges, suggesting e = 0. So n = e + 1.

Inductive step: We assume that for any tree with less than *n* nodes the equality holds true. Now onsider a tree *T* with *n* nodes. Assume that *T* contains *k* subtrees, $T_1, T_2, ..., T_k$ and that subtree T_i , for i = 1, 2, ..., k, has n_i nodes and e_i edges. Notice that $e = \sum_{i=1}^k e_i + k$. Since $n_i < n$, then by the induction hypothesis $n_i = e_i + 1$ for all *i*'s. Therefore,

$$n = \sum_{i=1}^{k} n_i + 1$$

= $\sum_{i=1}^{k} (e_i + 1) + 1$
= $\sum_{i=1}^{k} e_i + k + 1$
= $e + 1$.

This completes the induction.

Figure 1: An NFA that accepts all strings with substring 01.

PROBLEM 3. Show an example of how to include a figure in LaTeX.

EXAMPLE: Figure 1 is a state diagram for an NFA, a model of computation that you will learn in CSci 423 Finite Automata.