Preprint 0 (2001) ?-7 1

Recovering Mesh Geometry from a Stiffness Matrix

Andreas Stathopoulos

Department of Computer Science, College of William and Mary, Williamsburg, Virginia
E-mail: andreas@cs.wm.edu

Shang-Hua Teng

Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign,
Illinois,

E-mail: steng@cs.uiuc.edu

We introduce the following class of mesh recovery problems: Given a stiffness
matrix A and a PDE, construct a mesh M such that the finite-element formulation
of the PDE over M is A. We show, under certain assumptions, that it is possible to
reconstruct the original mesh for the special case of the Laplace operator discretized
on an unstructured mesh of triangular elements with linear basis functions. The
reconstruction is achieved through a series of techniques from graph theory and
numerical analysis, some of which are new and can find application in other scientific
areas. Finally, we discuss extensions to other operators and some open questions
related to this class of problems.

Keywords: Stiffness matrix, mesh, geometry, triangulation, angles, graph embedding,

graph drawing, non linear solvers, elliptic partial differential equations

AMS Subject classification: Primary 65D18, 65H10; Secondary 65U05, 656N30

1. Introduction

A problem that has not been studied in the literature is the recovery of the
mesh geometry from which a given stiffness matrix originates. In this formulation,
this is an ill-posed, inverse problem, in the sense that there are many partial
differential equations (PDEs) whose discretization on different embeddings of a
topologically equivalent mesh yield the same stiffness matrix. An also interesting
problem is the recovery of a mesh for a stiffness matrix, when the underlying
PDE is given. Although still ill-posed, this problem provides more information
that can be exploited for a mesh recovery.



2 Stathopoulos and Teng / Recovering the mesh from a matriz

Beyond the intellectual merit of the problem, there are several potential
applications. For example, one may want to reverse engineer the actual model
from a matrix, either because the mesh was discarded in an earlier phase of
the simulation, or simply because it was never commonly available. However, a
deeper motivation for this work is to provide useful relationships between graph
theory and scientific computing.

For many problems in scientific computing, we can design efficient numerical
algorithms, if we know their geometric structure. One example is the geometric
multigrid method [1]. If only the stiffness matrix is known, traditional Algebraic
Multigrid (AMG) [7] uses the information present in the matrix to define so-
phisticated intergrid transfer operators. However, if the operator and the mesh
that generated the matrix are known, geometric or classical multigrid usually
outperform AMG. Being able to recover the mesh from the matrix could pro-
vide new understanding of how the AMG works and it could suggest ways of
enhancement. Another example is the geometric technique by Miller et al [6],
which finds a balanced partition of a well-shaped mesh in both two and three
dimensions. Both the running time and quality of their partitioning reflect the
efficient use of geometric information. In [12], Spielman and Teng showed that
the geometric structure of a well-shaped mesh can be used to bound and approx-
imate eigenvalues of the discrete Laplacian matrix of the mesh. Finally, there is
a host of geometric based techniques developed for the direct solution of sparse
linear systems (in elimination ordering), as well as for iterative solution methods.

A second, dual motivation is that we can design efficient algorithms for
graphs, if we know their numerical structure. For example, the problem we con-
sider in this paper is closely related to problems in graph embedding and graph
drawing. Applications abound in diverse fields such as circuit design, networks,
human-computer interface and domain triangulations. While traditional graph
embedding and drawing algorithms use only the topological information of a
graph, numerical information in the stiffness matrix should help us find better
quality graph embeddings. A related problem is the parameterization of triangu-
lated surfaces, which is used for surface mesh generation and texture mapping in
computer graphics. Recent approaches have been based on an angle based pro-
cedure that flattens the 3-D surface [5,10]. This procedure shares many common
elements with the angle embedding algorithms discussed in this paper. Finally,
difficult combinatorial problems in graph theory have elegant approximate solu-
tions if a geometry is known.



Stathopoulos and Teng / Recovering the mesh from a matriz 3

In this paper, we take the first step in establishing this connection between
the geometric structure of a matrix and numerical structure of a mesh. We
consider the problem of recovering the mesh geometry for the stiffness matrix
of the Laplacian operator. We show that this is possible through the solution
of a non-linear system of equations, and we describe techniques to geometrically
embed the solution in a stable way.

The paper is organized as follows. In Section 2 we relate the entries in
the stiffness matrix with the angles of the mesh, deriving a non-linear system of
equations. We also show how to determine the elements and the boundary of the
corresponding mesh. Reducing the non-linear problem on the boundary nodes is
thus possible in principle, but it turns out to be computationally non competitive.
In Section 3 we present two numerical techniques for solving the angle equations
and we give two practical approaches for finding a good initial guess. In Section
4 we give numerical results on the convergence and accuracy of the techniques
developed in Section 3. In Section 5 we present several algorithms for computing
the geometric embedding of a mesh from its angle sequence. Some experimental
results demonstrate the improved stability of the embedding algorithms. In Sec-
tion 6 we extend our techniques to the scaled and shifted Laplacian as well as to
anisotropic elliptic operators with constant coefficients. In Section 7 we conclude
the paper and outline some future research directions.

2. Recovering Geometry for the Discretized Laplace Operator

The Laplace operator usually provides an appropriate starting point for test-
ing new ideas and algorithms in scientific computing. Beyond its importance in
both applied mathematics and physics applications, the Laplace operator demon-
strates also rich geometric structure which facilitates the methods presented in
this paper. Specifically, the stiffness matrix obtained from the discretization of
the Laplacian on any finite element mesh, using linear basis functions, is invari-
ant under translation, rotation, and scaling of the mesh. Also, the entries of the
stiffness matrix are associated through simple formulas to the angles in the trian-
gulation. As a result, we can determine the geometry of the mesh by computing
all the angles formed by the triangular elements. Below we describe the system
of equations from which these angles are computed.



4 Stathopoulos and Teng / Recovering the mesh from a matriz

Figure 1. Two neighboring elements of a mesh.

2.1. From Stiffness Matriz to Angle Equations

Considering a triangulation of a domain, we denote the three angles formed
by the [ — th element (triangle) ( §”, g), nggl)), as shown in Figure 1. In total,
there are 3m angles to be computed, where m is the number of triangles in the
mesh. There are two possible cases; an angle can face a boundary edge, i.e., an
edge that no other triangle includes, or it can face an interior edge, i.e., an edge
shared by exactly two triangles. When the Laplacian operator is discretized with
linear finite elements, and using Neumann boundary conditions, it is well known
that the angles in the triangulation and the entries of the stiffness matrix, A,
satisfy the following properties [4]:

k)

If two angles ¢>§’), :(3 face the same side (v;,vy,),

cot ¢§” + cot d)gk) =24, v,- (1)
If an angle ¢:())l) faces a boundary side (vy,, vy),
cot qS(l) =—-2A (2)
3 Um,Un *

There is a total of e equations from (1) and (2), where e is the number of edges in
the graph. It is also interesting to note that the diagonal entries of the stiffness
matrix are equal to the negative sum of the off-diagonal ones.

The above equations relate the properties of the Laplacian on the elements,
but they do not enforce the fact that the angles come from a triangulation. The

following m equations ensure the triangle property:



Stathopoulos and Teng / Recovering the mesh from a matriz 5

Finally for each interior vertex, i.e., a vertex that does not participate in a bound-
ary edge, the sum of all the angles around it should be 27. This ensures that all
the points of the triangulation lie on the same plane:

3 0 = o, (4)

v; € element ([), ng,(cl) angle of v;

Therefore, if we know the vertices that form each element, as well as the
boundary edges, we can set up a system involving the above equations in order
to solve for the angles of the triangulation. This planarity information can be
obtained by the following graph theoretic techniques.

2.2. Element and Boundary Detection

We assume that the stiffness matrix corresponds to a planar triangular mesh,
i.e., each element of the mesh is a triangle. Since the stiffness matrix should
reveal the connectivity of the mesh, we assume that there is always a non zero
matrix entry wherever the corresponding edge exists. The case where an edge is
faced by one or two 7/2 angles, thus creating a zero element in the matrix, is
more complicated and not examined in this paper. To ensure a unique planar
embedding of the elements, we assume that the outside boundary and all holes
in the domain have at least four edges. In other words, we assume that the mesh
does not have triangle holes or engulfing boundary. In addition, we assume that
the mesh is a tri-connected planar graph.

Given a stiffness matrix A, we can apply the planarity testing algorithm of
Hopcroft and Tarjan [11] to determine all elements. The output of the planarity
testing algorithm on A is an embedding of the graph G of A. It specifies for
each vertex v of G the set of edges incident to v in a counter-clock wise ordering.
It also specifies each face of G in a counter-clock wise ordering. Because of our
assumption above, every triangular face is an element of the mesh.

If G has only one face f that contains more than three edges, then f is
the boundary of the mesh of A. In general, G could have more than one non-
triangular face, say f1,..., fn. Only one of them can be the boundary. All other
faces correspond to the holes of the mesh. For the purpose of computing the
angles, however, equations (1)—(4) do not distinguish between external boundaries
and holes. Even though, in a graph theoretic sense, boundaries and holes are



6 Stathopoulos and Teng / Recovering the mesh from a matriz

equivalent, the geometry of the original mesh can be recovered after the angles

are computed.

2.8. Number of Equations

Using the above techniques we can set up the system of non linear equa-
tions (1)—(4) that describes the angles. The question arises whether the derived
Jacobian system is overdetermined or underdetermined. In this subsection, we
compare the number of unknowns and the number of equations and show that the
number of equations is always greater than or equal to the number of unknowns.

Suppose the mesh M of A has v vertices, e edges, m triangular elements,
and h holes, with at least one non-triangular boundary or hole. Because each
triangle has three angles to determine, we have 3m unknowns. Let f be the
number of faces of a planar embedding of M, ie., f = m + h + 1. Suppose in
addition, that M has w interior vertices. Then we have e + m + w equations: e
equations from (1)—(2); m equations from (3); and w equations from (4).

Theorem 1. For any planar mesh M,

e+m+w > 3m.

Proof. Equivalently, we need to show e — 2m + w > 0. Using Euler’s formula
f — e+ v =2 and the fact that m = f — h — 1, we have:

etw—-2m=(f+v—-2)—2(f—h—-1)4+w
=(w—-f+w)+2h

We first prove by an induction on the number w of interior vertices, that we
can reduce the theorem to the case where there are no interior vertices. We then
prove that the theorem is true for this reduced case.

If w = 0, then M has no interior vertex. Now inductively assume the
theorem is true for w = wy. We now prove it for w = wg + 1.

Let u be an interior vertex in M. Let u1,...,uq be the neighbors of u in
M given in a counter-clockwise ordering. Notice that wui,...,uq form a simple
polygon. Let G' be a planar graph obtained from G by removing u and by
triangulating the simple polygon formed by u1,...,uq. Notice that G’ has v — 1
vertices, wq interior vertices, and f — 2 faces. There is no change in the number



Stathopoulos and Teng / Recovering the mesh from a matriz 7

of holes. By the inductive assumption, we have (v — 1) — (f — 2) + wo + 2h > 0,
implyingv — f+ (wo+1)+2h=v— f+w+2h > 0.

We now prove the theorem for the base case, when the mesh does not contain
any interior vertices. Again we use induction, this time, based on the number
of faces f in the mesh. If f = 2, then the theorem is clearly true. Suppose the
theorem is true for fy and we have a planar graph that has f = fy+1 faces. There
are two cases: (1) the graph contains a triangular element; (2) the graph does not
contain any triangular element. In the first case, because the graph does not have
an interior vertex, there must be a triangular element 7' = (uzw) such that one of
its edges, say (uz) is an edge of a non-triangular face D. We can obtain another
planar graph G’ be applying edge contraction to (uz). This contraction merges
u and z into a new vertex and removes the face T' from the graph. Because D
is not triangular, the contraction simply modifies D. Therefore, G’ has one less
vertex and one less face than G. Hence by induction, if the theorem is true for
G, it is true for G as well. In the second case, we have 4f < 2e, i.e., e > 2f. By
Euler’s formula, we have v=e— f+2>2f — f+2 > f+ 2. Hencev — f > 0,
proving the theorem. O

2.4. Reducing the Problem onto the Boundary

It is well known that, for the Laplace’s equation, the z and y coordinate
vectors for any isomorphic realization of the mesh are themselves solutions of
equations with the stiffness matrix A and appropriate boundary conditions. More
specifically, considering a symmetric permutation of A with interior unknowns
ordered first, and the corresponding permutations of the coordinate vectors, x =
[z128]",y = [yrys]", then:

Interior unknowns{ | A; A;p| |zryr| [0 O (5)
Boundary unknowns{ |Ap;r Ap | |zByB | by by )

Following the notation of the previous section, dim(A4;) = w x w, dim(Ap) =
ng X ng with ng = v —w, and b, and b, are vectors of R"Z. Therefore, if the
coordinates of the boundary nodes are known, we can derive all interior ones by
solving the following:

-'EI:_AI_IAIBxB- (6)

Although not guaranteed in the worst case, the number of boundary unknowns
np is expected to be on the order of O(1/v), and thus it makes sense to set up



8 Stathopoulos and Teng / Recovering the mesh from a matriz

Figure 2. Boundary edges/angles do not define the body rigidly. The boundary tube is needed.

the non linear equations only for the angles required to obtain zp and yg. From
equation (2), we can immediately obtain all the angles facing boundary sides.
However, as shown in Figure 2, to define the mesh rigidly more information is
needed. We introduce the notion of the tube as the set of all elements with at
least one boundary vertex. The problem is now reduced into finding a geometrical
embedding of the tube.

Unfortunately, a problem arises in case of holes. The graph theoretical meth-
ods described earlier identify the holes topologically, but provide no information
as to where they should be embedded in relation to the outer tube. Even worse,
there is no notion of outer tube because of the topological equivalence of bound-
aries. Unlike this reduced technique, working with all the angles in the mesh
obviates this problem. Even in the absence of holes, and despite its smaller size,
the reduced problem has proven harder to solve computationally. In section 6 we
provide a brief discussion on the reasons for this behavior.

3. Numerical Computation of the Angles

The non linear system of equations (1)—(4) is usually solved by some form
of the Newton method. The following sections discuss the computational consid-
erations of setting up the Jacobian of this system and solving it efficiently.

3.1. Setting up the System

The first decision is the choice of unknowns. Equations (1)—(2) depend only
linearly on angles, and equations (3)—(4) depend only linearly on cotangents. In
solving the system we would like to keep as much linearity as possible. When few
interior points exist, as in meshes with long boundaries or holes, the cotangents
can be considered the unknowns, and the partial derivatives for the angles in the



Stathopoulos and Teng / Recovering the mesh from a matriz 9

X X X
X X X
X X X Se=m
X X X
X X X
X X >Z(p=2n
X X X
' 1 ! 1 Edge
Equations
1 1

Figure 3. The sparsity structure of the Jacobian.

Jacobian become:

o) _ -1
d cot gbz(l) 1 + cot? gbz(-l) .

We can also consider the angles as unknowns and formulate the cotangent part
of the Jacobian as follows:

dcot qﬁgl) -1
6¢Z(~l) B sin? gbz(-l) .

In both cases, the Jacobian is sparse and it has a structure that can be ex-
ploited computationally. The unknown angles are ordered by element, with angles
in the same element being successive in the ordering. The first m rows contain
the equations for each triangle. The following w rows contain the equations for
interior vertices, and the last e rows are the equations (1)—(2). Every unknown
participates in one edge equation, in one triangle equation and at most in one
interior vertex equation. Therefore, the number of nonzeros in the Jacobian is at
most 9m.

If an iterative method is used to solve the Jacobian system, since a QR
decomposition would generate prohibitively large amounts of fill-in, the above
storage can be reduced approximately in half. Considering the cotangents as the
unknowns, the Jacobian part of the last e equations contains only ‘1’s in known
positions which do not have to be stored. Similarly, when the angles are the
unknowns, the first m + w equations need not be stored. For reasons explained
in section 3.2, we have opted to keep the cotangents as unknowns for stability
reasons. In this case, the sparsity structure of the Jacobian is shown in Figure 3.



10 Stathopoulos and Teng / Recovering the mesh from a matriz

3.2. A Newton Iteration

The e rows of the Jacobian as stemming from equations (1)—-(2) are linearly
independent for any choice of angles or unknowns. This follows immediately from
the fact each angle participates in only one equation in this group. A similar
property holds for the rows stemming from the group of equations (3)—(4). Their
linear independence follows from two observations: First, each angle appears only
in one triangle, and therefore all equations (3) are linearly independent. Second,
the equations (4) are needed to ensure that every interior point is on the same
plane as its neighbors, and therefore they cannot be reproduced as a combination
of the triangle equations. Equations (3)-(4) become linearly independent how-
ever, if the Jacobian of a system that represents an exact planar embedding is
considered.

Despite the linear independence of the individual subblocks, and the overde-
termined whole system, at solution, the Jacobian is rank deficient. This is because
at solution, all points are forced onto the same plane and the conditions of inte-
rior points can be obtained from the triangle conditions and the solution of the
edge equations.

However, if the angles are not converged and the approximate solution does
not represent an exact planar embedding, the Jacobian is full rank. This suggests
that a Newton method for this non-linear system has r-quadratic convergence [3].
Let us denote by F'(z) = 0 the non linear equations (1)—(4), and the Jacobian at
some approximate iterate z; by J; = J(x;). We consider the Newton iteration,
that solves the overdetermined Jacobian system in a least squares sense:

e =2t — (JE )T F(aY). (7)

If the angles are chosen as unknowns, we should ensure that the Newton correction
to the approximate solution z* does not violate the triangle property of the angles:

0< ¢ <. (8)

To avoid this constrained minimization problem formulation, we have chosen the
cotangents as unknowns since they are unbounded periodic functions. In this
way, we only need to enforce condition (8) when we compute the angles from the
cotangents for calculating the residual F'(x).

Our experiments confirmed the r-quadratic convergence of this iteration for
a few small meshes. A slight increase in the size or the complexity of the mesh



Stathopoulos and Teng / Recovering the mesh from a matriz 11

however, causes the method not to converge. As it is typical in many areas in
scientific computing, the high dimensionality of the problem shrinks the conver-
gence region of the Newton method to a small neighborhood around the solution.
We seek therefore an efficient, global converging iteration.

3.3. An Inner-Outer BiCG-Newton

When global convergence problems plague non linear iterations, a well
known remedy is to solve each Jacobian system in (7) approximately with some
iterative method [3,2]. Krylov subspace methods, such as GMRES and BiCG [9],
are common choices for iterative methods. At each step of the outer Newton iter-
ation, a varying number of BiCG iterations is taken on the Jacobian system. In
early Newton steps, when the approximation is far from the solution, the system
should not be solved very accurately, and thus a few steps of BiCG suffice. As
the approximation improves, higher accuracy is demanded from the BiCG and
the number of iterations increases.

The efficiency of this inner-outer scheme is well known, provided that we
know how to vary the number of iterations for BiCG. Among the many ideas
proposed in the literature, one by Dembo et al. has been quite successful [2].
According to this, instead of controlling the number of BiCG iterations explicitly,
we start with a large residual threshold, decreasing it at every outer (Newton)
step. Dembo et al. proposed that the value 2~ be used as the stopping criterion
for the inner iteration, where ¢ is the number of outer iterations. Choosing this
criterion is widely recognized as a hard and problem dependent task. Because
of the limited convergence region of our problems, a residual threshold of about
1.17% is more beneficial. As we show later in our experimental results, this method
is globally convergent and can be used for large size meshes.

The main computational requirement for this method is that we can perform
a matrix-vector multiplication with the sparse Jacobian and a matrix-vector mul-
tiplication with its transpose. Since each angle appears in at most three different
rows, the sparse structure of the transpose can be maintained easily.

In some problems, the computational efficiency of this inner-outer method
could be improved by considering a full rank Jacobian matrix, instead of the
overdetermined one used in (7). As we discussed earlier, this can achieved by
picking only that number of interior vertex equations needed to obtain a square
matrix. Then, the BiCG could be applied simply on a square rather than on



12 Stathopoulos and Teng / Recovering the mesh from a matriz

an overdetermined system, obviating the use of the transpose of the Jacobian.
Besides being more efficient computationally, the condition of this system is not
squared and we expect BiCG to converge faster. The disadvantage of this ap-
proach is that the square matrix is not symmetric, and it cannot be guaranteed
to be full rank for all approximate iterates.

3.4. The Initial Guess

For all the above methods, and especially for the Newton iteration, the
choice of initial guess is critical to the convergence of the method. A simple and
quite effective initial guess is to assign m/3 to each angle. By this assignment, all
equations (3) are automatically satisfied. Another reason to use 7/3 as an initial
guess for angles is that most finite element meshes are well-shaped, which means
that the smallest angle of each element is reasonably large.

The problem with the (7/3)-initial guess is that, usually, it is not a feasible
assignment for a planar embedding of the mesh. For example, the 27 condition
around interior vertices is often violated. To ensure that the initial guess gives a
feasible planar embedding, we can use the barycentric embedding.

To generate a barycentric embedding of a planar graph, we first need to
determine: (1) a boundary face; and (2) an embedding of this face. Suppose F
is the chosen boundary face. We can map F' in a counter-clockwise order to a
convex polygon with |F| sides, where |F| is the number of vertices in F. In our
approach, we map F to a unit regular |F|-gon. To determine the position of an
interior vertex u, we use the following barycentric equation. Let ui,...,u; be
the neighbors of u, and (z,,y,) be the x-y coordinates of a vertex v. For all u we
have:

Ty = (Tyy + ...+ 2y, )/ k
yu:(ym +---+yuk)/k'

As shown by Tutte [13,14], these two linear systems always have a solution.
Moreover, the resulting embedding is planar. An extension to this idea is to
use a weighted barycentric embedding. In the above equations, we weigh the
coordinates of each neighbor u; by its algebraic distance from vertex u, i.e., the
weight of | A, ;|- The equations then become:

Ly = (|Au,u1 |Tuy + ... + ‘Au,uk |xuk)/ Z |Au,u¢|
7



Stathopoulos and Teng / Recovering the mesh from a matriz 13

Figure 4. A 10x10 uniform square mesh with 261 edges, 162 elements, 64 interior points, and
a Jacobian system of size 487x487.

Yu = (|AU,U1 [Yuy + -+ |Au,uk|yuk)/ Z ‘AU,ui|-
A

It is easy to show that the weighted equations have similar properties and their
embedding is also planar. Because of the nature of the Laplacian operator we
expect the weighted embedding to capture in a better way the relative distances
in the original mesh. We can use the angles from any of these barycentric em-

beddings as our initial guess.

4. Numerical Experiments

To test the techniques described in this paper, we discretized the Laplacian
using Neumann boundary conditions on a variety of meshes. We show conver-
gence results from three sample meshes; one uniform square mesh, and two meshes
generated by SPARSKIT [8], shown in Figures 4, 5, and 6 respectively. In the
experiments, we assign 7/3 as the initial guess to all angles, and we use BiCG
to solve the system in iteration (7), either accurately when applying Newton’s
method, or approximately using the inner-outer scheme. Except for the gener-
ation of the two meshes by SPARSKIT, all other software has been written in
MATLAB.

Our experiments are in agreement with the earlier discussion in this paper.
The Newton method converges very fast but only for small meshes, or more pre-
cisely, when the dimensionality of the problem is not too large. As figure 7 shows,
the dotted curve, depicting the convergence history of the Newton iteration, con-
verges in four steps for the uniform grid problem. To solve the four systems, BiCG



14 Stathopoulos and Teng / Recovering the mesh from a matriz

Figure 5. A SPARSKIT mesh with 85 vertices, 236 edges, 152 elements, 69 interior points, and
a Jacobian system of size 457x457.

Figure 6. A SPARSKIT mesh with 330 vertices, 926 edges, 596 elements, 266 interior points,
and a Jacobian system of size 1788x1789.

took a total of 350 iterations. Note that each iteration involves two matrix-vector
multiplications; one with the Jacobian and one with its transpose.

The Newton iteration failed to make any progress on either of the two
SPARSKIT meshes. Notice that the smaller dimension of the mesh in figure 5
does not help the Newton iteration to converge. The reason is that on the uniform
mesh, all triangles have exactly the same angles and so the real dimensionality of
the problem is small. The multitude of shapes in the unstructured SPARSKIT
meshes sets many more hurdles to the Newton method.

On the other hand, as figures 7 and 8 show, the BiCG-Newton method



Stathopoulos and Teng / Recovering the mesh from a matriz 15

Newton vs BiCG-Newton on the 10x10 grid.

_ 1et00 ]
3

fing K

£

S 1e02 1
®©

=] *

o x

@ le-04 1
)] \

2 \

5

8 1e06 1
-

0O 100 200 300 400 500 600 700 800
BiCG iterations (2 Matrix-vector operations each)

Figure 7. History of residual norm convergence of the Newton and BiCG-Newton methods on
the 10x10 uniform grid. The dotted line represents the convergence of the Newton iteration.

The points mark the non-linear iterations, while the x axis shows the number of BiCG iterations.

BiCG-Newton on the two SPARSKIT grids.

1e+00 ¢ R
1e-02

le-04

Log of the residual norm F(x)

0 1000 2000 3000 4000 5000 6000 7000 8000
BiCG iterations (2 Matrix-vector operations each)

Figure 8. History of residual norm convergence of the BiCG-Newton method on the two

SPARSKIT grids. The dotted line represents the convergence of the BiCG-Newton iteration

for the grid of figure 6. The points mark the non-linear iterations, while the x axis shows the
number of BiCG iterations.

displays a fast, global convergence, especially initially. In all the examples, BiCG-
Newton reduces the residual norm by three orders of magnitude within the first
100 BiCG iterations. Convergence slows down gradually, evidence of the fact
that the Jacobian becomes singular as it approaches the solution. Nevertheless,
the method computed a residual norm of 1078 for all cases, in reasonable time.



16 Stathopoulos and Teng / Recovering the mesh from a matriz

For large meshes, the high dimensionality of the non-linear system makes
it hard to solve without an appropriate initial guess. In these cases, a weighted
barycentric embedding may be needed first. In addition, the use of optimized
sparse matrix codes can provide substantial improvements over the MATLAB
code, and thus increase the solvable problem size.

5. From Angles to Geometric Embedding

Once we have the angles for each triangle, we can compute an embedding of
the mesh; our original goal. Our basic algorithm uses breadth first search (BFS)
to guide the embedding process.

Algorithm BFS-Embedding
Input: A topological embedding of a planar mesh M and an angle sequence
for all triangular elements in the mesh.

1. Start with an arbitrary triangle T' = (ug,vg,wg). Map the vertices of the
edge (ug,vp), up to (0,0) and vy to (1,0). Because we know the three
angles of the triangle (ug,vg, wp) and also its orientation, we can find the

coordinates of wy.

2. Let @ be a queue initially empty. Insert to () the neighbor triangles of
(ug,vo, wp), where two triangles are neighbors if they have a common side.

3. while @ is not empty

(a) Let T = (u,v,w) be a triangle in Q. Note that at least one side,
say (u,v), of T has already been embedded. If w has already been
embedded, we do nothing. Otherwise, using the orientation and angles
of T, we find the coordinates of w.

(b) Insert the neighbor elements of (u,v,w) to Q.
4. Return the embedding.

Obviously, BFS-Embedding can be implemented in O(n) time. We can also
prove that the algorithm reconstructs the mesh correctly. First we give the fol-
lowing definition. An angle sequence is valid iff:

1. for each triangular element, its three angles add up to .

2. for each interior vertex, the angles formed by all elements incident to the

vertex add up to 2.



Stathopoulos and Teng / Recovering the mesh from a matriz 17

3. in the execution of BFS-Embedding, any triangle 7" taken from the queue @,
either it has one vertex that has not been embedded, or the embedding of

the three vertices satisfies its angles.

Theorem 2. If the angle sequence is valid for a planar embedding, then
BFS-Embedding finds the correct embedding.

Proof. From tri-connectivity of the mesh, it follows that given a valid sequence
of angles of the mesh, there is a unique embedding (up to dilation and rotation)
that satisfies the angle sequence. Since the angle sequence is valid, the first step
of the while loop is correct for the current triangle, when the third vertex has
already been embedded. O

5.1. More Stable Embedding Algorithms

Although BFS-Embedding finds a correct embedding if the angle sequence
is valid for a planar mesh, it is highly unstable. We can construct a simple
example to show that alone the first two conditions of the definition are not
sufficient. In solving the angle system, we usually obtain an angle sequence that
is “approximately” valid, i.e., it can be viewed as a small perturbation of a valid
angle sequence. Thus, it is important to have a stable algorithm to find a planar
embedding from an angle sequence.

BFS-Embedding is not stable, largely because it incurs cumulative errors.
When Condition (3) of the definition above is violated, the algorithm simply uses
the current embedding for the triangle, hence, implicitly changes the angles of the
element 7T'. In turn, Condition (2) is violated at one or more of the vertices that
are interior vertices. This error will propagate to subsequent triangular elements.

Figure 9 shows a manifestation of this error propagation when attempting
to reconstruct the mesh from figure 6 after having converged to the angles with a
residual 10~%. Despite the error in individual angles being in the order of O(1072),
BFS-Embedding results in local non-planar embedding. The same problem occurs
on the much simpler uniform grid. When individual angles have been computed
with accuracy O(1072), the reconstruction is still non planar as shown in figure 10.

This problem has been observed independently in [5,10], in the context of
embedding a 3-D surface to a plane. The authors deal with the problem by
enforcing an additional constraint on the computation of the 2-D angles. The
constraint involves a product of sines of the angles of the elements around each



18 Stathopoulos and Teng / Recovering the mesh from a matriz

Figure 9. BFS-Embedding on grid from figure 6, with individual angle error O(1073).

Figure 10. BFS-Embedding on the uniform grid, with individual angle error O(1072).

interior node, and it attempts to enforce appropriate lengths on the triangle edges.
After the angles are obtained, a BFS-Embedding procedure yields the resulting
mesh. However, the embedding still tends to accumulate errors because the above
constraint applies directly to angles.

In our approach, we use the following two ideas to stabilize the embedding
algorithm. The first idea is to define a global procedure to determine coordinates
from angles. We use the following non-linear system to constrain the coordinates.
Let T = (u,v,w) be a triangle with vertices embedded at (zy,yy), (v, Yy), and



Stathopoulos and Teng / Recovering the mesh from a matriz 19

(Zw, Yw), respectively. Let 6; be the angle at i, where ¢ € {u,v,w}. Then,
( (T4 — x’u + (Yu — yv)Q) sin” by = ((xu - -'Ew)2 + (Yu — yw)2) sin’ O
( Ty — xu (yv yu)Q) Sinz Oy = ((x'u - xw)2 + (yv - yw)2) Sin2 Ow
((ww — )% + (Yo — Z’Ju)2) sin® 0, = ((:vw —2)2 + (Yo — yU)Q) sin? 6,
These three equations uniquely determine the side lengths of a triangle when its
angles are given. If we have an initial coordinate sequence of the mesh, we can
apply a few steps of a non-linear iteration to the above overdetermined system to
improve the embedding. Therefore, working directly on coordinates and not on
angles should alleviate the instabilities of the BF'S scheme. We call this procedure
Coordinate-Smoothing.
One way to obtain an initial coordinate sequence is to apply BFS-Embedding.
To reduce the propagating effects of the error we introduce the following modi-

fication to the algorithm. All steps remain the same, except for the first step of
the while loop, which becomes:

Algorithm Modified BFS-Embedding
Step 3 Modified:

3. Let T'= (u,v,w) be a triangle in Q. Suppose (u,v) of T has already
been embedded. If w has already been embedded, we still compute
the coordinates of w according to T' and move w to the average of the
newly computed position and the previous position. Otherwise, using
the orientation and angles of T, we find the coordinates of w.

The above modification will still propagate the error if no previous embedded
nodes are encountered in the BFS. In addition, Coordinate-Smoothing does not
always correct long range losses of planarity. Despite these limitations however,
our experiments in figures 11 and 12 show significant improvements over the poor
embeddings of the same problems in figures 9 and 10 respectively.

6. Problems with Reducing onto the Boundary

Because of the computational expenses associated with the algorithms pre-
sented above, it is natural to seek techniques that reduce the dimensionality of the
problem. In the special case of a mesh with no holes, a geometrical embedding
of its boundary tube is sufficient for deriving all coordinate information using



20 Stathopoulos and Teng / Recovering the mesh from a matriz

Figure 11. BFS-Embedding with averaging and Coordinate-Smoothing on grid from figure 6,
with individual angle error O(107%).

NN

A ]

Figure 12. BFS-Embedding with averaging and Coordinate-Smoothing on uniform grid, with
individual angle error O(1072).

equation (6). Surprisingly, the two approaches we have examined for solving this
reduced problem have proven less efficient than the full angle technique.
The first approach utilizes a fixed point iteration that alternates between

boundary and interior nodes, and can be described briefly in the following:

Algorithm Boundary-Fixed-Point
Input: A stiffness matrix A, an index of vertices on the boundary and in



Stathopoulos and Teng / Recovering the mesh from a matriz 21

the boundary tube, and an initial guess for the coordinates of the boundary
vertices g, yB.
while not converged

1. Using eq. (6) compute the coordinates of interior nodes 7y, y.

2. Considering the inner mesh without the boundary tube, use x; and y;
to compute the angles that face the inner edges of the tube (edges that
interface the tube and the inner mesh).

3. Consider the tube as a stand-alone mesh with its own stiffness matrix.
The elements of this matrix are those of A corresponding to tube edges,
except for the tube edges that face the inner mesh. The matrix elements
of these interface edges are updated using eq. (1) and the cotangents of
the angles from the inner mesh as computed in step 2.

4. Use the BiCG-Newton iteration to solve for the new angles of the boundary
tube, and the Modified BFS-Embedding to obtain its node coordinates.

The computationally expensive steps of the algorithm are the solution of
the linear system and the non linear iteration on the tube. For small boundaries
these steps are expected to be significantly cheaper than a step of our full angle
algorithm. However, our experiments with a MATLAB implementation of the
above algorithm have identified several problems. The method seems to converge
only if the initial guess for the boundary coordinates is almost accurate, and even
in those cases, the fixed point convergence is extremely slow. The reasons can be
traced in the requirement of the algorithm to move from angles to boundary coor-
dinates at every step. These are obtained through the embedding process which
is highly sensitive to angle accuracy. Thus, obtaining an adequately accurate
initial guess is almost as hard as solving the non linear problem.

Moreover, the sensitivity to the embedding process continues to hold at
every step. Because the elements in the tube lack a global coupling, each having
a maximum of two neighboring elements, the Modified BFS-Embedding algorithm
is not as effective as in the full mesh. As a result, convergence of the method
occurs only if the tube angles are computed to a high accuracy.

A second approach is to use equation (6) to substitute for the interior points
in the angle equations for the tube, and solve the non linear system with a
Newton-like iteration. Again, we can consider the angles (or their cotangents) as
unknowns, or we can formulate the system in terms of coordinates. However, with



22 Stathopoulos and Teng / Recovering the mesh from a matriz

this approach the Jacobian becomes very complicated and less sparse than our
full angle method. But more importantly, it requires the computation and storage
of the full w X np matrix AI_IA p. Computational alternatives exist, but all seem
to have the same storage requirement. Finally, this approach demonstrates the
same angle embedding sensitivity when the angles/cotangents are considered as
unknowns. For the above computational reasons, and because of the limiting
assumption of absence of holes, we have not pursued this second approach any
further.

7. Beyond the Laplacian

In the preceding discussion we have considered the Laplacian operator with
Neumann boundary conditions. The question arises whether similar techniques
can be used to recover the mesh of simply modified Laplacians. For example,
when the operator is scaled by some constant factor, the mesh recovered should
be the same.

With a small modification, our techniques apply also in the case of a matrix
A = cL + D, where L is the stiffness matrix of the Laplacian, ¢ is a non zero
scalar constant, and D is any diagonal matrix. The D term requires no change
in the techniques, since the diagonal entries do not participate in setting up the
non linear equations (1)—(4). The scalar ¢, however, changes the right hand sides
of equations (1) and (2), which become:

cot qbgl) + cot qﬁgk) +2cAy; v, =0
cot qﬁgl) + 2cAy,, v, =0.

Thus, it is necessary to include ¢ as an additional unknown in the system of non
linear equations. Since ¢ does not multiply any unknowns, the modified Jacobian
simply has an additional column with values 24,, ,,, in the rows corresponding to
equations (1) and (2). Our experience has been that this scalar factor is obtained
within the first few iterations of our techniques.
An implication of the above generalization is that we can actually recover
the mesh for an anisotropic elliptic operator of the form:
S Kago) & (Kl 0
where K, K, are scalar constants, not necessarily equal. Since one of the con-
stants in the PDE can be factored out, it is only necessary to know their relative



Stathopoulos and Teng / Recovering the mesh from a matriz 23

ratio, say K;/K,. It is well known, and easy to show, that when equation (9)
is discretized on a given mesh, it gives rise to the same matrix as the Laplacian
operator discretized on the same mesh but with the z coordinates dilated by

K, /K,. We can therefore apply our modified techniques that resolve any scal-
ing factors, and after we obtain the mesh embedding, we dilate the coordinates
of z to recover the original mesh of this anisotropic PDE. Notice that even if the
relative ratio of the coefficients is not known, our algorithms will still compute a
valid embedding of the Laplacian on a different mesh.

8. Conclusions and Future Research

Recovering the geometry of a mesh is a new, challenging problem. Our
research was originally motivated by the observation that efficient numerical al-
gorithms can be found if the geometry of a problem is known. However, many
more interesting research questions have been raised during our current investiga-
tion, the solution of which is required by some applications and could potentially
help many other applications.

In a more general context, geometry recovery is closely related to problems
in graph embedding and graph drawing. In our research, we assume that the
matrix stems from the discretization of a PDE on a 2D mesh, and we want to
find an embedding that is as close as possible to the original mesh. We have
shown that for the Laplacian operator, the stiffness matrix contains sufficient
amount of information about the geometry of the mesh. It is possible to solve
numerically for this geometric information, albeit through a non linear iteration.
We have also shown that the mesh can be recovered even if the Laplacian matrix
is multiplied by a scalar, or if a diagonal matrix is added to it. An anisotropic
operator with constant coefficients can also be reduced to a Laplacian. There are
many problems that remain open and several directions that this research can be
continued.

Extensions of our results to other operators and to other boundary con-
ditions besides Neumann, or to other element shapes and higher order finite
elements are not straightforward. We would also like to extend our work to the
more complex, 3D case, by designing a system of equations for the coordinates
of the vertices directly. Such a formulation may also improve the stability of the
2D algorithm. Finally, more stable techniques are needed for embedding an ap-

proximately valid angle sequence. A promising direction is a multilevel algorithm



24 Stathopoulos and Teng / Recovering the mesh from a matriz

that would embed the fine mesh by first embedding a hierarchical sequence of
coarser meshes. What is fascinating is that there are immediate applications of
this problem, and its solution seems feasible.

An interesting question is how these techniques can be used to enhance
our understanding and performance of algebraic multigrid. For example, given
a stiffness matrix for some PDE, we could find instead a different PDE and
some mesh that yield the same stiffness matrix. A different approach would be
to recognize the class of well-shaped meshes that can be used in a multilevel
preconditioning scheme for a given stiffness matrix.

Throughout these questions, however, it is important not to loose sight of the
fact that the general problem of mesh recovery is an ill-posed, inverse problem.
Often, the quality of the mesh recovered will be determined only in the context

of the reference problem.

Acknowledgments

This work has been supported by the Computational Science Cluster and
the Department of Computer Science at the College of William and Mary, and
the University of Illinois at Urbana-Champaign.

References

[1] T. F. Chan and J. Zou. Additive Schwarz domain decomposition methods for elliptic
problems on unstructured meshes. CAM Report 95-16, Department of Math, UCLA, March
1995.

[2] R.S.Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton Methods. SIAM J. Numer.
Anal., 19: 400408, 1982.

[3] J. E. Dennis, Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Methods. Classics in applied mathematics. STAM, 1996.

[4] E. Hinton and D. R. J. Owen. Finite Element Computations. Pineridge Press Limited,
1979.

[5] J. Liesen and E. de Sturler and A. Sheffer and Y. Aydin and C. Siefert. Efficient Compu-
tation of Planar Triangulations. In Proc. of the 10th International Meshing Round Table,
(2001), accepted.

[6] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Automatic mesh partitioning.
In A. George, J. Gilbert, and J. Liu, editors, Sparse Matriz Computations: Graph Theory
Issues and Algorithms, IMA Volumes in Mathematics and its Applications. Springer-Verlag,
1993.



Stathopoulos and Teng / Recovering the mesh from a matriz 25

[7] J. Ruge and K. Stiiben, Algebraic Multigrid (AMG), in Multigrid Methods (S. McCormick,
Ed.), Frontiers Appl. Math. 5, STAM, Philadelphia, 1987.
[8] Yousef Saad, SPARSKIT: A basic toolkit for sparse matrix computations. RIACS, NASA
Ames Research Center, TR90-20, Moffet Field, CA, 1990.
[9] Yousef Saad. Iterative methods for sparse linear systems. PWS Publishing Company, 1996.
[10] A. Sheffer and E. de Sturler. Parameterization of Faceted Surfaces for Meshing Using Angle
Based Flattening. Engineering with Computers, 2002, to appear.
[11] Shimon Even. Graph Algorithms. Computer Science Press, 1979.
[12] D. Spielman and S.-H. Teng. Spectral partitioning works; Planar graphs and finite element
meshes FOCS, 1996.
[13] W. T. Tutte. Convex representations of graphs. Proc. London Math. Soc. 10(3): 304-320,
1960.
[14] W. T. Tutte. How to draw a graph. Proc. London Math. Soc. 13(3): 743-768, 1963.



