Some insights on restarting symmetric eigenvalue
methods with Ritz and harmonic Ritz vectors

ANDREAS STATHOPOULOS

DEDICATION

Dedicated to Dr. David M. Young, Jr. on the occasion of his 75th birthday

Abstract

Eigenvalue iterative methods, such as Arnoldi and Jacobi-Davidson, are typically used
with restarting. This has significant performance shortcomings, since important components
of the invariant subspace may be discarded. One way of saving more information at restart
is the idea of “thick” restarting which keeps more Ritz vectors than needed. Our previously
proposed dynamic thick restarting chooses these vectors in a way that has proved efficient
on a wide variety of matrices. It is also possible to keep this information more compactly
by combining thick restarting with a technique based on a three term recurrence.

In this paper, we give strong experimental evidence that saving more information with
thick restarting is not necessarily beneficial, and provide an explanation to the efficiency of
the dynamic scheme. In addition, we show through a variety of experiments that restarting
with harmonic Ritz instead of Ritz vectors does not improve the convergence of symmetric
eigenvalue methods when an extreme part of the spectrum or some eigenpair within this
part is needed. However, for computing highly interior eigenpairs, harmonic Ritz vectors
may be the only viable alternative.

Keywords: Jacobi-Davidson, Arnoldi, Lanczos, thick, implicit restarting, deflation, eigenvalue,
preconditioning, harmonic Ritz pairs

1 Introduction

Many problems in science and engineering require the solution of large, sparse, symmetric eigen-
value problems, Au = Au, for a few of the lowest or highest (extreme) eigenvalues and eigen-
vectors (eigenpairs). As the difficulty and size of the problems grow, traditional methods such
as the Lanczos method and its equivalent in the non symmetric case the Arnoldi method [16]
become increasingly dependent on preconditioning to compensate for the loss of efficiency and
robustness. The Davidson and its generalization the Jacobi-Davidson method [5, 11, 3, 18] are
popular extensions to the Arnoldi method. Instead of extracting the eigenvectors from a gen-
erated Krylov space, these methods gradually build a different space by incorporating into the
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existing basis the approximate solution of a correction equation. Procedurally, the two methods
are similar to the FGMRES method [17], and in this sense, we refer to the approximate solution
of the correction equation as preconditioning.

In spite of using preconditioning, for many hard problems the (Jacobi-)Davidson method
may still require a large number of steps. Because the vector iterates must be stored for
computing the eigenvectors, the storage requirements are overwhelming. The problem is even
more important in the symmetric case, where the better theoretical framework and software
has led researchers to consider matrices of huge size that allow only a few vectors to be stored.
Even in the Lanczos method where a three-term recurrence is known, orthogonality problems
and spurious solutions prevent the application of the method for a large number of steps. For
these reasons, many restarting variants of the Lanczos and (Jacobi-)Davidson methods are used
in practice [4, 15, 20, 1, 6].

Contrary to methods for linear systems of equations where only one vector is needed, when
restarting eigenvalue methods more than one vectors need to be stored. In the framework
of Lanczos and Arnoldi methods this problem has been solved efficiently by the Implicitly
Restarted Lanczos/Arnoldi methods (IRL/IRA) [20, 1, 7, 8]. IRL provides an implicit way of
applying a polynomial filter during restarting and thus removing unwanted spectral information.
Implicit restarting provides also an elegant formulation of several other proposed restarting
schemes. For the (Jacobi-)Davidson method, restarting does not exhibit similar difficulties,
because all the wanted Ritz vectors can be retained explicitly, and even additional information
can be incorporated in the basis at restart. This latter characteristic facilitates many of the
experiments presented in this paper.

During restarting, important components of the required invariant subspace may be dis-
carded. This results in convergence deterioration and, frequently, stagnation of iterative meth-
ods. To reduce these effects we can save more information at every restart. In [22] we inves-
tigated the idea of “thick restarting”, which implements this principle by keeping more Ritz
vectors than needed. The question to be addressed is which, and how many Ritz vectors to retain
at restart. For symmetric, non-preconditioned cases, a dynamic thick restarting scheme that
keeps Ritz vectors on both sides of the spectrum has proved extremely efficient. With precon-
ditioning, although it is still efficient, a less expensive scheme provides similar benefits. In [21],
we combined thick restarting with a technique [12] that keeps, for each sought eigenvector, the
two corresponding Ritz vectors from two successive iterations, the current and the previous one.
The motivation stems from the proximity of the spaces built by the (Jacobi-)Davidson and the
Preconditioned Conjugate Gradient (PCG) methods, and the fact that the two successive Ritz
iterates span approximately the same space as the PCG iterates of the three term recurrence.
A different approach has been followed in [1], where the dynamically obtained Leja points are
given as shifts to the IRL, dampening the unwanted part of the spectrum.

The above restarting techniques have provided powerful ways of improving the convergence
of iterative methods. However, there are still many issues that await either solution or expla-
nation. The effect of keeping increasingly larger numbers of Ritz vectors in thick restarting
has not been studied in the literature. A first, naive approach would be to expect that more
retained information should improve convergence. We show that there is usually an optimal
number of vectors to keep in thick restarting, beyond which there is convergence loss rather
than gain. In addition, the success of the dynamic thick restarting is not well understood. We
present an explanation for both of these phenomena by numerically studying the roots of the
Arnoldi polynomials that these techniques generate, and point out some similarities between
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the dynamic scheme and the Leja points. We also show that the combination scheme can take
advantage of any number of Ritz vectors retained.

Recently, there has been a lot of discussion about the advantages of using harmonic Ritz pairs
to approximate eigenvalues and eigenvectors in the interior of the spectrum [13, 9]. Because,
harmonic pairs are simply Ritz pairs of an inverted operator, they maintain the optimality of
the Rayleigh-Ritz procedure but close to a specific shift. Harmonic Ritz vectors have been
used successfully to deflate the eigenvector closest to zero in the GMRES procedure [2], and
to obtain interior eigenpairs in the Jacobi-Davidson [6]. It is natural to ask whether harmonic
vectors can be used instead of Ritz vectors to restart eigenvalue methods. We show numerically
that although the eigenvector approximations may be more accurate during restarting for non
extreme pairs, the harmonic vectors are not appropriate for restarting eigenvalue iterative
methods when an extreme part of the spectrum is needed. We also provide a reasoning based
on the Rayleigh-Ritz procedure. However, when only a few, highly interior eigenpairs are
sought, harmonic pairs may be the only available choice.

The paper is organized as follows. We first review thick and dynamic thick restarting in a
generic Jacobi-Davidson framework. Following, we present results from numerical experiments
on the Harwell-Boeing collection, and we explain the observed effects of restarting size to thick,
dynamic thick, and the combination restarting schemes. Finally, we focus on the use of harmonic
vectors, and discuss why they are not appropriate for restarting eigenvalue methods.

2 Thick and dynamic thick restarting

To provide a framework for studying various restarting schemes we first present the generic
Davidson method. We assume that the matrix A is symmetric of order N, with eigenpairs
(Ai,u;) of which the [ lowest (or highest) are sought. The Davidson method first appeared
as a diagonally preconditioned version of the Lanczos method for the symmetric eigenproblem.
Extensions, to both general preconditioners and to the nonsymmetric case have been given since
[10, 3, 6]. The following describes the algorithm for the symmetric case, where the maximum
basis size is m > [, and at every restart & > [ Ritz vectors are retained. Ortho denotes any
stable orthogonalization procedure.

ALGORITHM 2.1 Davidson

0. Choose initial unit vectors Vi = {v1,..., v}

1. For s=0,1,...

2. wy=Av, i=1,....k—1

8. Tp1=(AVk-1,Vk1)

4. Forj=k,....m

. w; = Av;

6. ti; = (wj,v;), 1 =1,...,7, the last column of T}

7. Compute some wanted eigenpair, say (i, c) of T}

8. z =Vjc and r = pr — Az, the Ritz vector and its residual
9. Test ||r|| for convergence.

If satisfied target a new vector and return to 7
10. Solve M, jy0 =, for 6
11. Vj+1 = Ortho(V}, (5)
12.  Endfor
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13. Vi = {x;, the k lowest Ritz vectors }, | <k < m. Restart
14. Endfor

The preconditioning is performed by solving the equation at step 10, with M, ;) approximating
(A—pI) in some sense. Without step 10 the above algorithm is simply a more expensive imple-
mentation of the Arnoldi method. Originally, Morgan and Scott [11] proposed to solve approx-
imately the Generalized Davidson (GD) equation: (A —olI) § = r, where ¢ is an approximation
to the sought eigenvalue. For stability, robustness, as well as efficiency, the Jacobi-Davidson
(JD) method [18] solves an equation where the operator M, ;) has a range orthogonal to z, i.e.,
(I —zzT)(A—ol)(I —227) 6 = (I — zzT)(uI — A)z. For preconditioners that approximate A
directly, such as incomplete factorizations and approximate inverses, the above orthogonality
condition is enforced through an equivalent formulation known as Olsen method.

Step 13 of the above algorithm implements the thick restarting technique by explicitly
keeping k > [ Ritz pairs at every restart. The same effect can be achieved with the IRA/IRL
methods, by implicitly removing the unwanted Ritz vectors through the use of the corresponding
Ritz values as shifts. The explicit restarting of step 13, however, has the advantage of allowing
any vectors (not necessarily Ritz or polynomial transformations of vg) to be incorporated in
the restarted basis [21].

Assuming either implicit or explicit restarting the natural question is which and how many
vectors to keep at every restart. In [22] it was shown that if some Ritz vectors are retained, the
Lanczos process can be approximated gradually by another Lanczos process on a matrix from
which the eigenvectors corresponding to these Ritz vectors have been deflated. This provided
the motivation for the thick restarting shown in step 13. Keeping the vectors with Ritz values
closest to the required eigenvalue, would deflated them and thus increase the gap and the
convergence rate to the wanted one. We denote this thick restarting scheme by TR(k). For
symmetric cases however, convergence depends on the gap ratio of the eigenvalues and therefore
both ends of the spectrum are important [14]. A generalization of thick restarting would keep
L lowest and R highest Ritz vectors. Dynamic thick restarting chooses these numbers using
a heuristic that captures the trade off between better error reduction through more, non-
restarted Lanczos steps, and larger gap ratios from a thicker restart. Our heuristic minimizes
the approximate error bound on Ritz values of the Lanczos process, which is described by a
Chebyshev polynomial:

1
Ch 1 r(1+2)

~ 2e~Am-L=R)V7i

where m — L — R Lanczos steps can be taken before a new restart is necessary, and v; =

% is the current approximation to the gap ratio of the i—th eigenvalue.

2.1 The proper thickness

Both thick and dynamic thick restarting have proved extremely efficient on a wide variety of
matrices. We borrow a toy example from [22] that demonstrates the effectiveness of these
schemes. In figure 1, we consider a matrix of dimension 100 with eigenvalues shown in the
upper part of the figure. There are two eigenvalue clusters near the origin, each containing
eight equidistant eigenvalues. The rest of the eigenvalues coincide with the integers 1, 2, and so
on. The lower part of the figure shows the eigenvalue convergence for IRL with basis size of 20,
and with TR(k) and the dynamic restarting schemes. Significant convergence improvements
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Figure 1: The effect of the TR(k) and Dynamic schemes on a toy problem. The lower part of
the matrix spectrum is shown above.

are achieved by both schemes, but note the superiority of the dynamic scheme without any
knowledge of the underlying spectrum.

Our experiments on Harwell-Boeing matrices have shown similar behavior for both restart-
ing schemes [22]. We should note that these improvements are mainly apparent in difficult
eigenproblems where several hundreds of steps are required for convergence. For eigenproblems
that require a small number of steps, restarting occurs only a couple of times and convergence is
not significantly affected. Because restarting techniques attempt to recover the convergence of
the non restarted algorithm the goal is different from preconditioning. Moreover, precondition-
ing reduces the number of steps of iterative methods thus diminishing the effects of restarting.

Figure 1 seems to imply that convergence improves when keeping more information in the
TR(k) scheme. This is a reasonable assumption, because, in TR(k), the few discarded Ritz
vectors should have the least overlap with the required eigenvector. However, this is only true
up to a certain value of k, beyond which the number of iterations increases. For example, in
figure 1 TR(k) with k£ > 16 offers no convergence improvements.

We have conducted extensive tests on the symmetric matrices from the Harwell-Boeing
collection to see if there is a common optimal thickness for restarting. Using the Davidson
algorithm with basis size of 20, we seek the five smallest eigenpairs of the matrices. We run the
algorithm both without preconditioning and with diagonal preconditioning. Despite different
characteristics of the matrices, the convergence behavior as a function of k& has been very
similar throughout the matrices with noticeably few exceptions. We have accumulated our
results without preconditioning in figure 2, and the results with diagonal preconditioning in
figure 3. Both figures show two graphs. The left graph shows the harmonic averages of the
ratios of the number of matrix vector multiplications required by TR(k) over the number
required by the dynamic scheme. We choose to display the harmonic average, because in some
cases the dynamic scheme is far better than TR(k) and simple averaging would skew the results
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Ratio of number of A*x of TR(k) versus Dynamic Ratio of the time for TR(k) versus time for Dynamic
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Figure 2: TR(k) versus Dynamic as a function of k. No preconditioner.
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Figure 3: TR(k) versus Dynamic as a function of k. Diagonal preconditioner.

significantly. For the same reason, we also limit the number of matrix vector multiplications to
5000. The right graph shows the harmonic averages of the ratios of the corresponding times of
the techniques.

Clearly, increasing the thickness of the restarting beyond a point adversely affects conver-
gence. For the basis size of 20, this optimal k& seems to be between 12 and 14. The time-graph
shows a similar behavior, only the optimal range for k£ is between 8 and 10. There are three
reasons for this. First, with large values of k, the average number of vectors present in the basis
is also large and orthogonalization, which depends on the square of k, becomes an important
factor. Second, we have observed that the dynamic scheme consistently keeps 16-17 vectors
at restart. Although extremely efficient iteration wise, its average computational expenses per
step are rather high. Third, the matrices of the Harwell-Boeing collection are very sparse, and
the time to perform a matrix vector multiplication is less than the time to perform the rest
computations of a Davidson step. With preconditioning, the figures confirm that the differ-
ences between the methods become smaller, because the number of iterations, and thus the
information loss at restarts, is reduced.
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The 80 roots of the IRA polynomial from four restarting methods
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Figure 4: The 80 roots of the implicitly restarted Arnoldi polynomial as generated after 100
iterations from four different restarting techniques. The matrix is BCSSTKO05 from Harwell-
Boeing and its spectrum is also shown.

2.2 An experimental justification

The convergence deterioration of TR(k) with larger values of k& seems counter-intuitive, if con-
sidered the outcome of keeping more information at restart. To understand this behavior we
have to consider restarting from the view of annihilating shifts in implicit restarting. The equiv-
alence between explicit thick restarting and implicit restarting is well known [22, 10], when the
shifts used in the latter are the Ritz values of the pairs discarded in the former. Therefore,
the restarted Lanczos/Davidson can be studied through their polynomials which have all the
discarded Ritz values as roots.

In figure 4, we display the discarded Ritz values after 80 shifts have been applied in the IRL
method, for four restarting techniques: TR(10), TR(17), Dynamic thick restarting, and Leja(3).
The BCSSTKO05 matrix from Harwell-Boeing is considered as a representative example, and its
spectrum is also plotted for reference. The restarting technique Leja(3) computes three Leja
points at every restart, and provides them as shifts to the implicit restarting procedure. The
advantage of the Leja points is that they are computed dynamically over a changing domain,
yet their distribution converges to the zeros of the Chebyshev polynomial in the same region.
Leja shifts have proved a competitive restarting strategy for the IRL [1]. If run to convergence,
the above methods find the five smallest eigenpairs of BCSSTKO5 in the following number of
iterations: TR(10) in 1110, TR(17) in 1733, Dynamic in 591, and Leja(3) in 596.

From figure 4, a factor affecting convergence is the region covered by the annihilating shifts.
The residual polynomial of TR(17) has a significantly smaller region than other schemes, and
the worst convergence. However, the distribution of the shifts is more important. Note that the
shifts from TR(17) cluster around 3-4 areas. The residual polynomial dampens these small areas
very well, but its absolute value increases sharply in the space between them. The TR(10) shifts
also tend to cluster around certain areas, but these are closer together providing a more uniform
range. On the other hand, the dynamic and Leja(3) schemes do not exhibit such clustering.
To explain this, note that with the TR(17) the three Ritz pairs discarded each time are always
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the largest ones. Since they have not had time to fully converge before restarting, they keep
coming back, and slowly reproduce that part of the spectrum. Similar but less pronounced
effects are observed with TR(10). The dynamic scheme picks Ritz values from various areas of
the spectrum producing a more uniform residual polynomial [22].

In our experiments, the dynamic scheme has outperformed Leja(3) marginally. One of
the reasons is that Leja shifts try to dampen a whole region without taking into account the
distribution of the eigenvalues in it. The dynamic scheme uses Ritz values as shifts and therefore
it might avoid regions without eigenvalues, where the residual polynomial does not have to be
equally dampened. Another important observation is that low degree annihilating polynomials
at each restart, i.e., few discarded pairs, are much more effective. If we force the dynamic
scheme to discard more than 5 Ritz pairs at restart, the convergence deteriorates dramatically.
Similarly, Leja(10) converges in 670 iterations and Leja(15) in 800 iterations. Evidently, by
annihilating only a few pairs at a time, we get the most recently updated boundary or spectrum
information from IRL.

3 Thickness and the TR-CG scheme

As mentioned above, dynamic thick restarting outperforms TR(k) but it keeps more vectors at
restart, thus increasing the average computational expense per iteration. For symmetric ma-
trices, the TR-CG scheme we have proposed recently [21] manages to store similar information
but with fewer vectors. We have shown that if the Ritz value at the i-th step of Lanczos is
known a priori, there is a 3-term recurrence (obtained by CG) that yields the corresponding
Ritz vector. Both the Lanczos and the 3-term recurrence start with the same initial vector. In
this case restarting is obviated, because all history information is contained in the last three
vector iterates. Although the eigenvalue is usually not known, often we can assume that this
future Ritz value is approximately known, either because eigenvalues converge faster than eigen-
vectors in the symmetric case, or because of slow convergence. In that case, we have shown
that the recurrence yields a vector with a relative distance from the Ritz vector bounded by
the approximation error in the Ritz value times a constant.

This property can be used effectively in restarting. Assuming that, starting from z(©, a
JD/Lanczos process generates a sequence of Ritz vectors 2@ as shown below, there is a CG
sequence y(®, starting also from z(9), that yields z(*t1) after i + 1 steps. Based on the theory
outlined above, if the Ritz value is almost constant between steps i — 1,4, + 1, then (1) and
2z approximate y(~1) and y(® respectively, and thus z(!t*1) approximately lies in their span.
The idea is to restart with the Ritz vector from step ¢ — 1 along with the one from step 3.

Restart
i
JD: O O L@ g1 2(0)
L)
CG : .,E(O) y(l) y(2) .. y(iil) y(z)

The above 3-term recurrence is obtained by applying the CG iteration on the correction
equation for a specific eigenpair. In this sense, this scheme resembles preconditioning, improving
convergence towards that specific eigenpair, but delaying convergence to the rest. For more
eigenpairs, Murray et al. [12] proposed to restart with Ritz vectors from the previous step
for all required eigenpairs. However, this does not work well if all lower eigenpairs have not
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Figure 5: TR(k)+1 and TR(k)+2 versus Dynamic as a function of k. No preconditioner.
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Figure 6: TR(k)+1 and TR(k)+2 versus Dynamic as a function of k. Diagonal preconditioner.

converged adequately. Instead, we proposed to combine this scheme with thick restarting (TR-
CG). At every restart, we keep k lowest Ritz vectors and p Ritz vectors from the previous step
corresponding to the lowest non converged pairs. We denote this scheme by TR(k)+p.

Our previous results have shown that the TR(k)+p scheme frequently matches the number
of iterations of the dynamic scheme, and often it takes less time to converge. The benefits are
especially apparent in the case of preconditioning. Figures 5 and 6 depict the effect of restarting
thickness to the TR-CG method without and with diagonal preconditioning respectively. These
figures are superpositions of the new results for TR(k)+1 and TR(k)+2 on figures 2 and 3. As
before, we show harmonic averages of the ratios of matrix vector multiplications (left graphs)
and ratios of the corresponding times (right graphs), using the dynamic scheme as reference.

In contrast to TR(k), both of the TR(k)+p schemes can effectively use additional vectors in
thick restarting to reduce the number of iterations. The right graphs of both figures show that
time increases with thickness. This is expected because for larger values of k, the quadratic
factor of the orthogonalization process dominates the moderate convergence improvements. To
explain this behavior, we note that for most Harwell-Boeing matrices the Ritz values do not
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change drastically between restarts, because of the many steps required for convergence. There-
fore, the TR-CG scheme targets a specific eigenpair retaining almost all necessary information
needed to obtain the next Ritz vector. Keeping more Ritz vectors will not harm convergence,
but it can improve nearby eigenpairs both for future use and for helping isolate the required
one. Finally, because of its relation to CG, the TR-CG works well when the preconditioner
does not vary between steps. In case of variable preconditioners (such as solving the correction
equation with an iterative method) the efficiency of the TR-CG is expected to decrease.

4 Restarting with harmonic Ritz vectors

The approximate solution, with a preconditioner or an iterative method, of the correction
equation 10 in the Davidson algorithm yields a correction to a specific eigenvector. The more
accurate this solution, the less it contributes towards other eigenvectors. Similarly, the ability
of the TR-CG scheme to target an eigenpair better impairs the convergence to the rest. When
one eigenpair is needed, preconditioning is superior to gradient based methods such as non
preconditioned Lanczos, and TR-CG matches and could even outperform the dynamic thick
restarting. However, when several extreme eigenpairs are needed, their effectiveness diminishes
with the number of eigenpairs (see experiments and comments in [21] and [6]). To face this
problem it is necessary to combine these methods with some sort of thick restarting.

4.1 Why harmonic pairs?

In TR(k) the lowest k Ritz vectors are retained after restarting, as the best approximations to
the k lowest eigenvectors. However, the Rayleigh-Ritz procedure guarantees optimality only for
the lowest eigenpair. This optimality involves the minimization of the Rayleigh quotient over all
the vectors in the subspace. The rest of the Ritz vectors can be arbitrary linear combinations
of several (not necessarily nearby) eigenvectors. Therefore, the question arises whether we can
restart our method with a set of different vectors that approximate the k lowest eigenvectors
in a better way.

Recently, there has been a lot of discussion on the use of harmonic Ritz vectors as a way
to extract more meaningful approximations from a subspace [13, 9, 6, 19], but their effect on
restarting has not been examined. To extend the Rayleigh-Ritz optimality to interior eigenpairs,
we have to consider a shifted and inverted operator. In the notation of the Davidson algorithm,
consider the matrix A = (A — oI)7!, and take its Rayleigh-Ritz projection onto a subspace
spanned by the non orthogonal basis: V = (4 — oI)V = W — ¢V. The interior eigenvalues of
A closest to o are extreme eigenvalues of the matrix A, and therefore the Ritz pairs extracted
from V would have the Rayleigh-Ritz optimality. These Ritz pairs are called harmonic Ritz
pairs. Because of the choice of subspace, the need to invert a matrix is avoided, and the
small eigenvalue problem VT AVe = AV Ve becomes: (H — oI)c = AVTVe. Since the vectors
W = AV are already stored in the JD, the only additional computation needed is WTW.
Efficient ways of obtaining harmonic Ritz pairs are described in [6, 9].

Because of their properties, harmonic Ritz pairs have been used for computing interior
eigenpairs of a matrix [9, 6] as well as for computing the eigenvector near the origin for deflating
GMRES [2]. Thus, one would expect them to be good candidates for restarting eigenvalue
iterative methods.
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Figure 7: Comparison of combinations of TR-CG and harmonic restarting schemes versus the
Dynamic. No preconditioner.

4.2 Experiments and justification

To test the use of harmonic vectors in restarting, we set up a new restarting scheme that we
denote as TR(k)+H(g)+p. This scheme restarts with a combination of k£ lowest Ritz vectors,
g lowest harmonic Ritz vectors, starting from the second non converged pair, and p lowest Ritz
vectors from the previous step, starting from the first non converged pair. The reason for this
laborious bookkeeping is that we would like to retain Ritz vectors for all converged pairs and
for the extreme one. Because of deflation, the extreme pair is simply the first non converged
one. For the same reason, we do not want to restart with TR-CG or harmonic vectors for the
converged eigenpairs, or with a harmonic Ritz vector for the extreme one.

The choice of the shift o plays an important role in the quality of the harmonic Ritz pairs.
To ascertain that an extreme harmonic Ritz pair corresponds to a given eigenpair, the value of &
must be closer to the given eigenvalue than to any other one. This shift placement, however, is
not possible because the eigenvalues are not known. Further, solving a different harmonic Ritz
problem for each non converged eigenpair involves additional computations. In our experiments,
where we look for 5 lowest eigenpairs, we choose 0 = Ypitarget + (1 — ) 5, where p’s are the Ritz
values from the current step, and 7 a real number between 0 and 1. In other words, we choose
our shift between the first non converged and the innermost eigenvalue sought. Because Ritz
values are overestimates of the eiganvalues, the parameter v is usually chosen closer to 1. We
also test a best case scenario for harmonic Ritz pairs by providing perturbations of the exact
eigenvalues as shifts and solving a different harmonic problem for each non converged eigenpair.

As with our previous figures, we test the symmetric Harwell-Boeing collection and we report
harmonic averages of ratios of matrix vector multiplications for various restarting techniques
versus the dynamic scheme. Because the new scheme can only be implemented with explicit
restarting, our results are obtained with the Davidson method. We provide no timing com-
parisons because we want to study the effectiveness of the harmonic restarting and not the
efficiency of implementation of the harmonic procedure.

In figures 7 and 8 we show the results without and with diagonal preconditioning respec-
tively. The results are contrary to our initial expectations. First, restarting with harmonic



12 Andreas Stathopoulos

Ratio of the number of Matvecs for 3 methods over the Dynamic

1.4
TR(5)+H(5)+1
13k TR(5)+H(5)+1 |
. O=MA1 " Apg
O = Havg
12 TR(5)+H(5)+1
11 - 5 | restarts with:
yn .
. TR(10)+1 SRitz
5 harmonic
0.9 1 previous Ritz
0.8 — =
0.7 — =
0.6 — =
0.5

Diagonal Preconditioning

Figure 8: Comparison of combinations of TR-CG and harmonic restarting schemes versus the
Dynamic. Diagonal preconditioner.

Ritz vectors is far worse than both the dynamic and TR(10)+1 schemes. Second, using the
exact eigenvalues as shifts should produce better eigenvector approximations, but using these
for restarting seems to be even worse than using the harmonic vectors from some approximate
shift. Finally, we observed (not shown in the figures) that if we did not retain Ritz vectors for
all required eigenpairs the method converged extremely slowly. The observed behavior suggests
that five lowest eigenpairs is still an extreme part of the spectrum where Rayleigh-Ritz may
provide better restarting information. This is especially true for most Harwell-Boeing matrices,
which have spectra that are packed towards the lower end. This eigenvalue clustering may also
cause eigenpair misselection in the harmonic Ritz procedure.

The next experiment examines the case where only the 5th lowest eigenpair of the matrices is
needed. Our Davidson program achieves this by keeping all five lowest Ritz pairs but targeting
only the fifth at each step. We use diagonal preconditioning because without preconditioning the
residuals of Ritz pairs in Arnoldi are all co-directional. Figure 9 shows the results from several
methods. The information is given similarly to previous figures, except for the ratios which are
reported versus the TR(10)+1 scheme. Again, we include two variations of harmonic restarting.
One uses the current Ritz value as the shift, and the other the perturbed exact eigenvalue.
Although the differences between the methods are smaller, the results are qualitatively the
same as with figures 7 and 8. Even in this interior case the use of harmonic vectors does not
lead to a better restarting strategy. As an explanation we note that our Davidson program
maintains all five lowest pairs, attempting to build the fifth one faster than the rest. However,
the diagonal preconditioning is not powerful enough to give selective convergence in a few steps,
and therefore a good approximation of the lower eigenspace must be obtained first. This lower
eigenspace is approximated better by restarting with Ritz vectors than with harmonic ones.

The above results do not preclude the use of harmonic Ritz pairs. Both of the above
experiments required the computation of a relatively extreme part of the spectrum (either all
of this part or a slightly interior eigenpair), where Ritz vectors are known to perform well. When
a highly interior eigenpair is required, the lower eigenspace is usually too large to store or even
to capture approximately within a few Ritz vectors. For these problems, harmonic Ritz pairs
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Figure 9: TR(6)+H(6)+1 versus the TR(10)+1 technique when looking only for 5th lowest
pair. Diagonal preconditioner.

may be the only alternative. In [9] several examples are given where Lanczos with harmonic
Ritz pairs outperforms the classical Ritz Lanczos. Similar examples with the JD can be found
in [6, 19]. With preconditioning, however, the space depends on the choice of residuals, and
therefore harmonic Ritz residuals should be preferred for highly interior eigenpairs.

5 Conclusions

Efficiency and robustness of iterative methods depend significantly on the restarting techniques
used. For eigenvalue methods, thick, dynamic thick, TR-CG, and Leja restarting techniques
have proved effective on a wide variety of matrices. The numerical experiments in this paper
show that thick restarting does not benefit from keeping more than a certain number of vectors
at restart. On the contrary, dynamic thick, Leja, and the TR-CG schemes can efficiently use
additional vector information. We have provided a justification of this behavior by interpreting
the discarded Ritz values during restart as roots of the residual polynomial. We also observe the
similarities between Leja and dynamic thick restarting in dampening more uniformly a wider
part of the spectrum. The effectiveness of the TR-CG scheme is attributed to its relation with
solving the correction equation.

Harmonic Ritz vectors are often used as better approximations from a subspace to interior
eigenvectors of a matrix. We have used these vectors in thick restarting to improve the quality
of the approximations to non extreme eigenvectors. Our experiments show that this use of
harmonic Ritz vectors deteriorates the convergence of iterative methods. Further, choosing the
harmonic vectors with shifts close to the required eigenvalues is usually worse. Finally, this
scheme does not work even when we look for an interior eigenpair within an extreme part of the
spectrum. The justification of this behavior is based on the extremity as well as the clustering
of the required spectrum. Ritz pairs are the best way to obtain eigenpairs within such a region.

However, harmonic Ritz pairs have been used successfully for obtaining highly interior
eigenpairs. In these cases, their efficient use goes beyond restarting into building an iterative
method such as the JD around the harmonic procedure.
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