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Abstract

The MCHF package is a suite of programs that provide the atomic data required
by many science and engineering disciplines. Previous implementations of the MCHF
on parallel computers provided means for meeting the ever increasing computational
demands posed by these calculations. However, the resulting codes had strict limita-
tions on speed, solvable problem size and communication bottlenecks.

In this paper, a PVM (Parallel Virtual Machine) implementation of the MCHF
is considered on a cluster of high-end workstations. Some of the limitations are thus
overcome because of the high utilization of resources (CPU, prime memory and disk
space). The development of efficient routines for global operations and of a user-
friendly interface exploits the special characteristics of PVM-network programming.
Moreover, a restructuring of the methods provides new codes that do not bear the
above limitations and that exhibit significantly better speed-ups. Besides the algo-
rithmic improvements, this paper presents a flexible code that can be used equally
well on workstations and on the IBM SP2 multiprocessor to solve problems of one or-
der of magnitude larger than any previous attempts, and thus facilitate new research
in various scientific fields.

Introduction

Atomic data is needed by many areas of science and engineering. Fnergy level structures,
autoionization rates, cross-sections for excitation, ionization, charge exchange, and recombi-
nation all enter into model calculations for controlled thermonuclear fusion (Hansen, 1990).
In geophysical studies of the atmosphere, the emission features of atomic oxygen are related
to the abundance of oxygen in the thermosphere. Astrophysics has a longstanding need
for large amounts of similar data. With the Hubble Space Telescope reporting new data
with increased precision, more accurate theoretical calculations are needed for interpreta-
tion and analysis. Some of the more abundant elements of the solar system, such as iron,
are so complex that their accurate study has not been feasible to date. Laser research also



requires energy level and transition data for the development of improved laser techniques.
Because atoms are the building blocks of molecules and solids, knowledge gained in the
study of atoms is transferable to metals, surfaces, and other polyatomic systems.

The above data can often be predicted only through computation. The Multiconfigura-
tion Hartree-Fock (MCHF') method (Fischer, 1991b) is one of the most powerful approaches
for atomic structure calculations. The MCHF package consists of a number of interrelated
programs that yield the required atomic data. Several of the techniques that the MCHF
method uses can be naturally extended to similar problems in other fields, such as quantum
chemistry and solid state physics. Improvements on this method can contribute to those
fields as well.

Accurate atomic data requires large and time-consuming computations that pose huge
demands on computer resources. Supercomputers are often the only means for handling
such computations. The advent of vector, parallel and massively parallel computers has pro-
vided a powertful tool towards facing these demands and a promise for tremendous advances
in the future. In earlier work, the MCHF package has been ported to the Cray (Fischer
et al., 1988), a shared memory parallel-vector computer, and to iPSC/860 (Bentley and
Fischer, 1992; Fischer et al., 1994) a distributed memory parallel-vector computer. Both
implementations have provided valuable insight on the parallelization of the codes but they
also have their shortcomings. The Cray resources make it possible to tackle large problems,
but the speed-ups over SUN workstations are not significant because of the non-vectorizable
nature of many programs of the package. Considering also the high cost of Cray user time,
this solution has proved far from optimal. On the other hand, the parallel nature of many
parts of the package suggests the use of a multiprocessor. The hypercube implementation
of the MCHF shows better scalability, at least for some of the programs. However, new
problems have to be faced on a distributed memory environment: duplication of data, re-
dundancy of work, static load balancing and high synchronization/communication costs.
Despite the techniques developed to improve the package’s efficiency, the memory remains
the limiting factor. On the iPSC/860, with 8 MBytes per node, the computation of very ac-
curate and large atomic cases is infeasible. In addition to the above shortcomings, parallel
and vector computers are not always accessible to the average researcher.

The Parallel Virtual Machine (PVM) (Geist et al., 1993; Sunderam, 1990) is a tool that
integrates networked resources, such as workstations, parallel computers and supercom-
puters, into a distributed computational environment. Because of its flexibility and high
utilization of existing resources, PVM has become very popular in computer and computa-
tional sciences. In this paper a PVM implementation of the MCHF package is described on
a cluster of IBM/RS6000 workstations. The first objective is to study the strategies that
are required for an efficient implementation of the MCHF on a network of computers, and
more generally on a multiprocessor. The second objective is to identify those important
kernels that a parallel implementation is based on, and provide efficient, general purpose
utility routines. Finally, the third objective is to provide a working and user-friendly PVM
package that facilitates new atomic data computations that previously were not allowed
because of storage and execution time restrictions.

The paper is organized as follows: Section 1 states the physical and the corresponding
mathematical problem to be solved by MCHF, and describes the computational methods
that MCHF is based on. Section 2 outlines the special characteristics of network par-



allel programming and how these affect the decisions for communication/synchronization
algorithms. Section 3 gives a brief overview of the previous parallelization attempts and
identifies the PVM improvements. In section 4 timings and results from various atomic
cases are provided so that the efficiency of the approach is evaluated. The paper concludes
with final remarks in section 5.

Results and Discussion

1 The Physical Problem

The state of a many-electron system is described by a wave function ¥ that is the solution
of a partial differential equation (called the wave equation),

(H— E)¥ =0, (1)

where H is the Hamiltonian operator for the system and E the total energy. The operator
‘H depends on the system (atomic, molecular, solid-state, etc.) as well as the quantum
mechanical formalism (non-relativistic, Dirac-Coulomb, or Dirac-Breit, etc.). The present
paper focuses on atomic systems and the non-relativistic Schrodinger equation for which
the Hamiltonian (in atomic units) is
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electron from the nucleus, and r;; is the distance between electron ¢ and electron j. This
equation is derived under the assumption of a point-nucleus of infinite mass. The operator
‘H has both a discrete and continuous spectrum. Schrédinger’s equation does not involve the
electron spin, but when spin-functions are introduced, the physically meaningful solutions
are antisymmetric in the interchange of all the coordinates of any two electrons.

Here Z is the nuclear charge of the atom with N electrons, r; is the distance of the it

Schrodinger’s equation for atoms is among the simplest equations for many-electron
systems. The computational schemes for its solution have many features in common with
other formulations and the ideas developed here could be applicable to them as well. In
particular, there is a close similarity between the MCHF method (Fischer, 1977) and the
MCDF method as implemented in GRASP? (F.A. Parpia, [.P. Grant and C.F. Fischer in
preparation) based on a relativistic formalism including also some QED corrections.

The prediction of atomic properties is a challenging interaction between computational
techniques and theoretical physics. As the many-body problem is solved to a higher level
of accuracy more physical effects need to be included as well. An obvious example is the
inclusion of the effect of the finite volume and finite mass of the nucleus. But more accurate
Hamiltonians need to be used as well, the exact forms of which are the subject of current
physics research.



1.1 Computational Methods

Because of the high dimensionality of the wave equation, approximate methods must be
used. A very successful model has been the configuration interaction model in which the
wave function, U,rg, for a state labeled vLS is written as an expansion of M antisym-
metrized configuration state functions (CSF), ®(~;LS), each one being an eigenfunction of
the total angular momentum L and total spin .S. Then

Urs({X;}) = Zcz (v LS5 {r;}), (3)

where {r;} = {r1,01, ¢1,01, -+, rn,0n, dn,0n}. The r;,0;, ¢; are spherical coordinates in
three dimensional space, o; is the spin-space coordinate for electron j, and 7 represents any
quantum numbers other than LS that are needed for complete specification of the state.
Each CSF, in turn, is a linear combination of terms of the form,

H PTL] TJ lmz ( j7¢j)XmsJ (Uj)a (4)
j=1"Ti
where the spherical harmonics, V},,,, and spinors, x,,., are known. The combination satisfies
the antisymmetry requirement and represents the coupling of orbital and spin momenta,
for which an appropriate algebra is well known. The set {njlj}év:l of quantum numbers as
well as the coupling is specified by 7;. The radial functions, P,;(r), may be known functions
or may need to be determined.
By Eq. (1), the total energy of the atom is given by

E= (Vs | H|Y,Ls), (5)

assuming (V,rs | Uyrs) = 1. Using Eq. (3) and the multipole expansion for 1/r;;,

i = rﬁ Pk(cos 0) (6)
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where r, 75 are the lesser and greater of r; and r;, respectively, and P*(cos ) is a Legendre
polynomial in cos 6 where 6 is the angle between r; and r;, the energy may be expressed as

E = Zcichij (7)
1
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where the R* are Slater integrals,
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and the L, are the one-body integrals,
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The abbreviation, P; = P, has been used here. The Azuv;k and C;{U are called angular
coefficients and can be computed using Racah algebra (Fano and Racah, 1959). Because
of the cusp in the integrand of Eq. (9), Slater integrals are often evaluated by first solving
a pair of first-order differential equations followed by a one-dimensional integral (Fischer,
1986). Thus their evaluation is non-trivial.

The M x M symmetric matrix with elements
Hij = (®(iLS) | H | (v, LS5)), (11)

is called the interaction matrix. Applying the variational condition (Fischer, 1977) to Eq.
(7) and requiring that the energy be stationary with respect to perturbations in the solution
(i.e. FE/0e; = 0 for all ¢) leads to the matrix eigenvalue problem

(H— E)c=0, where H = (H,;). (12)

Thus the total energy is an eigenvalue of the interaction matrix, and the expansion coef-
ficients of the wave function form the corresponding eigenvector. Of course, in order to
compute the interaction matrix, the radial functions need to be known.

The MCHF problem is solved iteratively by what is often called the multi-configuration
self-consistent field (MC-SCF) method. Using estimates of radial functions, expansion
coefficients are determined. Then, in turn, radial functions are updated so as to leave the
energy stationary: a new interaction matrix is computed and an improved expansion vector
obtained. This process is iterated until results are “self-consistent”.

In the MCHF atomic structure package, an interactive program GENCL (Fischer and
Liu, 1991) is used to generate configuration state lists using some simple rules. Then
the NONH program (Hibbert and Fischer, 1991) generates the angular coefficients and
associated list of integrals that define the energy expression and the interaction matrix.
If the radial functions are already determined, a CI (Fischer, 1991a) program determines
selected eigenvalues and eigenvectors. By optimizing the radial functions for a particular
state, much better accuracy can be obtained: the MCHF program (Fischer, 1991b) solves
the optimization problem, computing both the radial functions and the mixing coefficients.

Once the wave function has been determined, other atomic properties can be predicted
as expectation values of appropriate operators, i.e.

(property) = (Vu|OP|¥;), (13)

where OP is the operator associated with the property and ¥; and V¥, are wave functions
for the initial and final state, respectively. In some cases, as for the energy, ¥; = W,.
Substituting (3) into (13) we then get the result

(property) = ch (©(7iL5)|OP|®(7i LS)). (14)

The computation of the matrix elements (®(v;L.S)|OP|®(~LS)) and the summations
over the CSF’s involved are fundamental to the prediction of atomic properties. Such
matrices are symmetric so only the lower (or upper) portion needs to be computed. Two
programs for operator evaluation have been developed: 1SOTOPE (Fischer et al., 1993) eval-
uates the specific mass shift and HYPERFINE (Jonsson et al., 1993) evaluates the hyperfine
structure parameters, given the wave function expansions and the radial functions.



2 The PVM Choice

Conceptually, PVM consists of distributed support software that executes on participat-
ing UNIX hosts on a network, allowing them to interconnect and cooperate in a parallel
computing environment. A daemon (pvmd) is started on each of these hosts and programs
communicate between hosts through the local daemons. This distributed communication
control eliminates the overhead of a master control process, and facilitates functionalities
as point-to-point data transfers and dynamic process groups. In addition the software is
written in a low level language, thus dispensing with the overheads that other systems
have (eg., P4, Linda, etc). PVM provides a suite of user interface primitives to control the
parallel environment that may be incorporated into existing procedural languages. There-
fore, porting a single CPU program to PVM should present no additional difficulties from
porting it to a distributed memory multiprocessor such as the CM-5 or iPSC/860.

There are many more attractive reasons for using PVM other than its flexibility. It
offers an inexpensive platform for developing and running parallel applications. Existing
workstations or even mini and supercomputers can be linked together on existing networks
(Ethernet, FDDI, or even Internet) and challenge the performance of many massively paral-
lel computers. The support of heterogeneous machines offers a better utilization of resources
and it facilitates a partitioning of special tasks according to the specialized hardware. Also,
the support of the popular programming languages C and Fortran enables the use of highly
optimized compilers, debuggers, editors and monitoring tools that are not always available
on parallel machines. Most important, however, is the integration of disjoint memories and
disk space from the participating machines. It is not uncommon that today’s workstations
have main memories in the range 64-256 MBytes. In this case an accompanying disk of 1-2
GByte is also reasonable. Eight 128-MByte workstations working under PVM have more
memory than a 128-node iPSC/860 and a considerable amount of disk space. Considering
also the data duplication required on 128 processors, the solvable problem size under PVM
is much larger, for a significantly lower cost.

Porting MCHF to PVM is suggested by many of the above features as well as by its
previous parallelization on the iPSC/860. Specifically, an earlier Cray implementation has
demonstrated poor vector performance and does not account for using such an expensive
machine. Subsequent iPSC/860 implementations have yielded better speed-ups, but be-
cause of the limited memory size on the nodes (8-16 MBytes), solution of large problems has
been infeasible. Solving large problems more accurately, faster, and without the high costs
for current multiprocessors machines are the motives behind the PVM implementation.

However, PVM is not without disadvantages. First it is public domain! Although this
is usually cited as an advantage, it implies lack of a full working guarantee. Caution should
be taken whenever an application is ported to PVM. A possible problem with heteroge-
neous computing is the incompatibility between mathematical libraries. However, most
of the known manufacturers adhere to the standards. The major problem in distributed
memory multiprocessors is the high communication and synchronization costs. Various
high performance networks have been adopted to alleviate the problem; the hypercube
interconnection for hypercubes, the fat-tree interconnection for the CM-5, various mesh
interconnects for CM-2, Paragon and others. In the case of PVM, the network is sim-
ply an Ethernet Bus or FDDI connections. For generality and compatibility reasons, the



low performance communication protocols have been retained in PVM. As a result, PVM
communication is slow, with high latencies, and no specific topology with nearest neighbor
links. In increased network traffic, communication becomes the bottleneck of the appli-
cation. In addition to network problems, current PVM version (3.2) performs excessive
buffering of messages during message passing, further slowing communications. Finally,
PVM does not support asynchronous send/receive operations and collective operators are
not efficiently implemented.

2.1 Implications to code development

The above discussion of PVM implies that porting an application to PVM is not merely a
translation of a previous parallel code. The characteristics of MCHF that affect the PVM-
parallel performance are studied in the next section. In this section the effect of network
programming on basic global communication primitives is discussed.

Parallel scientific applications are built around some basic communication utilities that
involve all or groups of processors: global synchronization, global element-wise summation
or computation of the minimum/maximum values of an array, global concatenation (col-
lection) of a distributed array etc. A complete list of such utilities developed for PVM is
shown in Table 1. This section studies the global sum (GSUM) as a representative of the
reduction operations (i.e., operations that combine values from different processors to give
one result-value), and also the global collection operation (GCOL). Since these routines
are called numerous times during execution, their efficient implementation is vital to the
performance of the algorithm.

Table 1: Global communication operations implemented for PVM. Except for the global
collections all routines apply element-wise to arrays.

GCOL | Global concatenation || GCOL_SPC | Global special collection
GSUM | Global summation SWAP 2-node info swapping
GLOW | Global minimum GMAX Global maximum
GAND | Global AND GOR Global OR

Algorithms for multiprocessors

In massively parallel processors the fan-in algorithm is usually the choice for implementing
reduction operations, and the fan-out for broadcast or collection operations. They are both
logarithmic in the number of processors and linear in the size of the arrays involved. As-
suming that the number of processors is a power of two (P = 2%), the fan-in/out algorithms
are based on interchanging information in the d dimensions successively. After the d steps
all processors have the final information. In the fan-in algorithm the communicated array
is always of the same size (V). For the fan-out the size of the array doubles in each step,
starting from N/2¢. If the network has a hypercube topology or it supports direct com-
munication links between nearest neighbors, processors can execute in parallel, or partly
in parallel, in each of the d above steps. However, for bus based networks as the Ethernet,



all these messages have to serialize. Efficient PVM routines should take this into account,
minimizing the number of messages and the amount of traffic incurred.

Algorithms for PVM

Let P = 2% the number of PVM processors and N the size of an array. The fan-in algorithm
that performs a GSUM on the array, sends d P messages and communicates a total of dPN
numbers. The amount of traffic can be reduced by the following simple algorithm: Node 1
sends the array to node 2, node 2 adds its contribution and sends it to node 3, and so on
until node P has added its own contribution. At that time the result can be broadcasted to
nodes 1 to P—1. The number of messages is now 2(P —1), having communicated 2(P—1)N
numbers. Moreover, the last message is a broadcast which can be usually implemented as
a fast, single message on a bus-network. This does not apply, however, to the current
release 3.2 of PVM, because broadcast messages pass through the local daemons and they
do not exploit the point-to-point communication facility (Douglas et al., 1993; Geist et al.,
1993). It is thus more efficient to explicitly send the message to each processor. Even in
this case, the network traffic is smaller and the algorithm should perform better than the
fan-in. Figures 1(a) and 1(b) demonstrate this for small and large size arrays respectively.
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Figure 1: Execution times for the fan-in and sequential algorithms, for small (a) and large
(b) vector sizes. Times represent averages from 100 executions.

For the GCOL operation the fan-out algorithm is optimal with respect to the number
and size of messages sent, when these are serialized. It can easily be shown that the number
of messages is dP and the total size of communication is (P — 1) N numbers. Any algorithm
under PVM which required at least one broadcast of the final concatenated array, would
involve communication of more than (P — 1)/N numbers. Despite this optimality, another
PVM problem related with the fan-in/out approach may cause inefficiencies for small sizes.
In each step of the fan-in/out algorithm, half of the processors attempt to send a message
simultaneously and a lot of conflicts occur on the Ethernet. Because of the high latencies
of PVM sends, these repeated sending attempts cause overheads, especially with small size
arrays. To alleviate this problem without increasing the communication volume, an algo-
rithm similar to the above for GSUM has been implemented. Each node receives the local
parts of the array (approximate size N/P) from lower numbered nodes, it then broadcasts
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its local part to all nodes, and waits to receive the local parts from higher numbered nodes.
Again broadcasting takes place in the aforementioned way. It can be seen that the number
of messages has increased slightly to (P — 1)P but the communicated volume is the same:
(P — 1)N. However, the ordered communication offers smaller overheads than the fan-out
algorithm which is clear from Figure 2(a). Otherwise, the two algorithms scale similarly
and for large sizes they are identical (Figure 2(b)).
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Figure 2: Execution times for the fan-out and sequential algorithms, for small (a) and large
(b) vector sizes. Times represent averages from 100 executions.

Finally, it should be mentioned that in general the number of processors is not a power
of two, in which case the benefits from using the above algorithms over the fan-in/out can
be larger. The above strategies have been followed for the rest of the global operations
appearing in the next section.

3 Implementing MCHF on PVM

3.1 The parallel profile of the package

The MCHF atomic structure package consists of a series of programs that communicate
information through files. The basic two programs are the NONH and MCHF, while the rest
(c1, HFS, 1SO and BRCI) share similar structure and algorithms. The NONH (Hibbert and
Fischer, 1991) program computes the static data needed for the self-consistent-field (SCF)
iteration. The MCHF (Fischer, 1991b) program performs the SCF iteration and in each
cycle an eigenvalue problem involving the Hamiltonian is solved for the required lowest
eigenvalues (energy states). The radial functions are updated using the solution of the
coupled system of integro-differential equations. The BRCI is a straightforward extension
to the NONH and CI programs, that computes the additional Breit-Pauli interaction on each
of the matrix elements. However, it is usually called when a full optimization of the radial
functions cannot be afforded, because of the size of the problem.

As it has been mentioned in the previous implementation (Fischer et al., 1994), the
computation of the angular coefficients and the determination of associated integrals is



logical in nature and does not vectorize well. However, the calculations for each matrix
element are independent and thus easily distributed over many processors. The distribution
by columns has been followed both in (Fischer et al., 1994) and in the current PVM
implementation. With this distribution option, processors can compute the angular parts
of each element in the local columns completely in parallel in the NONH program. The
MCHF program is iterative in nature and its parallelism does not share the same coarse
grain granularity with NONH. Its phases however are easily parallelizable. In the first
phase the values of the integrals are calculated in a distributed manner, the coefficients are
read from disk and the local parts of the Hamiltonian are computed on each node. At the
end of this phase a large eigenvalue problem is solved using a parallel method. The method
used in the PVM implementation differs from that in (Fischer et al., 1994). In the second
phase the integral coefficients are updated in parallel and after a global summation they
are used for setting up and solving the integro-differential equations. Most of the solution
process takes place in parallel with some intermediate synchronization points. Therefore,
the parallelization profile of NONH and MCHF is similar to the one in (Fischer et al., 1994).
NONH entails a fork of tasks initially and a join only at the end. MCHF consists of several
forks and joins in each iteration.

3.2 Problems with previous implementations

The code in (Fischer et al., 1994) provided partial solutions to the parallelization ineffi-
ciencies of a previous effort in (Bentley and Fischer, 1992). The source of inefficiencies
in (Bentley and Fischer, 1992) can be traced in the following two problems:

1. The storage of the full matrix despite its symmetry, and the use of a full matrix
method to solve the eigenvalue problem.

2. The choice of distribution strategy and data structure for computing the values of
integrals.

In an attempt to solve the first problem, the full matrix was replaced by a half matrix,
storing only the lower triangular part (Fischer et al., 1994). The Rayleigh Quotient Iteration
was then applied to find the required eigenstates. Since in general the Hamiltonian is not
positive definite, a parallel implementation of the Doolittle factorization was used, such
that A = LDL*, where L is a triangular matrix, D a diagonal matrix, and only half of A
is stored (Shen, 1991).

The distribution of columns to processors is performed in an interleaved (or wrap-
around) way. With this static scheme the local columns tend to span uniformly the whole
matrix, providing good load balancing. The data structure used in the calculations consists
of two coupled lists. The first is the list of integrals generated for the local columns of the
node. Fach integral has a pointer pointing to the group of coefficients associated with that
integral. The second is the local list of coefficients together with the pointer that points to
the matrix element that this coefficient contributes to. This information is built in NONH
once, and it is used in each iteration of MCHF. Therefore, all necessary computations of
integral values in MCHF are performed locally on each node and independently from other
nodes. The problem stems from the fact that the many integrals often appear in more than
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one nodes. Thus, in the eigenvalue phase, many nodes are computing the same integral,
though using it only in the local columns. Similarly, in the differential equation phase,
many nodes may be computing the same functions contributing to their local G;(r). To
dispense with this time-consuming redundancy, NONH was modified in (Fischer et al., 1994)
to merge-sort all the local integral lists before exiting, so that a duplicate-free global list
is available on each node. When later the integral values are needed in MCHF, each node
computes the values of only a small part of integrals and the array of values is globally
collected (GCOL).

The above two changes improved the MCHF performance significantly. However, NONH’s
parallel profile and execution speed was impaired by a long communication and sorting step
at the end. There are also other problems that the implementation in (Fischer et al., 1994)
did not address, a list of which appears below:

(a) The symmetric matrix still has to be factored. The cubic computational order of this
task makes the method prohibitively expensive for very large problems.

(b) As the number of nodes increases, static load balancing proves more and more in-
effective for distributing the work equally among nodes. This is especially the case
when each node has very few columns.

(c) The problem sizes solvable by the iPSC implementation are limited because of the
restricted main memory on each node, as well as the the static memory allocation
and the absence of virtual memory that the operating system imposes.

(d) Finally, the sorting phase at the end of NONH not only slows down the program, but
its memory demands cause an application bottleneck by limiting the size of coefficient
lists that can be processed.

The PVM implementation successfully resolves the above problems leading to a fast and
robust code.

3.3 PVM enhancements

An efficient implementation should take into account both program and hardware character-
istics. The current locally available hardware configuration is a cluster of four IBM /RS6000-
370 workstations connected on an Ethernet network. Each computer has 128 MBytes main
memory and nearly 2 GBytes of disk. A number of Sun SPARCstations are also available
but have not been integrated into the system. This is mainly because of the increase in
communication costs between heterogeneous machines and the small computational con-
tribution. Currently, we are looking for ways to efficiently embed these machines in the
system.

The Davidson algorithm

One of the major changes in the PVM implementation is the use of the Davidson sparse-
matrix, iterative solver for the eigenvalue problem (Davidson, 1975). There are many
advantages of such a solver: First, the matrix is not factored or modified. Second, the
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matrix is only needed implicitly through a matrix-vector multiplication. Third, the zero
elements of the matrix may not be stored. As a result this method is much faster than
the method used in (Fischer et al., 1994). In addition to the above, the Davidson code
developed in (Stathopoulos and Fischer, 1994) possesses many additional features, such as
targeting specific eigenpairs, using a block method and other powerful techniques.

The Davidson algorithm is similar to the Lanczos algorithm, in that it relies on matrix-
vector multiplications to build a Krylov space from which the required eigenpairs are ap-
proximated. The difference is that the Davidson algorithm preconditions the new basis
vector in each iteration (Stathopoulos and Fischer, 1994; Morgan and Scott, 1986; Umar
and Fischer, 1989). Therefore, the simple three-term recurrence of Lanczos is lost and a
full orthogonalization of the new vector must be performed. In return for this increase
in computation, the Davidson method considerably reduces the number of iterations de-
pending on the quality of the preconditioner. Since in atomic structure calculations the
diagonal preconditioning (scaling) has been shown to be very effective (Stathopoulos and
Fischer, 1994), and because of its excellent parallel properties it is adopted in the PVM im-
plementation. A parallel implementation of the Davidson algorithm for the hypercube has
been developed in (Stathopoulos and Fischer, 1991), and its parallel properties have been
studied in (Stathopoulos and Fischer, 1993). The matrix-vector multiplication is computed
from the half part of the sparse matrix. After each node has computed its contributions
to the resulting vector, the vector is globally summed over the nodes. Since this incurs a
communication step in each Davidson iteration, reducing the number of iterations is one
of the very desirable features of the Davidson over the Lanczos method.

Load balancing

Providing a solution to problem (b), i.e., the inefficiencies caused by static load balancing,
is not as easy as for the eigenvalue problem (a). Three are the main reasons:

e Employing dynamic load balancing involves several additional communication and
synchronization points.

e On a network of workstations, there are two sources for load imbalances: machine
heterogeneity and various loads from other users. The first is predictable but the
second is not and thus any static load balancing scheme will bear this problem.

e The data structure used in MCHF is produced by NONH. A load balanced NONH does
not necessarily imply a good load balancing for MCHF, since the load of each system
might change between the runs.

The NONH may benefit from dynamic load balancing because of its parallel nature with no
synchronization points. The same is not the case with the eigenvalue phase of MCHF since
the matrix distribution has been determined earlier. Dynamic load balancing can only be
applied to the solution of the integro-differential equation. However, because of the much
shorter duration of this phase than NONH, the additional synchronizations would probably
offset any benefits from better load distribution.

Dynamic load balancing is still a topic of research, so the current PVM implementation
provides two static load balancing alternatives. One is the previously used interleaved
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column scheme (Fischer et al., 1994), and the other is a block scheme, where processors are
assigned a number of contingent columns. The reason for the inefficiencies of the interleaved
scheme in (Fischer et al., 1994) has been traced to the relatively large number of processors
(8-64), and to the small sizes of the matrices. In the PVM code this is not a concern
since a small number of workstations with large amounts of memory are linked together.
In the experiments and timings appearing in the next section, the interleaved scheme has
given almost perfect load balancing for both NONH and MCHF. The only concern for this
scheme is the aforementioned second reason: heterogeneity and variations in system loads.
This is where the block scheme offers some improvements. On input the user provides the
relative speeds of the machines that participate in the calculation. Based on these data
and assuming that the nonzero elements are evenly distributed between distant matrix
locations, a routine determines the number of columns that each node computes. The
same distribution must inevitably be followed by MCHF. It should be noted that the
relative speeds can model heterogeneity or different loads.

Facilitating large problems

Problems (c¢) and (d) of the previous implementation are intimately related since the sorting
phase places restrictions on the solvable problem size. The transition from the iPSC/860 to
workstations has increased the availability of resources. In the PVM implementation this
increase is exploited in order to overcome problem (c) of the previous codes. Specifically,
dynamic memory allocation is used for meeting the memory needs of the phases of each
program. For example, in MCHF the eigenvalue phase requires the matrix and its indices to
be in memory while in the later differential equation phase the allocated matrix memory
is freed to be used for other storage. In addition to the large main memories of the
current hardware configuration, the virtual memory of the systems can also be exploited.
A maximum 256 MBytes of virtual memory has been assigned to each processor. In this
way many memory-demanding parts of the code do not have to be rewritten to use a disk-
version, which often is not a trivial or even possible task. As a result of the above, very
large and accurate calculations can be obtained from the new implementation. The sizes
of the test problems in the next section are more than tenfold the sizes solved previously
on the iPSC/860 (Stathopoulos et al., 1994).

In a first attempt to alleviate problem (d) for the NONH sorting phase, the code has
been optimized and with the help of dynamic memory allocation the memory requirements
have been reduced by one fourth. Despite this fact and the large available memories, some
of the very large problems still encountered memory limitations. In this first attempt to
make a working package, a disk version of the merge-sort routine has been written that
does not require all the integrals to be in memory. Instead, sorting and merging proceed
by reading blocks of integrals. The work is still distributed over the nodes but execution
time deteriorates significantly. With this solution the goal of a working package has been
achieved, but the concern over the efficiency requires rethinking of the algorithm and data
structure. This is addressed below.
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Restructuring improvements

During the NONH phase of the computation the lists of angular coefficients and correspond-
ing radial integrals associated with the non-zero matrix elements of the Hamiltonian matrix
are generated. As mentioned in section 3.2, the same integral can occur in many different
places of the coefficient list. To avoid the repeated evaluation of the same integrals from
many nodes in MCHF, the data is merge-sorted according to integrals at the end of the
NONH run. After this merge-sort phase all nodes have a duplicate-free global list of inte-
grals. Problems (c¢) and (d), i.e., speed and solvable problem size restrictions, are associated
with this approach.

To overcome this merge-sort “barrier” a new approach is adopted. Instead of creating
the associated integrals for each coefficient sequentially, a list of all possible integrals is
generated. This is done using simple selection rules, based only on the list of all electrons
that are occupied in at least one of the configurations (CFG’s). Computationally, this step
is not very expensive since only the list is generated and not the values. It turns out that for
large cases, more than 1000 CFG’s, most of the possible integrals are actually used. Even
so, a logical index array that indicates whether an integral is used in the construction of
the local matrix has been included. If pointers are assigned to the corresponding integrals
as the local coefficients are generated, no sorting is needed. In the MCHF phase all the
integrals are evaluated in a distributed manner as before. The difference is that the global
logical index array produced in the NONH phase is used to determine if an integral is to be
evaluated or not.

An additional benefit of this approach is that coefficient data appears in the order that
it is used during the generation of the matrix elements. This simplifies the file handling
and additional memory can be saved. Moreover, the matrix can be generated one column
at a time. This enables disk matrix-storage and thus the facilitation of extremely large
cases, even when physical memory does not allow it.

The above outlined scheme is implemented in the codes prefixed with a “U”. The
UNONH has very good parallel characteristics which is clear from the next section. Also,
execution time is usually better than the old codes since the overhead introduced by having
a predefined integral list accessed through a lookup procedure is compensated by the lack
of sorting and decreased communication needs.

For the UMCHF code there is a communication overhead introduced by the somewhat
longer list of integrals. In this list, even though unused integrals are not calculated, their
zero values are communicated. Future implementations will dispose of this overhead in the
expense of gathering and scattering of integrals. The book-keeping of the non-zero matrix
elements is also somewhat more involved. Therefore, the total runtime for the UMCHF code
should be slightly longer than the corresponding times for the MCHF code. However, the
new codes are more flexible and robust and can handle arbitrarily large cases.

The UBRCI code has benefited the most from the above data structure since previously
integrals were computed in an inefficient way. The changes result in not only better par-
allelizability but in much shorter execution time as well. Since UBRCI is used for cases so
large that UMCHF cannot be used efficiently, the benefits of the new data structure are
significant.
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Other enhancements and tools

Further optimizations have been possible to some pieces of the code. In the differential
equation phase the work for the computation of the Y¥; and G; functions can be distributed
over the nodes, requiring global summation at the end. In the hypercube implementation
the global summation is performed twice, once for the values of each function. In the
PVM code all work requiring the Y; and G; functions is postponed until both sums are at
hand. Thus, only one global sum is needed, reducing synchronization and overheads. Since
the above routines are time consuming and they are called frequently, this modification
improved the speed-up and the execution time of this phase.

Similar enhancements have been extended to the other programs in the package, namely
CI, ISO, HFS, because they share a form similar to NONH. BRCI, not present in (Fischer
et al., 1994), has also been implemented in PVM. The efficient parallelization of this code is
important, since it is used for very large cases. The initial phase is similar to NONH while in
the second phase the parallel Davidson algorithm is used for solving the eigenvalue problem.
To provide fault tolerance to the long runs incurred by BRCI, a restarting mechanism has
been embedded that uses the data files that each node stores on its local disk.

Finally, besides the global operations in Table 1, various tools and utility routines have
been developed that provide a user-friendly interface to the user and some “performance
debugging” capabilities to the developer. A user should only provide the list of machines to
be used and their expected speeds, and invoke a simple X-interface to PVM on one of these
machines. Temporary files on local disks, paths, distribution, and output files are handled
by the utilities. After the completion of the run a cleaning utility frees the temporary
disk space. Minor code modifications have also allowed the production of trace-files for
monitoring performance of parallel processes. Tools, that depict this information in a way
similar to PARAGRAPH (Heath and Etheridge, 1991) have been of considerable aid to the
code improvements. In Figure 3 the system load and the communication pauses of each
process for one MCHF iteration are shown.

4 Results and Timings

Experiments with the above codes have been performed on two and four nodes of the
aforementioned cluster. Briefly, the experiments show that the initial PVM implementa-
tion behaves in a similar way to the hypercube one, as a result of the special care taken
for transporting it. They also show that the bottlenecks of the first implementation are
successfully faced with the new data structure.

Four test cases have been used in the experiments. They are all based on the calculation
of the hyperfine structure in the ground-state of the neutral Na atom. The first list contains
all double and single excitations that can be performed when the single electron orbitals
are limited to have quantum numbers with n < 11 and [ < 5. The second list is obtained
with n < 12 and [ < 5. The third and fourth lists also contain some selected triple
excitations and the number of CFG’s is dramatically increased. These cases constitute a
worst case scenario of many possible test cases in three ways. First, they have a large
number of integrals associated with a comparatively limited number of configurations.
Thus, all the codes are expected to spend a significant amount of time communicating,
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Figure 3: Top: communication (blanks) and computation (lines) intervals for each proces-
sor, for one MCHF iteration. Bottom: accumulative percentages of time distribution on
each processor, to CPU, Idle and Wait time, for the same MCHF iteration.

16



calculating and book-keeping integrals. Second, the eigenvalue problem that is solved in
each SCF iteration is not well conditioned and thus the Davidson algorithm takes more
than 100 steps to converge. This involves a corresponding number of communication steps
in each SCF iteration. Third, the memory requirements of these cases can be met by the
main memories of even a single machine in the cluster. Thus, speed-ups emanating from
reduced page-swapping, by distributing the virtual memory needs, are not present in the
following timings. Different cases or use of clusters with smaller memories demonstrate
better efficiencies.

Table 2: Initial PVM implementation. Time (T), Speedup (S) and Efficiency (E) for 1, 2

and 4 nodes.

Benchmark results for NONH

CFG’s 1 Node 2 Nodes 4 Nodes

T T S E T S E
7158 7490 | 3832 1.95 0.977 | 2272 3.29 0.824
8960 11731 | 6160 1.90 0.952 | 4038 2.90 0.726

10965 17274 | 9057 1.91 0.954 | 6515 2.65 0.663
16091 29459 | 14989 1.97 0.983 | 8430 3.49 0.874

Benchmark results for MCHF

CFG’s 1 Node 2 Nodes 4 Nodes

T T S E T S E
7158 2499 | 1325 1.87 0.943 | 1051 2.38 0.594
8960 3862 | 2367 1.63 0.816 | 1786 2.16 0.541
10965 5756 | 3692 1.56 0.780 | 2495 2.31 0.577
16091 5429 | 3336 1.63 0.814 | 2109 2.57 0.644

Benchmark results for BRCI

CFG’s 1 Node 2 Nodes 4 Nodes

T T S E T S E
7158 16177 | 12860 1.26 0.629 | 7861 2.06 0.514
8960 32913 | 27281 1.21 0.603 | 16290 2.02 0.505

10965 65674 | 56396 1.16 0.582 | 36760 1.79 0.447

Tables 2 and 3 show results from the initial and restructured PVM implementations
respectively. For each of the four cases, time, speed-up and efficiency for one, two and four
nodes are reported. The best available uniprocessor code is used for this benchmarking.
Timings are given only for NONH, two MCHF iterations and BRCI. The rest of the suite
programs (ISO, CI, HFS) have very short execution times (see also (Fischer et al., 1994))
and their parallelization serves more for maintaining format compatibility.

In Table 2 the initial PVM implementation effort is depicted. The speed-ups and effi-
ciencies are similar to the ones reported for the hypercube version (Fischer et al., 1994). The
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effect of the much slower network is counterbalanced by the larger problems. This enables
also a very good load balancing stemming from the interleaved scheme. This table provides
a verification of the bottlenecks present in NONH and BRCI despite the inherent parallelism
of the methods. In NONH parallelism is impaired by the communication-intensive merging
phase, reducing the efficiency on four processors to 66%. Since BRCI was not implemented
in the hypercube version, the initial data structure is proved inefficient for this code. Par-
allel efficiencies hardly reach 50% for four nodes, even for long execution times. What is
more alarming is that increasing problem size does not improve the efficiency because of
duplication of integrals. The iterative nature of MCHF which forces a medium grain parallel
method accounts for the relatively low efficiencies on table 2. Despite these bottlenecks
and inefficiencies, the size of the problems solved is more than eight times larger than those

in (Fischer et al., 1994).

Table 3: PVM implementation of the restructured (“U”) codes. Time (T), Speedup (S)
and Efficiency (E) for 1, 2 and 4 nodes.

Benchmark results for UNONH

CFG’s 1 Node 2 Nodes 4 Nodes

T T S E T S E
7158 8459 | 3646 2.32 1.160 | 1855 4.56 1.140
8960 11232 | 5690 1.97 0.985 | 2909 3.86 0.965

10965 16864 | 8579 1.97 0.985 | 4363 3.86 0.966
16091 28677 | 14471 1.98 0.990 | 7293 3.93 0.983

Benchmark results for UMCHF

CFG’s 1 Node 2 Nodes 4 Nodes

T T S E T S E
7158 3083 | 1486 2.07 1.035 | 997 3.09 0.773
8960 4707 | 2308 2.04 1.020 | 1526 3.08 0.771
10965 6782 | 4066 1.67 0.835 2338 2.90 0.725
16091 5908 | 3501 1.69 0.845 | 2068 2.86 0.714

Benchmark results for UBRCI

CFG’s 1 Node 2 Nodes 4 Nodes

T T S E T S E
7158 7502 | 3853 1.95 0.974 | 2067 3.63 0.907
8960 11779 | 6015 1.96 0.979 | 3200 3.68 0.920

10965 18014 | 9062 1.99 0.994 | 4877 3.69 0.923
16091 29709 | 14966 1.99 0.993 | 7787 3.82 0.954

In Table 3 the significant improvements of the restructuring are evident. After the
disposal of the sorting and merging phase, UNONH exhibits an ideal speed-up for both two
and four nodes and for all cases. The uniprocessor code has also been sped up slightly.
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Table 4: PVM restructured (“U”) codes on the IBM SP2 multiprocessor. Results for 4, 8

and 14 nodes. Speedup and efficiency are based on the 4-node time.

Benchmark results for UNONH

CFG’s 4 Nodes 8 Nodes 14 Nodes

T T S E T S E
7158 1180 | 616 1.92 0.958 | 380 3.11 0.887
8960 1830 | 950 1.93 0.963 | 569 3.22 0.919
10965 2765 | 1406 1.97 0.983 | 849 3.26 0.931
16091 4638 | 2355 1.97 0.985 | 1389 3.34 0.954

Benchmark results for UMCHF

CFG’s 4 Nodes 8 Nodes 14 Nodes

T T S E T S E
7158 538 | 345 1.56 0.780 | 355 1.52 0.434
8960 846 | 519 1.63 0.815| 504 1.68 0.480
10965 1317 | 775 1.70 0.850 | 719 1.83 0.523
16091 1091 | 643 1.70 0.848 | 640 1.70 0.487

Benchmark results for UBRCI

CFG’s 4 Nodes 8 Nodes 14 Nodes

T T S E T S E
7158 1304 | 736 1.77 0.886 | 503 2.59 0.741
8960 2028 | 1148 1.77 0.883 | 775 2.62 0.748
10965 3043 | 1691 1.80 0.900 | 1136 2.68 0.765
16091 4875 | 2584 1.89 0.943 | 1634 2.98 0.852

The UMCHF uniprocessor timings have increased about 10-20% from the initial ones, as
predicted in the previous section, but the parallel efficiency of the code has improved by
more than 15% for most cases. As a result, the UMCHF code is faster than the MCHF on
four nodes and looks more promising for larger clusters. The benefits of the new data
structure are more pronounced in the UBRCI case. The uniprocessor code is almost four
times faster than the BRCI and it also exhibits an excellent parallel efficiency. Considering
the execution times of cases for which BRCI is used, the new codes contribute enormous
time savings.

An advantage of the developed PVM codes is that they are readily transportable to the
IBM SP2 multiprocessor. To show the scalability of the new codes, the above cases have
also been tested on the IBM SP2, with 16 Thin Power 2 RS6000 processors, using the High
Performance Switch interconnection. The results shown in Table 4 reveal that even for
these relatively small cases, good scalability persists even for 14 nodes for the UNONH and
UBRCI. The iterative nature of UMCHF results in smaller efficiencies, but only for 14 nodes.
The UMCHF and UBRCI speedup curves for the smallest case on the SP2 and on the local
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4-node cluster are shown in Figures 4 and 5 correspondingly. These timings show that the
SP2 multiprocessor can efficiently be used for extremely large atomic data calculations. In
one of our experiments, a 68000 CFG’s BRCI problem was solved in less than 2 hours using
12 processors.

UMCHF Speedup of SP2 and of the 4 IBM cluster
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Figure 4: UMCHF speedup curves for the smallest case on the SP2 and on the local 4-node
cluster
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Figure 5: UBRCI speedup curves for the smallest case on the SP2 and on the local 4-node
cluster

Finally, it should be mentioned that tables 2 and 3 do not show the effect of the memory
barriers’ removal from the “U” codes. It is now possible to run cases with even 100000
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configuration states, provided that the disk space is sufficient. In such cases more efficient
use of virtual memory would lead to superlinear speed-ups. This is obvious even from the
initial codes when run on 64 MBytes of memory (see table 5 and also (Stathopoulos et al.,

1994)).

Table 5: Superlinear speed-ups for the initial codes when run in smaller memory configu-

rations
NONH
Case | 1 Node | 4 Nodes | Speed up
7158 9169 2622 3.50
8960 23350 5745 4.06
10965 | 15725 5544 2.84
MCHF
Case | 1 Node | 4 Nodes | Speed up
7158 9388 4876 1.93
8960 21541 2910 7.04
10965 | 11894 2011 5.91

Benchmark results for 64 MBytes memory

5 Conclusions

Accurate calculation of atomic data requires large and time-consuming computations. The
MCHF package is a suite of codes designed for this purpose. A PVM implementation is
based on a previous hypercube code. The special characteristics of network programming
and PVM are taken into account so that the PVM code retains the parallel behavior of
the hypercube one. For this purpose, utility routines for global reduction and collection
operations have been written and a user-friendly interface has been developed.

The data structure used in this program is the source of the time inefficiencies observed
in both the hypercube and the PVM version. In addition, this data structure puts severe
limits on the size of the problems that can be solved. A restructuring of the methods has
provided new codes that do not bear these limitations and that exhibit significantly better
speed-up for the MCHF code and almost ideal speed-ups for the BRCI and NONH.

Besides these algorithmic improvements, this paper has also presented a flexible code,
that can be used in workstation clusters to solve problems of one order of magnitude larger
than any previous attempts, and thus facilitate new research in various scientific fields.
Moreover, by using the code on the IBM SP2 multiprocessor with 8, or more processors,
new breakthrough calculations are being performed.
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