Adapting to memory pressure from within scientific
applications on multiprogrammed COWSs

Richard T. MillsT Andreas Stathopoulds Dimitrios S. Nikolopoulos
October 15, 2003

ADbstract free algorithm that uses no system information
beyond the resident set size (RSS) of the pro-

Dismal performance often results when tH#am. Our resulting library can be called by sci-
memory requirements of a process exceed @félflc codes with little Change to their structure
physical memory available to it. MoreovelOf with no change at all, if computations are al-
significant throughput reduction is experiencégady “blocked” for reasons of locallity.
when this process is part of a synchronous parExperimental results with both sequential
allel job on a non-dedicated computational clugnd parallel versions of a memory-adaptive
ter. A possible solution is to develop progranf9njugate-gradient linear system solver show
that can dynamically adapt their memory usaggbstantial performance gains over the original
according to the current availability of physicalersion that relies on the virtual memory system.
memory. We explore this idea on scientific confrurthermore, multiple instances of the adaptive
putations that perform repetitive data accessé@de can coexist on the same node with little in-
Part of the program’s data set is cached in rdgrference with one another.
ident memory, while the remainder that cannot
fit is accessed in an “out-of-core” fashion from]
disk. The replacement policy can be user dd- | ntroduction
fined. This allows for a graceful degradation
of performance as memory becomes scarce. Aowerful, yet cost efficient, clusters of work-
dynamically adjust its memory usage, the pretations (COWSs) bear the brunt of the scien-
gram must reliably answer whether there istdic computing workload at many institutions.
memory shortage or surplus in the system. BEhese can be dedicated, space-shared COWSs,
cause operating systems typically export limitext, quite often, networks of desktops used as a
memory information, we develop a parameteshared computational resource for parallel and
sequential jobs. Besides increased computa-
*Work supported by the National Science Foundatidtonal power, these environments also address
(ITR/ACS-0082094 and ITR/AP-0112727), a DOE conthe ever increasing memory demands of scien-
putaFic_JnaI sciences graduate fellowship, and the Collegg applications. However, COWs are often
of William and Mary.
'Department of Computer Science, College Shared by one or more research groups, and net-
William and Mary, Williamsburg, Virginia 23187-8795Works of workstations by the pool of local users.
(rt m andr eas/ dsn@s. wm edu). In periods of high demand, (approaching dead-

lines, end of semester, etc.) time sharing the limeme centrally administered batch queue [22,
ited memory resources on these environmed, 15]. This solution assumes full availability

can have particularly adverse effects on the eff resources (including CPUs and memory) for
fectiveness of the system. a job to commence execution. It is adopted in

An example of such adverse effects is our f10St Supercomputing centers, in which proces-
perience with running a large, parallel multi€Ors are dynamically space shared between jobs,

grid code to compute a three-dimensional pgg that each job runs on a dedicated partition of

tential field on four SMPs that our departmefif€ System throughout its execution.

maintains to support computationally demand-The most common problem of these sched-
ing jobs. Our code required 860MB per procesiers is that jobs may suffer high slowdown
sor. Because each SMP node had 1GB availaldempared to a stand-alone parallel execution,
we used only one processor per node. Othiare to long waiting times in the queues. In
users were running smaller jobs at the sammany practical cases, jobs can sustain reason-
time without interference. However, when able performance even with partial availability
user attempted to use Matlab to compute tbé CPU and memory resources. In particular,
QR decomposition of a large matrix on one afata-intensive jobs, the performance of which is
the processors, the time for one iteration of oorost often dominated by I/O time, can sustain
code jumped from 14 seconds to 472 secondglod performance with variable memory space
Such thrashing is a familiar scenario to margvailable to them, as long as they use an edu-
researchers that rely on similar shared envirataeted policy for caching data blocks in memory.

ments. Space-sharing with admission control may
In the presence of memory pressure on somieo be problematic in systems that use small-
node, the local operating system usually choosesle or large-scale SMPs. Although the proces-
one of the following two strategies. It mayors of an SMP can be partitioned between jobs,
swap out some of the competing processeseach job has access to the entire physical mem-
enable the remaining processes to fully utilizzy available on the SMP. In fact, many users
the resources and finish earlier, thus improvipgefer to send their jobs to large-scale SMPs,
the throughput of the node. However, if theuch as the NCSA Origin2000 [8], precisely for
swapped out process happens to be part ofhair ability to oversubscribe memory, i.e. use
parallel job that requires frequent synchronizaaore memory than the memory-per-CPU share
tions, the job experiences extreme increaseahthe CPUs on which their jobs are running.
response time. Alternatively, the system mahis may force the admission control scheme to
choose to time share all jobs, leading to thrasdifocate processors with unit equal to the size of
ing, low CPU utilization, high response time foan SMP, or limit the amount of memory given
all jobs and thus low throughput. The prolto each job to a small fraction of the memory
lem is equally severe on SMPs where memoayailable on the SMP.
pressure may not coincide necessarily with ad-cq_scheduling techniques [19] are an alter-
dlthnal CPU load, and even for sequential jolssive to space sharing. These techniques at-
on time shared compute servers. tempt to keep all parallel processes of a job run-
A typical solution to these problems is nating at the same time on different nodes. Un-
to multiprogram the computational nodes b@brtunately their implementations lack general-
to enforce admission control, usually througly, and also incur large overheads. Further-

2

more, co-scheduling interacts poorly with 1/Othe paper we maintain the generality of our ap-
intensive applications and interactive jobs groach, but we draw our examples from scien-
non-dedicated systems. tific computing, where repetitive access of large

Finally, migrating processes to unloade@nounts of data is typical. Our design goals
nodes may provide a solution on COWs but §€: (1) provide a framework and a supporting
does not work within SMPs, as the shared mefiprary for modifying codes for memory adap-

ory is equally accessible regardless of the notidty that is portable to many applications and

of execution. Migration of parallel jobs in clusOPerating systems, (2) dynamically ascertain the

ters and distributed systems is difficult in theo/gmount of available memory at any point of ex-
and in practice. It incurs high overhead (typfcution, and (3) provide proof of concept for the
cally in the order of minutes, even for programéS€ Of algorithms that perform optimally given a
with small problem sizes) and its effectivene&§rtain amount of available memory that fluctu-
depends on the granularity, execution time, aftfS Unpredictably at runtime.

communication patterns of the application, of In section 2, we summarize other related work

which the system has limited or no knowledd8 context to the problem we study. In section 3,
[27]. we provide a framework for minimally modify-

At th ial level b ing applications and discuss system-dependent
t the sequential system level, because U, o mentation details. In section 4, we de-

ylrtual memory system is not capable of pred'c\gélop a parameter-free algorithm that achieves
Ing th? locality and pattern O_f black accesses Qi second design goal using only runtime mea-
disk, it cannot use prefetching to amortize trE‘:T‘.lrements of the resident set size. Using this al-

h'gh se.ek times qnd its caching policy may rithm, our library enables a graceful degrada-
ineffective, especially on the regular access pgl, of performance as memory becomes scarce.
terns of scientific applications. Earlier researg

i thi : dified . section 5, we modify a Conjugate Gradient
n t IS topic modi 1€ o_pera_tlng systems to AMinear system solver for memory adaptation and
cept hints from applications in order to tune the\'/&e provide timings that show the benefits of our

prefetching and caching policies [6]. HOWever, o thod. We conclude with some discussion on
operating system modification limits portabilitythe future directions of our approach

In this paper, we propose a general framework
for application-level dynamic memory adapta-
tion in a certain class of applications with repeR Related wor k
itive access patterns. Using this framework, an
application can run very efficiently in-core wheA quantitative study of Acharya and Setia [1]
enough memory is available, and, when memadngs shown that the average-case availability of
becomes scarce, can gracefully degrade its pdte memory on multiprogrammed clusters of
formance by shifting some of its work out-ofworkstations is such that users can obtain more
core in a controlled way. Available main memthan half the memory available in each worksta-
ory is used as cache, while uncached pages e for idle intervals that range between 5 and
explicitly brought to and from the disk. Be-30 minutes. The same study has shown that the
cause the application has exact knowledge of thheger the memory requested, the shorter the av-
access pattern, optimal cache and prefetchimigge length of the intervals during which this
policies can be used, vastly improving on whatemory is available for use. The study pro-
the virtual memory system can do. Throughoutded quantitative evidence of the availability

3

of idle memory in networks of workstations, irof available memory. This mechanism assumes
space and time, but did not investigate mechaat the program knows a-priori the lower and
nisms and policies for exploiting idle memorypper limit of the band of available memory on
or the impact of fluctuations of idle memory omhich it can run, and customizes its resident
the performance of applications. set accordingly at startup. This work does not

Batch schedulers for supercomputers suchGsider dynamic changes to the memory avail-
the Maui Scheduler [15], NQE [22], the portab@ble to a program at ru_ntlme (either increases or
Batch System [14] and experimental systerfl§creéases), nor does it address the problem of
[4, 21] as well as schedulers for privatelfUStomizing the memory allocation and replace-
owned networks of workstations and grids, su@ent policy to the memory access pattern of the
as Condor-G [12] and the GrADS schedulin@PPlication.
framework [9], use admission control schemesApplication-specific algorithms for physi-

which allow a job to commence execution ogal memory management [13], and caching,
a computational node only when enough mergrefetching and disk scheduling [6] have been
ory is available on that node. This guarantepsoposed to remedy the problems of generic
thrashing avoidance at the cost of reduced Wberating system policies for memory manage-
lization of memory and potentially higher joliment, such as approximations of the LRU. These
waiting times. To avoid thrashing and othefigorithms have been proposed for stand-alone
undesirable interferences between jobs and #pplications with specific access patterns, rather
system, batch schedulers may employ coar§igan for multiprogrammed systems. Further-
grain measures such as checkpointing and more, they assume generally a fixed amount of
gration of jobs. However, such measures are fysical memory that is available to a program
generally aware of the performance characterig-runtime. Out-of-core methods for sequential
tics or the execution state of the program [27].and parallel numerical programs [10, 23, 28, 26]

Explicit co-scheduling performs a simultadssume that the program runs in a fixed memory
neous context switching on all parallel prospace which is not enough to cache the working
cesses of a job to keep them running at tBet of a program throughout execution, and use
same time [11], but suffers from high contexestructuring optimizations to minimize 1/O la-
switch overheads and limited scalability. Imt€ncy and improve disk utilization. These meth-
plicit co-scheduling uses adaptive local waifds do not react to variations in the memory
ing algorithms based on observed communic+ailable to the program at runtime.

tiqn Iate?n.cies. and f[raffic. [2], but has algqrith- Brown and Mowry [5] developed an approach

mic deficiencies, since it is generally difficulty; integrates compiler analysis, operating sys-
to select optimal waiting times. Other, potefay support, and a runtime layer to enable
tially better-performing forms of co-schedulingyemgry-intensive applications to effectively use
such as dynamic co-scheduling [25] require sUBsqeq “virtual memory. A compiler inserts

stantial modlflcatloqs to Fhe operating SYSteB?efetching hints where it predicts that pages
and may compromise faimess and quality-Qfji| soon be needed. It inserts release hints

Service. where pages are no longer needed and/or where
Chang et.al. [7], have presented a useérpredicts that pages must be released to avoid

level mechanism for constraining the resideakceeding the expected amount of available

set sizes of user programs within a fixed rangeemory. Because conditions at run-time may

4

make releasing a page at a compiler-inserted bboacks. The algorithm operated at page-level
lease hint undesirable, a run-time layer gatheysanularity. However, better optimizations are
from the inserted hints what pages can be messible with application-defined units of data
leased, and executes releases only when nieansfer.

essary. The run-time system requires modifi-In [16], two of the authors followed an
cations to the operating system to add suppagpplication-level approach for memory balanc-
for the user-level prefetch and release paging thg. The idea was to avoid thrashing during
rectives. The above approach has shown sothe most computationally intensive phase of an
good results, although applications with coneigenvalue iterative solver, the so-called correc-
plex memory-access patterns can cause sigtidn phase. If the program detected memory
icant difficulties in identifying appropriate repressure on a node, it receded its correction
lease points. phase from that node, hopefully speeding the
Barve and Vitter [3] presented a theoretf:-omIOIGtiOn of competing jobs. A load balanc-

cal framework for estimating the optimal per'-n.g scheme guaranteed that other nodes would

formance that algorithms could achieve if the[e)/'Ck up the. correction wqu of the receded pro-
ess. Outside the correction phase the code exe-

adapted to varying amounts of available mem- .
: : cuted with memory pressure but for a very short

ory. They presented such optimal algorithms for_ .

. eriod of time.

some popular problems, such as sorting and e

trix multiplication. However, they did not dis-

cuss implementation detgi!s and, most impqg A portable framework for

tantly, how system adaptivity can be achieved. ..

Pang et.al. [20] presented an adaptive version MEMOry adaptivity

of a sorting algorithm, which dynamically splits L o)

and merges the size of the resident buffer ¥any scientific applications, such as sparse it-

adapt to change in the memory available to t§&tiveé methods, dense matrix methods, and

sort by the DBMS. This study was conductdonte Carlo techniques, use blocked algorithms

with a simulator and no implementation detaif® €xPloit memory hierarchies. ~Applications

of the adaptation interface between the alghith data sets that do not fitin the DRAM avail-
rithm and the DBMS were discussed. able in a workstation use typically out-of-core
algorithms, which are also blocked to effectively

In [18], one of the authors presented an adapse DRAM as a cache for disk data. For out-of-
tive scheduling scheme for alleviating memoryore methods, the blocks are often referred to as
pressure on multiprogrammed COWSs, while c@anels to distinguish from disk blocks. Blocked
ordinating the scheduling of the communicagigorithms have a common processing pattern.
ing threads of parallel jobs. That scheme rRormally, data is partitioned int® panels and

qUired mOdIflcatIOI’lS to the Opel’atlng SyS'[em tHe a|g0rithm Operates on them in a |Oop as
[17], the same author suggested the use of d¥own below:

namic memory mapping for controlling the res-

ident set of a program, so that it stays withinfari=1:P

band of available physical memory at any point Get panep; from lower level of the
of execution. The proposed mechanism was memory hierarchy.
application-independent and used generic, but Work onp;.

suboptimal algorithms for eviction of memory Write results back and evigt to the

5

lower level of the memory hierarchy. core algorithm, controlling the size of the res-

end ident set can be done naturally by controlling
the number and the size of panels kept in core.

On a dedicated workstation with a fixe@®ut-of-core algorithms optimize the data trans-
amount of DRAM on board, one can easily séers by taking advantage of the physical place-
lect between an in-core or an out-of-core algment of panels on the disk and exploit filesys-
rithm, according to the size of the problem tha¢m optimizations such as prefetching and data
needs to be solved. On a non-dedicated systeggregation to minimize latency and maximize

though, the choice between in-core and out-afisk throughput.

core algorithms is not obvious. Multiple appli- Nevertheless, several additional mechanisms
cations may contend for physical memory. Heeq to be introduced in out-of-core algorithms
the amount of DRAM available to a specific aRg make them work in an adaptive manner. The
plication fluctuates at runtime, the data set gf;_of-core algorithm should run as fast as an in-
the gppllcatloq may or may‘ not flt‘ln me.mor}éore algorithm if the program has enough mem-
at different points of execution. It is deswablgry to cache its entire data set. Besides that
to use an adaptive algorithm, which adjusts difje agorithm needs a mechanism to detect if the
na_lmlc_:ally the size of the re3|der_1t set of the 8Bperating system changes the amount of phys-
plication, base.d on memory avallablllty. ical memory that the program can use at run-
In theory, virtual memory mechanisms cafine. The algorithm must react to both memory
transparently adjust the resident sets of applliortage and memory availability. At the appli-
cations according to memory load. The operglation level, this is a non-trivial task, since most

ing system pages in non-memory-resident d@ygerating systems do not reveal information on
on demand, and reclaims pages from programisijaple physical memory.

when it detects memory shortage. Virtual mem- : : .
ory is entirely transparent to the application, but In this section we provide a framework for
y y P PP ' “memory adaptivity which is portable to many

has several shortcomings. The mostimportan iﬁ)ck-structured apolications and operating svs-
that the page replacement algorithms used in vir- bp P gsy

tual memory do not necessarily match the da’{{sms. In the following sections we provide algo-

rithms for obtaining this memory adaptivity and
access patterns and the memory demands of ap- . : .)
o . we confirm their optimal performance given a
plications. As a consequence, the operating s

S-, .
tem often pages out data when they are actua%ﬁ/rtam amount of memory.

needed by the application. In the worst case,The key element of our implementation is the
poor replacement decisions have a cascading®8@nagement of panels with memory mapped
fect and lead to thrashing. Eventually, the sy¥O. Memory mapped I/O unifies computation
tem spends more time paging data, rather thamd 1/0 and simplifies the code to a great extent.
executing useful computation. With memory mapped I/O, we can derive an
Adaptation to memory load can be achieveflaptive implementation of an algorithm which
by switching dynamically from an in-core to ars identical to an in-core version, with one min-
out-of-core version of the algorithm, whenevémal extension to control the number of panels
the application detects memory pressure. TH@Ptin-core, whenever a new panel is fetched.
solution is attractive from many points of view. Memory mapped /O is a highly portable
Optimized out-of-core algorithms are readilgnechanism, available in all modern desktop and
available for many applications. In an out-ofserver operating systems. For out-of-core al-

6

gorithms with dynamic resident sets, memowyith memory mapped 1/O, these algorithms
mapped I/O has some striking advantages owgject adaptivity to memory shortage and avail-
virtual memory. By using named mappingability with minimal implementation cost and
to files, the application can optimize I/O trafmaximum portability.

fic. Disk reads and writes are performed at

the granularity of panels of contiguous pages.

With proper selection of panel size, the applicat Adapting to memory avail-
tion can reduce 1/O latency and make the code -

amenable to optimizations such as prefetching ab”'ty

and write aggregation. On the contrary, virtual

memory performs I/O at the granularity of pagd3aving addressed how the library decides on
(typically 4 to 16 kilobytes) which may be scatthe total number of panels and on their replace-
tered in the address space of the program. Mentpolicy, the main question is that of memory
particular, virtual memory writes dirty pages t@daptivity. We would like to be able to reduce
swap space. This not only increases the lateribg¢ number of panels when memory shortage is
of writes, but also nullifies the ability of the apdetected but still cache as many panels as pos-
plication to exploit blocking during reads. Dirtysible. Moreover, when memory becomes avail-
pages that need to be brought back in core ni§le we should be able to utilize it promptly by

be scattered between non-contiguous blocksMiaPping more panels.
the swap space. Detecting memory shortage is relatively

Eﬂtraightforward. During execution, a decrease

We control the number of panels that the ap- h X ident set size (RSS). with
plication keeps in-core, whenever the algorith € programs resident set size (.).’ with-
ut any program unmapping action, is an indica-

attempts to bring a new panel to work on. At thid :
point, the algorithm has three choices: it can i on of memory pressure. Detecting the Ieyel of
crease the number of in-core panels if additiorffieSSUre can be determined by the disparity be-
memory is available; it can decrease the num ween RSS ‘de the amount of memory the pro-
of in-core panels if less memory is available; gam thinks it should have.

it can sustain the number of in-core panels if no Detecting memory availability is more in-
change in memory availability is detected. ~ volved. ldeally, the system would provide an
estimate of the amount of available memory,

The policy for selecting panels to evict andnq the program would use this to determine
panels to bring in is application-specific. Givefha number of additional panels to map. Un-
full knowledge of the data access pattern, thige RS, however, this is global system infor-
application can use the optimal policy for pan‘ﬁ!]ation and most operating systems do not pro-
replacement. For instance, the test programsjje it accurately. The amount of free memory
this paper havg repetltlv_e, sequgntlal access Rakt is reported by many systems can be a huge
terns, so MRU is the optimal policy, whereas thg,qerestimate of the amount of memory actually
LRU approximations used in most virtual memsyqijaple. For instance, in many systems, the
ory systems would completely fail. amount of free memory is usually close to zero,

The next section describes machingéecause any memory not associated with run-
independent algorithms to detect memoning processes is used by the file cache. In this
shortage or availability from within the applicacase, the system might still service a large mem-
tions, using solely local information. Coupledry request from a program by reducing the size

7

of the file cache. Thus, the most reliable way tehich are currently mapped (Panéfs=5). A
determine if a quantity of memory is available isiemory shortage has caused the system to evict
to use it and see if it can be maintained in RS®ortions of panels 1 and 2 from memory, but
We emphasize that memory shortage atitere is enough memory available to keep four
availability are concepts that are local to the prpanels mapped (diff = 1). When the program
gram. For example, high system CPU utilizaccesses panel 4, the condition (R82IRSS)
tion may still mean memory shortage if our prdiolds, so Panels is decreased to 4 by replac-
gram is swapped out, and memory availabilitpyg the MRU panel 3. However, panel 3 was
may be the result of memory pressure on othfeitly resident, so its unmapping causes RSS to
processes. reduce even further by exactly Parsgte. This
is the same amount the dRSS is reduced, so
when the program tries to access panel 5, the
condition (RSS< dRSS) still holds — despite
Consider an application that is memory mathe availability of memory. The above process
aged by our library. We denote by Panais repeats until all but one panels are unmapped.

the number of panels that are cached in MeM-ryic cascade of unnecessary unmappings of

;)hry. B?C?lf‘ e the appllcatl_on hastkn_?wledge &Eched panels reduces the performance of the
€ rest otits memory réquirements, it can corpz, ;o significantly. To avoid this problem, we in-

pute what its current RSS should be.. We cglbduce lastRSS, a variable that tracks the value
this desired RSS and denote as dRSS: that RSS had immediately before the access of
dRSS = (Other Program Memory) + the last panel. If memory pressure increased
Panelsin * Panelsize. during that panel access, then additional panels

may have to be unmapped in the following it-

By definition, the application is under (addieration. We initialize lastRSS to dRSS and we
tional) memory pressure when it cannot maimpdate it by executing the first five lines and the

tain this desired RSS. If the application detedist line of the algorithm in figure (2) before ac-
a decrease in RSS, a number of cached paassing each new panel. We assume that within
els should be unmapped so that the new desitbd execution of the if-statement no additional
RSS reflects the reduced RSS. However, tpage out activity occurs, so that RSS can be re-
panels to be unmapped may not coincide witluced only by the unmap call. This is because
the memory paged out by the system (the caube number of page faults that can occur in the
of RSS reduction), so the following straightforsystem during the execution of three statements

4.1 Detecting memory shortage

ward scheme is limited and far smaller than the panel size. Fi-
_ nally, in practice, we can only unmap down to a
if (RSS< dRSS) then minimum of one panel, so that the program can
diff = (dRSS-RSS) / Pandize still perform work.
unmap diff panels . _
Panelsin = Panelsin — diff A program experiences memory shortage if

dRSS = dRSS- diff * Panel size and only if our algorithm detects it. Using vari-
able subscripts to denote the iteration number,
may lead to a cascade of unmappings until Pasbserve that lastRS the RSS at iteratioi- 1
elsin = 1. Consider an example where the prafter the end of the algorithm and before the
gram’s data set is broken into five panels, all pinel access. If the condition of the algorithm

8

holds, RS$ < lastRS$, RSS decreased duringhortage and begins reclaiming pages from the
the access of the last panel, so there mustgregram, sometimes reducing RSS significantly
memory shortage. Conversely, if there is merhelow 40% of the panels. The program adapts
ory shortage it will manifest itself by reducindy decreasing Paneis back to the safe value of
RSS during the access of the last panel. Siné@%. Eventually all mapped pages come back
lastRS$ records the last value of RSSat 1 into resident memory, and the cycle repeats.

iteration the condition will hold. .
We can reduce the aggressiveness of our pol-

_ icy by delaying growth of Panels for a time
4.2 Detecting memory surplus after Panelsn has been reduced by the Detect

Shortage algorithm. Choosing an appropriate

Because the operating system provides No,_ . :
: 2 .. .felay is a balancing act between two sources
mechanism for determining memory availabil- . :
f performance penalties. If a probe is unsuc-

', _vve_must employ an invasive appro_ach. \.A?:)eessful, this induces what we call an “incur-
periodically probe the system, attempting to in-

crease memory usage by one panel. If enoud! n” penalty because it willinduce paging and a
y y J 3.1 sequent performance decrease. On the other

memory is available, RSS should grow by Org)and, if the program’s memory usage stays be-

panel. If memory is not available, then RS . .
. : ow the amount of memory available, it suffers
will remain constant, or decrease as the oper-
inaction” penalty because some panels will

) n
ating system responds to memory pressure %’é’ loaded from secondary storage when they

evicting pages.) . . -
We should not probe for more memory if RS§OU|d mstgad reside N main memory. We as
sume a simple model in which the tin¥ to

< dRSS. This condition indicates that parts Ol ch A/ words from disk depends only on the
mapped panels have been paged out by the sys-

. . . andwidthB,, of the disk. This model is very
tem. If memory is available, RSS will grow . ~. "~ . o
SlmphStIC, but is appropriate in our case because

as panels are touched and pages are broy e access large, contiguous blocks of data; seek
back into memory. When RSS = dRSS, and | g€, contig) "
. times are largely hidden by prefetching. Define
there are additional panels to map, then we ma ,

. . axRSS to be the maximum amount of mem-
probe, performing the next mapping of a pane .
. ory currently available to our program. If the

without replacement. If the new dRSS cannot b . :
rogram stays at RSS, then for each iteration

maintained, RSS will eventually decrease beld) at is, a cycle through all panels), (maxRSS
lastRSS and the Detect Shortage algorithm wﬁt{ ' y roug P ')

- RSS) of data which could have been kept in-
take memory usage back to a safer level.

The simpiest policy is to attempt to increaore will be brought from disk, incurring an in-

Panelsin whenever RSS = dRSS. This policy action penalty of (maxRSS - RSB} seconds.

. : 'ﬁ the program probes beyond maxRSS, the op-
too aggressive, however. It continually pushes’ .. .

>) . . erating system responds by decreasing RSS. As
Panelsin above a safe level, incurring a signif:

icant performance penalty each time this h figure 1a shows, in the worst case Parialsay

pens. Figure la depicts experimental results thgtreduced all the way down to 1. The incursion

illustrate this. In the experiment, there is roo enalty ther_l is roughly (m_axR$Bw), because
. all of the evicted panels will have to be brought
to keep 40% of the panels in memory. Our pro-_ .
: .) ack in.
gram is able to temporarily obtain enough mem-
ory to hold up to 60% of the panels. Quickly, We attemptto choose a delay that balances the

however, the operating system senses a memuwvyp penalties. This suggests that we consider

9

the quantity a user defined replacement policy, our approach
_ can achieve a nearly optimal caching scheme.
Tpen = MAXRSF(MaxRSS - RSS), The remaining question is whether the system
which is the ratio of the incursion and inaccan exploit this caching efficiently. Ideally, we
tion penalties. When RSS is zero, the inactigiould expect a linear increase in execution time
penalty is as great as the incursion penalty, 9 the available memory decreases. Figure (3)
we have nothing to lose by probing for morgrovides evidence that performance does de-
memory; thus whem,., = 1 we should probe grade gracefully and adaptively. The left figure
as soon as possible. When the ratio is greagdlows that a static version of our method ben-
than unity, itindicates that the possible incursiasfits almost linearly from more cached panels
penalty outweighs the possible inaction penalgiy to the point of memory contention. On the
by that ratio; thus suggests we should wai, contrary, a traditional out-of-core implementa-
times as long as we would in thg,,, = 1 case tion is mainly insensitive to the panel size, favor-
before probing. Given a base delay time, theiag rather small panels. The right figure shows
we can scale it by,.,, to determine the delay: that our dynamic scheme achieves the same lin-

delay = (base delay) * ear degradation of performance under increasing
maxRS$(maxRSS - RSS) load but without any foreknowledge of available
memory.

We have noted that when RSS is close to 0, we
should probe for memory as soon as possible.
Since we never probe unless RSS=dRSS, after . . .
Detect Shortage causes an unmapping the pﬁ- COI’]] ugate Gradient experi-
gram may have to wait for a full iteration (cycle ments

through the panels) for RSS to grow to dRSS.

Thus the time for an iteration provides a reasofg test our adaptive strategy and supporting li-
able approximation for the minimum delay, angrary in the context of a scientific application,
therefore is a natural value for the base delay.\ye implemented it in a conjugate gradient (CG)
The complete memory adaptation algorithithear system solver using the CG routine pro-
is shown in figure 2. Our code maintains gded in SPARSKIT [24]. The computational
queue of timestamps for the the ld3panel ac- and storage requirements of CG are typical of
cesses to determine the base delay. Becausewygy other scientific algorithms. Each itera-
do not know maxRSS, we must approximatetibn requires a sparse matrix-vector multiplica-
somehow. We use peakRSS, which is the mayn and a few dot products. The program re-
imum RSS that has been achieved by the pguires storage for only four vectors while the
gram since the last probe for more memory. Figyk of the memory demand comes from the co-
ure 1 demonstrates how the introduction of odfficient matrix. In our experiments, the driver
delay parameter improves performance. program breaks the matrix int = 10 pan-
els and stores them on disk. Work vectors are
4.3 Graceful degradation of perfor- keptin-core. We note that the CG routine is not
mance modified, and we use an off-the-shelf blocked
sparse matrix vector multiplication with only a
Given the algorithm in figure (2), which closelgingle call to ourget _next _panel () func-
tracks the available memory in the system, atidn. We use both sequential and parallel ver-

10

sions of the solver. In the parallel version, whethis paper, but we wish to show that the scheme
ever a matrix-vector or inner product is calledorks under both Linux and Solaris, though
for, a collective communication operation mushe systems use different memory-management
occur. strategies.

We conducted a series of experiments on four
identically configured 1 GHz Pentium Ill ma-
chines with 128MB of DRAM. All machines5.2 Parallel experiments
run Linux 2.4.18-19.7 and are connected to the
same fast Ethernet switch. We ugec andg77 In our parallel CG experiments, we used the
compilers and the LAM MPI communication liin-core and memory-adaptive versions of the
brary for the parallel version. solver to solve a problem with a 280 MB coeffi-
cient matrix arising from an eighth-order finite-
difference discretization of a three dimensional
Laplacian problem. To create memory pressure,
Some results have already been described in $é€- root node executes a memory-intensive 70
tion 4. Here, we compare four different way®1B dummy job. We have used a job that allo-
to implement a CG code. Besides a standar@tes memory and continuously writes random
in-core implementation and our memory adapumbers to it as well as a sequential in-core CG
tive one, we also use a conventional out-of-cog@de. Results were identical for either dummy
code, as well as an in-core code that stores {hb.
matrix on disk and accesses it via a read-onlyThe results are consistent with those observed
memory map to avoid inefficient write-outs tin the sequential tests. Without competition, the
the swap device. Table 1 summarizes what hap-core code averages 0.72 seconds per itera-
pens when any possible combination of two sgen, and the memory-adaptive code 0.73 sec-
guential CG solvers are run against each othends. When running against the dummy job,
Each solver runs on a 70MB matrix with a totahe in-core code performs very poorly, taking
of 81MB storage requirements; this causes camywhere from 32 to 80 seconds per iteration.
siderable memory pressure, as only about 108der constant memory pressure, the memory
MB total are available to the programs. Thadaptive code averages between 8 and 9 sec-
performance of the in-core code under memooyds, consistent with the slowdown experienced
pressure is very poor, as expected. The memoabpy-the sequential adaptive code under the same
mapped code performs well if it is started firstnemory pressure. However, the slowdown in
but it is starved when jobs other than out-of-cothe parallel case affects all nodes. In some cases,
are already running. The out-of-core code peghe memory adaptive code would thrash (system
forms consistently against all other codes, bGPU utilization> 95%) for 40-50 seconds, af-
its lack of adaptivity does not justify generaler which it would obtain enough memory re-
purpose use. The memory adaptive code wosurces to keep its entire local portion of the ma-
well in all cases, even when run against itsetfjx. Figure 5 illustrates for both cases how the
demonstrating its truly dynamic nature. time per iteration changes as the solver adapts to

In table 2 we present results like those fromemory pressure, while figure 4 shows the ac-
table 1 but obtained under Solaris 8. Detailédal memory adaptation. In both cases, thrash-
discussion of the performance of our adaptatiorg is avoided eventually, and we observe good
scheme under Solaris is beyond the scopere$ource utilization.

5.1 Sequential experiments

11

6 Conclusions

We have presented a framework for dynamic
adaptation of scientific applications to memory
pressure. This framework enables an applicqz]
tion running on a non-dedicated workstation to
gracefully degrade its performance when it can-
not obtain the resources required to fit its data
set in main memory. It is particularly suited for
non-centrally administered, open systems, su]
as clusters of privately owned desktops, WhercL:
loads can fluctuate unpredictably.

We have made the following key con-
tributions: We presented a novel, system-
independent algorithm that ascertains the avail’
ability of main memory using a single metric,
i.e. the resident set size of the application. In
addition, we presented an optimal algorithm that
enables an application to dynamically adjust its
resident set size in response to memory shortaffd
or availability. The algorithms are portable to
almost any modern operating system and hard-
ware platform.

In addition to easy portability, our framework
has a modular design. Its use requires minimal
extensions to block-structured application kert6]
nels. Because it can be embedded in a compu-
tational kernel, it can be immediately deployed
in any application that uses that kernel. For ex-
ample, embedding our framework in low-level
libraries such as BLAS or SPARSKIT makes it
immediately available to higher level libraries,[7]
such as LAPACK and scaLAPACK, that depend
upon them. In turn, applications that rely on
these higher level libraries can immediately ben-
efit from the framework.

[8]
References
[1] A. Acharya and S. Setia. Availability and

Utility of Idle Memory in Workstation Clus-
ters. InProc. of the 1999 ACM SIGMETRICS

12

Joint International Conference on Measure-
ment and Modeling of Computer Systems (SIG-
METRICS’99) pages 35-46, Atlanta, Georgia,
May 1999.

A. Arpaci-Dusseau. Implicit Coscheduling:
Coordinated Scheduling with Implicit Informa-
tion in Distributed SystemsACM Transactions
on Computer Systemd9(3):283-331, Aug.
2001.

R. D. Barve and J. S. Vitter. A theoretical
framework for memory-adaptive algorithms. In
IEEE Symposium on Foundations of Computer
Sciencepages 273-284, 1999.

4] A. Batat and D. Feitelson. Gang Schedul-

ing with Memory Considerations. IRroc. of
the 14th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS’2Q00)
pages 109-114, Cancun, Mexico, May 2000.

A. D. Brown and T. C. Mowry. Taming
the memory hogs: Using compiler-inserted
releases to manage physical memory intelli-
gently. InProceedings of the 4th Symposium
on Operating Systems Design and Implementa-
tion (OSDI-00) pages 31-44, 2000.

P. Cao, E. Felten, A. Karlin, and K. Li. Im-
plementation and Performance of Integrated
Application-Controlled File Caching, Prefetch-
ing, and Disk SchedulingACM Transactions
on Computer Systemsl4(4):311-343, Nov.
1996.

F. Chang, A. ltzkovitz, and V. Karamcheti.
User-Level Resource Constrained Sandboxing.
In Proc. of the 4th USENIX Windows Systems
Symposiumpages 25-36, Seattle, WA, Aug.
2000.

S. Chiang and M. Vernon. Characteris-
tics of a Large Shared Memory Production
Workload. In Proc. 7th Workshop on Job
Scheduling Strategies for Parallel Processing
(JSSPP’2001), Lecture Notes in Computer Sci-
ence, Vol. 2221 pages 159-187, Cambridge,
MA, June 2001.

RSS (solid line) and desired RSS (dashed line) for simple algorithm RSS (solid line) and desired RSS (dashed line) for dynamic delay with ratio
60 T T 60 T T

551 Average iteration time: 17.5 sec B 55 Average iteration time: 4.4 sec B

1
50 100 150 0 50 100 150
Seconds elapsed Seconds elapsed

Figure 1: RSS and desired RSS versus time for two versionsrdraory-adaptive program that
performs dense matrix-vector multiplications with a 70 MRtnx broken into 10 panels. It runs
against a 70 MB dummy job on the Linux machines described ¢ticge 5. Circles denote the
beginning of a matrix-vector multiplication. The left gtaga) uses the original algorithm with
no delay. It is too agressive, continually pushing agaihstrmemory limit. In response, the
operating system evicts pages from the program, causingniisant performance penalty. The
right graph (b) utilizes a dynamically determined delay eéduce this penalty: after a memory
shortage is detected, attempts to grow memory usage musamaithe delay has elapsed. Using
the dynamic delay, the algorithm settles at what is closéé¢ooptimal value for dRSS (dashed
line) and diminishes RSS (solid line) fluctuations.

Algorithm: Adapting to memory variability
RSS = Get current RSS
if (RSS< lastRSS) & (Panelin > 1)
diff = (lastRSS-RSS) / Panglize
unmap diff panels, Panela —= diff,
dRSS—= diff * PaneLsize
else if (JRSS ==RSS) & (Panels < P)
peakRSS = max(peakRSS, RSS)
delay = Time to access the laBtpanels
if (Time since last unmap-
delay * min(10, peakRS&peakRSS RSS)))
Panelsin ++
dRSS += Panesize
peakRSS = RSS
endif
endif
lastRSS = Get current RSS

Figure 2: The complete algorithm for adapting to memoryalaitity

13

Average time per iteration vs. size cached in RAM Average time per matrix—vector multiplication vs. size of competing
T T T T T T 9 T T T T T T T T T
D

©

. ¢ [0~ Memory mapping

- traditional freads

=) ~
T T

) ~ ®

T T T

@
T
@
T

IS
T
N
T

w
T

Average time per iteration (seconds)

Average time per iteration (seconds)

N
T

b

o 1‘SSize zgf corz;sstantzl‘i/ caé;ed é(janelé‘ésin R,SA‘GM (lv?é) “ ¥ = “ 45Size tf? com?)seting Ttl)b (Msé) . : *
Figure 3: Graceful degradation of performance. The lefplgrahows the execution time for a
static version of our method that caches a certain numbeaélp. Also, it shows the time for
a traditional out-of-core implementation for various siz# its single panel. We report times
running with a 70 MB matrix against a 50 MB and a 70 MB exteroald running on the Linux
machines described in section 5. Increasing the numberrdlp@ached improves performance
almost linearly as long as the amount of available availat@eory is not exceeded; times increase
towards the right of the graph as the amount of panels cackmskbds available memory. In the
right graph, a similar graceful degradation of performaisagserved for our dynamic method for
external loads of increasing size. However, the number oélgas chosen dynamically.

Time for method X running against Y

X Y incore 0oocC mmap memgd
) 0.66 27.00
incore 204.00 0.82 20.50 22 50

8.82

00C 5.00 9.60 4.90 5.10
0.70 0.67 0.79
mmap | 3500 98 3500 35.00
4.50 0.89
mema 0.76 0.90 0.72 5.34

Table 1: Average time per iteration for method X when runragginst method Y. “incore” denotes
a standard in-core algorithm, “ooc” a conventional outofe one, “mmap” an in-core algorithm
that uses memory-mapped I/O to read the matrix, and “memafm@amory adaptive code. Both
jobs execute CG on a 70 MB matrix, reading it from differergdilvhere applicable. The time is
measured after both methods have stabilized sharing the OR&Jof the jobs is started 9 seconds
after the other. If one time is reported, it is independerstafting order. If two times are reported,
the top is the time for method X when X is started first, while ttottom is the time when X is
started second.

14

Time for method X runn

ing against Y

X Y incore ooc mmap mema

incore 493.0 11.74 239.8 203.4

ooc 20.25 92.10 19.76 19.87

mmap 759 1218 99.72 66.34
33.33

mema 5.32 9.89 42 30 38.66

Table 2: A table like table 1, but showing experimental rissobtained on a SunBlade 100 work-
station with 384MB running Solaris 8. Both jobs execute ogage gradient on a 192 MB matrix.
Note that the in-core code is “starved” by the OS when runigginst the memory-adaptive or
memory-mapped I/O codes. Although the memory manageméinigsoof Linux and Solaris dif-

fer, under both systems we can achieve graceful slowdowneagbnable performance with the

memory-adaptive code.

RSS (solid line) and desired RSS (dashed line) for dynamic delay with ratio

RSS (solid line) and desired RSS (dashed line) for dynamic delay with ratio

100 e

60 T T T

551

Average iteration time: 8.1 sec i ool
il %,

10 .

Average iteration time: 0.78 sec

10l I I I
0 20 40 60

Seconds elapsed

80

I
120 0 10

I
100

1
20 30 40 50 60 70 80
Seconds elapsed

Figure 4: A memory profile similar to Figure (1) but for the to@de of a parallel job. The external
load is 70 MB. We observe two possibilities. In the left gragite external load keeps its entire
working set while our method utilizes the remaining memafiie scenario reverses in the right
figure. In both cases, resource utilization is high for aftipgpating nodes.

15

Time per iteration versus iteration number

35 T T T
—— CG gets all its memory
—O— Competing job gets all its memory

30 B

25 B
[}
=]
c
o
(8]
3
c 20 B
c
i)
©
i)
5 151 B
o
E Jo
= e o

\ / \ O
10 © \ \ / 7
/ b /@ Y
/ —
PEN o G 9 e N
(o)
5+ .
IV
O 1 1 1
0 10 15 20 25

Iteration number

Figure 5: Execution times for each iteration for the first @sations of the parallel code. The two
sets of data correspond to the two possibilities observé&tgiare (4). Even the slower set of times
are far lower than times produced using the virtual memosyesy.

16

[9] H. Dail, H. Casanova, and F. Berman. A Dg16] R. T. Mills, A. Stathopoulos, and E. Smirni.

[10]

[11]

[12]

[13]

[14]

[15]

coupled Scheduling Approach for the GrADS
Program Development Environment. Rroc.

of the IEEE/ACM Supercomputing’02: High
Performance Networking and Computing Con-
ference (SC'02)Baltimore, MD, Nov. 2002.

J. Dongarra, S. Hammarling, and D. WalkeF 7]

Key concepts for parallel out-of-core LU fac-
torization.Parallel Computing23(1-2):49-70,
Apr. 1997.

D. Feitelson and L. Rudolph. Evaluation of De-

sign Choices for Gang Scheduling Using Dis[-18]

tributed Hierarchical ControlJournal of Par-
allel and Distributed Computing35(1):18-34,
May 1996.

J. Frey, T. Tannenbaum, M. Livny, |. Foster, and
S. Tuecke. Condor-G: A Computation Manage-

ment Agent for Multi-Institutional Grids. In[19]

Proc. of the 10th IEEE International Sympo-
sium on High Performance Distributed Com-
puting (HPDC-10) pages 55-63, San Fran-
cisco, California, Aug. 2001.

K. Harty and D. Cheriton.
controlled Physical Memory Using External
Page-Cache Management. Mmoceedings of

the 5th International Conference on Architec-

tural Support for Programming Languages an[121]

Operating Systems (ASPLOS'\flages 187—
197, Boston, Massachusetts, Oct. 1993.

R. Henderson. Job Scheduling Under the
Portable Batch System. IProc. of the
First Workshop on Job Scheduling Strategies

for Parallel Processingolph, Lecture Notes ir[122]

Computer Science Vol. 94%ages 279-294,
Santa Barbara, CA, Apr. 1995.

M. Lewis and L. Gerner. Maui Scheduler, an

Advanced System Software Tool. RFroc. of [23]

the ACM/IEEE Supercomputing’97: High Per-
formance Networking and Computing Confer-
ence (SC'97)San Jose, CA, Nov. 1997.

17

Application-[20]

Algorithmic modifications to the Jacobi-
Davidson parallel eigensolver to dynamically
balance external CPU and memory load. In
2001 International Conference on Supercom-
puting pages 454-463. ACM Press, 2001.

D. Nikolopoulos. Malleable Memory Map-
ping: User-Level Control of Memory Bounds
for Effective Program Adaptation. IRroc.
of the 17th IEEE/ACM International Par-
allel and Distributed Processing Symposin
(IPDPS’2003) Nice, France, Apr. 2003.

D. Nikolopoulos and C. Polychronopoulos.
Adaptive Scheduling under Memory Pressure
on Multiprogrammed Clusters. IRAroc. of the
2nd IEEE/ACM International Conference on
Cluster Computing and the Grid (ccGrid’02)
pages 22-29, Berlin, Germany, May 2002.

J. Ousterhout. Scheduling Techniques for Con-
current Systems. IfProc. of the 3rd Inter-
national Conference on Distributed Comput-
ing Systems (ICDCS’82pages 22—-30, Miami,
Florida, Oct. 1982.

H. Pang, M. J. Carey, and M. Livny. Memory-
adaptive external sorting. In Agrawal et al.
[20], pages 618-629.

F. Petrini and W. Feng. Time-Sharing Parallel
Jobs in the Presence of Multiple Resource Re-
quirements. InProc. of the 6th Workshop on
Job Scheduling Strategies for Parallel Process-
ing (JSSPP’2000), in conjunction with IEEE
IPDPS’2000, LNCS Vol. 191pages 113-136,
Cancun, Mexico, May 2000.

R. Daugherty and D. Ferber. Network Queu-
ing Environment. IrProceedings of the Spring
Cray Users Group Conference (CUG'94)
pages 203-205, San Diego, CA, Mar. 1994.

E. Rothberg and R. Schreiber. Efficient Meth-
ods for Out-of-Core Sparse Cholesky Factor-
ization. SIAM Journal on Scientific Computing
21(1):129-144, Jan. 2000.

[24]

[25]

[26]

[27]

[28]

Y. Saad. SPARSKIT: A basic toolkit for sparse

matrix computations. Technical Report 90-20,
Research Institute for Advanced Computer Sci-
ence, NASA Ames Research Center, Moffet
Field, CA, 1990. Software currently available

at <ftp://ftp.cs.umn.edu/dept/sparse/

P. Sobalvarro, S. Pakin, W. Weihl, and
A. Chien. Dynamic Coscheduling on Work-
station Clusters. IrProc. of the 4th Work-
shop on Job Scheduling Strategies for Parallel
Processing (JSSPP’98), Lecture Notes in Com-
puter Science Vol. 145%ages 231-256, Or-
lando, Florida, Apr. 1998.

S. Toledo. A survey of out-of-core algo-
rithms in numerical linear algebra. In J. Abello
and J. S. Vitter, editord-xternal Memory Al-
gorithms and Visualizatign pages 161-180.
American Mathematical Society Press, Provi-
dence, RI, 1999.

S. Vadhiyar and J. Dongarra. A Performance
Oriented Migration Framework for the Grid.

Technical Report, Innovative Computing Lab-
oratory, University of Tennessee, Knoxville,

2002.

J. S. Vitter. External memory algorithms and
data structures: dealing with massive data.
ACM Computing Surveys (CSUR3B(2):209—
271, 2001.

18

