Performance optimization of electronic structure codes on the
Cray T3E *

Andreas Stathopoulos! Barry Rackner! Yousef Saad! James R. Chelikowsky®

April 15, 1997

Predicting the electronic structure of complex systems from ab-initio principles is an outstand-
ing problem of condensed matter physics. In many of the corresponding calculations the dynamics
of the particles are followed until a minimum energy state is found. Central to this minimization
problem is the repeated solution of a large, symmetric eigenvalue problem.

Improving on previous methods, our approach is based on high-order finite difference schemes.
The resulting matrices are large and sparse, and the number of eigenvalues and eigenvectors
required is proportional to the number of atoms in the system. Thus, for complex systems
hundreds or thousands of eigenpairs are required. To meet some of the huge computational
demands posed by these calculations, we solve the problem only in non-trivial subregions of the
domain, and we use a preconditioned eigenvalue iterative solver which can tackle large numbers of
eigenpairs. The matrix is not stored and both matrix-vector multiplication and preconditioning
operations are performed on the grid stencil. The unstructured domain regions are handled with
special data structures that determine the sparsity pattern.

Parallel computing plays also a crucial role in meeting the above challenges. The code has
been implemented on the Cray T3D and T3E computers using the Cray C90 as a front-end.
A combination of PVM and MPI communication libraries has been necessary for an efficient
implementation of the master-slave paradigm. In this combination, all communication within
the multiprocessor is performed through the native T3D/E MPI which is faster than the native
PVM, while communication with the front-end uses the more flexible PVM library. Despite the
unstructured nature of the problem, our benchmarks show scalability of 85% on 64 nodes even
for average size cases.

The migration from the C90 parallel vector processor to the cache-based multiprocessor sys-
tems T3D and T3E, has created several performance shortcomings. In this paper we describe
techniques and optimizations that improve the single-node efficiency of the code.

The processors on both T3D and T3E have a data cache of 8 Kbytes which is directly mapped
to the local memory of each processor. In addition, the T3E has a second level set-associative
cache of 96 Kbytes and six stream buffers which allow concurrent communication between the
second level cache and the local memory. With a 300 MHz clock, the T3E has a peak speed of 600
MFLOPS. However, the observed speeds in our initial implementation were less than one tenth
of the peak rate.

Several reasons account for the above behavior. First, a floating point operation is completed
in 4 clock periods. Even if the cache and prefetching mechanisms hide all memory latencies, only

*Work supported by NSF grants DMR-9217287, ASC 95-04038, and by the Minnesota Supercomputer Institute
tDepartment of Computer Science, University of Minnesota

Cray Research

$Department of Chemical Engineering, University of Minnesota

a fourth of the peak rate can be achieved unless the compiler can schedule multiple operations
simultaneously. Second, the concurrent operation of the stream buffers requires an appropriate
number of input/output operands. Too many operands cause stream thrashing, while too few
underutilize the system. Finally, degradation is caused by the indirect addressing used by the
sparse data structures, and the resulting cache misses.

Our first optimization involved a modification of the data structures. Because of the unstruc-
tured sparsity pattern, the initial code used a three dimensional index array to specify which
points in the domain are considered in the stencil.

row number in the matrix if point (i,j,k) is considered
index(i,j,k) =
special out-of-matrix index if not considered

These indices were used in matrix-vector multiplication and preconditioning operations to multiply
a matrix element with the corresponding entry of a vector x: x(index(i,j,k)).

There are two problems with this approach: First, index must be duplicated on every processor
which poses large memory requirements. Second, the neighboring points in the stencil (e.g.,
index(i,j+1,k), index(i,j,k-1)) display no spatial memory locality. In addition to the
cache misses occurring when accessing the neighbors in the stencil, the access of x has no regular
pattern either.

To face the above problems, we dispense with the array index, and introduce a two dimensional
array JA which holds the stencil neighbors for each of the points considered (matrix rows):

row number of the i stencil-neighbor of row j
JA(L, j) =
special out-of-matrix index if i neighbor not considered

The JA array can be viewed as a special case of the Compressed Sparse Row format. Since only
the matrix rows are involved in the long (second) dimension of JA, different processors may keep
only the part of JA associated with their local rows. Thus, duplication is avoided and storage
scalability is achieved. The short dimension is chosen as the first one, for saving floating point
operations while retaining access locality. In this way, JA is accessed sequentially, and if a stream
buffer can be sustained, the only cache misses occur because of the irregular access pattern of x.
Overall the use of JA reduced the execution time by a factor of 1.5.

Besides the stencil tensor, the matrix also involves a summation of a number of sparse rank one
updates. Similar modifications of the corresponding data structures are performed to optimize
the memory access patterns. Finally, gather-scatter strategies are considered.

At every step of the iterative algorithm, a vector is orthogonalized to all the previously con-
verged eigenvectors. As the number of the required eigenvectors increases, the orthogonalization
becomes the dominant part of the computation. This is performed through the BLLAS-2 kernel
SGEMV. Initially, when debugging the code for performance on a smaller case, the aggressive
compiler optimization for stream buffers was turned off since it degraded performance. When
running larger cases the lack of good stream optimization became apparent, with SGEMV per-
forming at about 56 MFLOPS even for the largest cases. Switching stream optimization on raised
SGEMV performance above 100 MFLOPS, with the large cases reaching 148 MFLOPS. The whole
program received a twofold speedup.

The above optimizations have provided significant time improvements and have enabled break-
through electronic structure calculations which were not possible before. We are currently exper-
imenting with block techniques that take advantage of the higher performance of SGEMM kernel,
and we are considering ways of improving the delivered performance of the SGEMV kernel.

