
BRIDGING ETAQA AND RAMASWAMI’S FORMULA FOR THE
SOLUTION OF M/G/1-TYPE PROCESSES ∗

ANDREAS STATHOPOULOS† , ALMA RISKA‡ , ZHILI HUA† , AND EVGENIA SMIRNI†

Abstract.

For some time, the method of Ramaswami has been the established way to analyze M/G/1-type
processes. The ETAQA method, proposed previously in [15], has offered a more efficient alternative
for the exact computation of a general class of metrics for M/G/1-type processes. However, the
stability of ETAQA and its relation to Ramaswami’s method were not well understood. In this paper,
we derive a new formulation that improves the numerical stability and computational performance
of ETAQA. As with ETAQA, the resulting methodology, newETAQA, solves a homogeneous system
of equations to obtain the aggregate probability of a finite set of classes of states from the state
space. In contrast to ETAQA, newETAQA constructs its matrix X in a way similar to the method
of Ramaswami, decoupling the computation of the probabilities of the first two initial classes of states
from the computation of the aggregate probability. Because direct methods are used to solve this
system, the decoupling implies an often significant speedup over ETAQA. In addition, we show that
the matrix X is an M-matrix, and under certain conditions, X is also diagonally dominant and thus
can be factored stably. More importantly, we show that the newETAQA method is just an efficient
way to implement Ramaswami’s method. We also discuss alternative normalization conditions for
Ramaswami’s method. Our numerical experiments demonstrate the stability of our method for both
stiff and well behaved processes, and for both low and high system utilizations.

Keywords: M/G/1-type processes; matrix-analytic methods; diagonally domi-
nant M-matrices; numerical stability

1. Introduction. Matrix analytic techniques, pioneered by Marcel Neuts [12,
13], provide a framework that is widely used for the exact analysis of a general and
frequently encountered class of queuing models. From these models we focus on
those that capture the behavior of M/G/1 queues. The class of models that can be
analyzed using M/G/1-type Markov chains are the important classes of MAP/G/1
queues and its generalization of BMAP/G/1 queues, where the arrival process is the
Markovian arrival process and the batch Markovian arrival process, respectively, [13,
8]. BMAP/G/1 queues are often used as the modeling tool of choice when examining
the performance of modern computer or communication systems.

Various analytic methodologies have been developed for the solution of M/G/1-
type Markov processes [13, 14, 10, 11, 4, 15], with most notable the Ramaswami’s
algorithm which provides a numerically stable method for the calculation of the
steady-state probabilities [14]. Traditional matrix-analytic algorithms are based on
stochastic complementation [16] and compute the stationary probability vector of the
Markov process with a recursive function. The key in the matrix-analytic solution
is the computation of an auxiliary matrix called G, on which the recursion for the
computation of the stationary probability vectors is based. Iterative procedures are
used for determining G [10].

In [15], an alternative methodology for the solution of M/G/1-type Markov pro-
cesses has been proposed. Given that the state space of an M/G/1-type processes

is partitioned into the boundary states S(0) = {s
(0)
1 , . . . , s

(0)
m } and the sets of states

S(j) = {s
(j)
1 , . . . , s

(j)
n }, for j ≥ 1, this methodology, called ETAQA, differs from the

∗Work supported by the National Science Foundation (ITR/AP-0112727, CCR-0098278, ACI-
0090221, and ITR-0428330), and Seagate Research.

†Department of Computer Science, College of William and Mary, Williamsburg, Virginia 23187-
8795, (andreas/zlhua/esmirni@cs.wm.edu).

‡Seagate Research, 1251 Waterfront Place, Pittsburgh, PA 15222, (alma.riska@seagate.com).

1

����

����

�	
�

�
��

�����
���
�

�
���
�

�
��
!

"
#$%
&

'
()*
+

,
-./
0

1
234
5

6789

:
;<=
>

?
@AB
C

D
EFG
H

I
JKL
K

M
NOP
Q

R
STU
V

W
XYZ
[

\
]̂_
`

a
bcd
e

f
ghi
j

k
lmn
o

p
qrs
r

t
uvw
x

yz{|

}
~��
�

�
���
�

�
���
�

�
���
�

�
���
�

�
���
�

Fig. 1.1. Aggregation of an infinite S into a finite number of classes of states.

classic methods by not providing a recursive computation of the stationary prob-
ability vectors, i.e., π

(j) in S(j) for j ≥ 1 is not computed as a function of π
(i)

for i < j. Instead, ETAQA directly computes π
(0), π

(1), and the aggregate vector
π

(∗) =
∑∞

i=2 π
(i). Essentially, ETAQA recasts the problem into that of solving a finite

linear system of m + 2n unknowns, where m is the number of states in the boundary
portion of the process and n is the number of states in each of the repetitive “levels”
of the state space (see Figure 1.1), and obtains the exact solution. The computation
of the aggregate probability distribution that ETAQA provides is exact. ETAQA
results in significantly more time-efficient solutions than the traditional methods for
the M/G/1-type processes as shown both by our detailed big-O complexity analysis
and by experimental comparisons against the most efficient methods [15], i.e., the fast
FFT implementation of Ramamswami’s formula [9]. We stress that ETAQA offers a
more efficient alternative for a certain class of exact analyses of M/G/1-type processes
(e.g., ETAQA can compute the average queue length and any of its higher moments
exactly, but it does not compute the entire probability distribution of the process).
Nonetheless, the matrix built by ETAQA does not have a structure that is easily
classifiable as numerically stable, i.e., yielding a small, bounded growth factor in the
factorization process.

This paper presents newETAQA, an alternative methodology that bridges Ra-
maswami’s method and ETAQA, by first obtaining the probabilities π

(0) and π
(1),

and second, encapsulating the infinite recursive formula of Ramaswami in a solution
of an n × n system for the aggregate vector of probabilities, π

(∗). Because of the
direct solution of the linear systems, an O(n3) process, this decoupling results in a
significant computational speedup over ETAQA.

More importantly, the π
(0) and π

(1) are solutions of the same infinitesimal gen-
erator matrix as in Ramaswami’s method, and thus their computation is numerically
stable. Computing the rest of the matrix in newETAQA is also stable as it involves
only additions and multiplications of positive numbers. Furthermore, the matrix
yielding π

(∗) is an M-matrix, which is also diagonally dominant when the system
is “strongly” recurrent. In this case, the computation of π

(∗) is also uncondition-
ally numerically stable. Our experiments show that even for stiff processes (process
with extreme variations between their rates), and under extremely high utilization,
newETAQA’s numerical behavior is comparable to (and often better than) that of
Ramaswami, when the latter one is iterated up to machine precision.

Finally, the new formulation in newETAQA allows us also to clearly show that
it is theoretically equivalent to the most popular implementation of Ramaswami’s
method that uses an a-priori normalization of the vector π

(0) to its exact, final norm.
This exact norm is the result of an inversion of the same M-matrix that we use to
solve for the aggregate vector π

(∗). The difference is that this implementation of

2

Ramaswami’s method ignores this information, going on to rebuilt it iteratively. We
also discuss a more efficient, and potentially more stable normalization alternative for
Ramaswami’s method, which to our knowledge has not been pointed out before.

In Section 2 we summarize Ramaswami’s formula and the two normalization
alternatives for its implementation as well as the ETAQA method. newETAQA is
presented in Section 3, followed by a discussion on its time complexity, its numerical
stability, and its relation to Ramaswami’s method. Section 5 presents experiments
that demonstrate the numerical stability of the method under various conditions. We
summarize our contributions in Section 6.

2. Solutions of M/G/1-type processes. In this paper, we assume continuous
time Markov chains, or CTMCs, hence we refer to the infinitesimal generator Q, but
our discussion applies just as well to discrete time Markov chains, or DTMCs. For the
case of M/G/1-type processes, the repetitive structure of the Markov chains allows
for the following state space partitioning. The state space S is partitioned into the

boundary states S(0) = {s
(0)
1 , . . . , s

(0)
m } and the sets of states S(j) = {s

(j)
1 , . . . , s

(j)
n },

for j ≥ 1, while π
(0) and π

(j), are the stationary probability vectors for states in S(0)

and S(j), for j ≥ 1. The infinitesimal generator QM/G/1 is block-partitioned as:

QM/G/1 =





L̂ F̂(1) F̂(2) F̂(3) F̂(4) · · ·

B̂ L F(1) F(2) F(3) · · ·
0 B L F(1) F(2) · · ·

0 0 B L F(1) · · ·
...

...
...

...
...

. . .




,(2.1)

We use the letters “L”, “F”, and “B” according to whether they describe “local”,
‘forward”, and “backward” transition rates, respectively, in relation to a set of states
S(j) for j ≥ 1, and a “̂ ” for matrices related to S(0).

For the solution of M/G/1-type processes, several algorithms exist [4, 2, 10, 13].
These algorithms first compute the matrix G as the solution of the matrix equation:

B + L ·G +
∞∑

j=1

F(j) · Gj+1 = 0.(2.2)

The matrix G, which is stochastic if the process is recurrent and irreducible, has an
important probabilistic interpretation: an entry (k, l) in G expresses the conditional
probability of the process first entering S(j−1) through state l, given that it starts
from state k of S(j) [13, page 81]1. The G matrix is obtained by solving Eq.(2.2)
iteratively. However, recent advances show that the computation of G is more efficient
when displacement structures are used based on the representation of M/G/1-type
processes by means of QBD processes [10, 2, 1, 7]. The most efficient algorithm for
the computation of G is the cyclic reduction algorithm [2].

2.1. Ramaswami’s recursive formula. The calculation of the stationary prob-
ability vector is based on the recursive Ramaswami’s formula [14], which defines the
following recursive relation among stationary probability vectors π

(j) for j ≥ 1:

1The probabilistic interpretation of G is the same for both DTMCs and CTMCs. The interpre-
tation in [13, page 81] is consistent with the discussion in [7, page 142], where CTMCs are taken into
consideration.

3

π
(j) = −

(
π

(0)Ŝ(j) +

j−1∑

k=1

π
(k)S(j−k)

)
S(0)−1

∀j ≥ 1,(2.3)

where Ŝ(j) and S(j) are defined as follows (letting F(0) ≡ L):

Ŝ(j) =

∞∑

l=j

F̂(l) ·Gl−j , j ≥ 1, S(j) =

∞∑

l=j

F(l) · Gl−j , j ≥ 0.(2.4)

Given the above definition of π
(j) and any normalization condition, a unique

vector π̃
(0) can be obtained by solving the following homogeneous system of m linear

equations:

π̃
(0)
(
L̂(0) − Ŝ(1) · S(0)−1

· B̂
)

= 0.(2.5)

Faster implementations of Ramaswami’s formula are also known [9]. Once π
(0) is

known using Eq.(2.5), the stationary probability vector is computed using matrix-
generating functions associated with triangular Toeplitz matrices, that can be com-
puted efficiently using fast Fourier transforms (FFTs). FFTs, however, can become
the source of numerical instability. Moreover, the iterative nature of the algorithm
remains, requiring computation of all the intermediate states.

2.2. Normalization choices in Ramaswami’s method. When solving equa-
tion (2.5), the exact size of π

(0) is not known, so any normalization condition, say

π̃
(0)1T = 1, would suffice to compute the relative ratios of the probabilities inside

π
(0). Once π̃

(0) is known, we can use recurrence (2.3) to compute π̃
(j) for j ≥ 1,

stopping at j = j0, when π̃
(j0)1T has reached machine precision. At this point, we

can normalize all the probabilities to sum to 1, i.e., π
(j) = π̃

(j)/(
∑

k π̃
(k)1T). We

call this an a posteriori normalization approach.
The stopping criterion presumes that levels beyond j0 will be of smaller norm,

and so their contribution is negligible, if measurable at all. Although, the conver-
gence of π̃

(j)1T in Ramaswami’s formula may not be strictly monotonic in the first
few iterations, this is not expected to cause premature stopping of the iteration be-
cause recurrency of the chain asserts that the larger probability mass (far larger than
machine precision) is in the earlier states. After the first few iterations, the sum of
probabilities in each level j will start decreasing monotonically at every step. This
eventual monotonicity can also be described analytically for the practical case of any
banded infinitesimal generator QM/G/1, where the matrix geometric approach obtains

π
(j) = π

(j−1)R, where R is a matrix with spectral radius less than 1 [13]. Finally,

note that because we have assumed π̃
(0)1T = 1, all subsequent probabilities π̃

(j) will
be of larger magnitude than their corresponding π

(j). Thus, converging to machine
precision for the π̃

(j) will, in fact, compute more accurately the π
(j).

A different approach to implementing Ramaswami’s recurrence, is to precompute
the exact size (normalization condition) for π

(0) [9, 3]. The condition involves replac-
ing one of the equations in the singular Schur complement in (2.5) with the following
equation:

π
(0)1T − π

(0)




∞∑

j=1

Ŝ(j)



 ·




∞∑

j=0

S(j)




−1

1T = 1.(2.6)

4

This condition obviates the a posteriori normalization step for all computed probabili-
ties, because π

(0) and therefore any subsequent probability is computed to their exact
norm. Unfortunately, the above condition involves the computation and the inversion
of the sum of all S(j), which requires several O(n3) operations. More importantly, this
approach is essentially the second step of newETAQA as described in the following
sections. When this step is completed, newETAQA has the π

(∗), with which a host
of measures can be obtained easily. Unlike newETAQA, however, this version of Ra-
maswami’s method ignores that π

(∗) is available, and generates the whole stationary
probability vector.

Ramaswami’s method, involves a solution of the Schur complement equation in
(2.5). Because its deriving matrix is an infinitesimal generator, the Schur complement
is also known to have a growth factor of 1. In other words its factorization can be
carried out in a numerically stable way. In addition, the iterative computation of
π

(j) entails additions and multiplications with only positive numbers which can be
performed in a numerically stable way if a summation algorithm similar to Kahan’s
is utilized [5, 13, 14]. In that case, the summation can be carried out accurately even
with a series of numbers that are smaller than machine precision. The numerical
properties of solving the system in (2.6) for the second approach are discussed in the
following sections.

2.3. ETAQA for M/G/1-type processes. In [15] a new method for the so-
lution of M/G/1-type processes has been defined. This technique, called ETAQA,
computes only π

(0), π
(1) and the aggregated probability vector π

(∗) =
∑∞

i=2 π
(i).

This approach is exact and very efficient with respect to both its time and space
complexity (see [15] for a detailed discussion).

The first step toward the solution of an M/G/1-type process is the computation
of matrix G. We assume that G is available, i.e., it has been computed using an
efficient iterative method, e.g., the cyclic reduction algorithm [2], or that it is explicitly
obtained. Then the ETAQA theorem for the solution of M/G/1-type processes can
be formulated as follows (see [15]).

Theorem 2.1 (ETAQA). Assume an ergodic CTMC with infinitesimal generator
QM/G/1 having the structure shown in Eq.(2.1) and stationary probability vector π =

[π(0), π
(1), π

(2), ...]. Let also π
(∗) =

∑∞
i=2 π

(i). Then the homogeneous system of
linear equations

x · X = 0,(2.7)

where X ∈ IR
(m+2n)×(m+2n) is defined as follows

X =




L̂ F̂(1) −

∑∞
i=3 Ŝ(i) ·G

∑∞
i=2 F̂(i) +

∑∞
i=3 Ŝ(i) · G

B̂ L −
∑∞

i=2 S(i) ·G
∑∞

i=1 F(i) +
∑∞

i=2 S(i) · G

0 B −
∑∞

i=1 S(i) · G
∑∞

i=1 F(i) + L +
∑∞

i=1 S(i) ·G



 ,(2.8)

admits a unique solution x = [π(0), π
(1), π

(∗)], with normalization x1T = 1.
Computing π

(0), π
(1), and π

(∗) only does not preclude the computation of a
class of stationary measures of interest. More specifically, ETAQA allows for the
computation of measures of interest that can be expressed as the expected reward
rate

r =

∞∑

j=0

∑

i∈S(j)

ρ
(j)
i π

(j)
i ,

5

where ρ
(j)
i is the reward rate of state s

(j)
i .2 If the reward rate of state s

(j)
i , for

j ≥ 2 and i = 1, . . . , n, is a polynomial of degree k in j with arbitrary coefficients

a
[0]
i ,a

[1]
i , . . . ,a

[k]
i , then the computation of these measures requires the solution of k+1

sets of linear equations, appropriately defined. For more details on the construction of
this set of linear equations and its computational cost, we direct the interested reader
to [15].

3. newETAQA: Improved Aggregate Solution for M/G/1-type Pro-
cesses. Although ETAQA provides computational savings in comparison to Ra-
maswami’s formula [15], it gives rise to matrix X in eq.(2.8), which although it has
row sums equal to zero, it is not an infinitesimal generator. Blocks X1,2,X2,2,X3,2

may include both positive and negative elements. The effect is that when factorizing
the matrix X as discussed in classic numerical literature for Markov chains ([17]),
we cannot theoretically bound the growth factor in the factorization. It is common
knowledge in numerical analysis that numerical instability because of excessive growth
factors is not encountered in practice, when pivoting strategies are employed. It is
primarily the condition number of the matrix that determines the level of accuracy.
Even infinitesimal generators (with growth factor of 1), can have huge condition num-
bers that limit their accuracy. Still, a more numerically favorable structure for the
matrix X would be desirable. Additionally, notice that the block X3,2 couples the
computation of π

(0) and π
(1) to that of π

(∗) which is not required in Ramaswami’s
formula, beyond the normalization step.

In this section, we reformulate ETAQA’s derivation to utilize the first step of
Ramaswami’s formula. Then, π

(0) and π
(1) are obviously computed numerically

stably. Moreover, this gives rise to a matrix Xnew which entails only additions, and
thus can be computed stably. We show that the new matrix is an M-matrix, and
that under certain conditions, it is a diagonally dominant M-matrix, which in turn
suggests that the factorization of Xnew yields a growth factor of 1, and a numerically
stable solution.

Given the infinitesimal generator QM/G/1 defined as in Eq.(2.1), we first rewrite
the matrix equality π · QM/G/1 = 0 as:






π
(0)·L̂ + π

(1) · B̂ = 0

π
(0)·F̂(1) + π

(1)·L + π
(2) · B = 0

π
(0)·F̂(2) + π

(1)·F(1) + π
(2)·L + π

(3) · B = 0

π
(0)·F̂(3) + π

(1)·F(2) + π
(2)·F(1) + π

(3)·L + π
(4)·B = 0

...

(3.1)

Assuming that G from equation (2.2) is available, then the following theorem can be
formulated.

Theorem 3.1 (newETAQA). Assume an ergodic CTMC with infinitesimal gen-
erator QM/G/1 having the structure shown in Eq.(2.1), with stationary probability

vector π = [π(0), π
(1), π

(2), ...]. Let also π
(∗) =

∑∞
i=2 π

(i). Then the homogeneous
system of linear equations

x · Xnew = 0,(3.2)

2For example, to compute the expected queue length in steady state, where S(j) represents the

system states with j customers in the queue, we let ρ
(j)
i

= j. To compute the second moment of the

queue length, we let ρ
(j)
i

= j2.

6

where Xnew ∈ IR
(m+2n)×(m+2n) is defined as follows

Xnew =




L̂ F̂(1) + Ŝ(2) · G

∑∞
i=2 F̂(i) +

∑∞
i=3 Ŝ(i) · G

B̂ L + S(1) · G
∑∞

i=1 F(i) +
∑∞

i=2 S(i) · G

0 0
∑∞

i=1 F(i) + L +
∑∞

i=1 S(i) ·G



 ,(3.3)

admits a unique solution x = [π(0), π
(1), π

(∗)], with normalization x · 1T = 1.
Proof. We first show that [π(0), π

(1), π
(∗)] is a solution of Eq.(3.2) by verifying

that it satisfies three matrix equations corresponding to the three blocks of columns
we used to define Xnew . The normalization equation is obviously satisfied:

π
(0) · 1T + π

(1) · 1T + π
(∗) · 1T = 1.(3.4)

(i) The first set of m equations is the first line in Eq.(3.1):

π
(0) · L̂ + π

(1) · B̂ = 0.(3.5)

(ii) The second set of n equations is derived by starting with the second line in
Eq.(3.1):

π
(0) · F̂(1) + π

(1) · L + π
(2) · B = 0.

Because π
(2) is not part of our solution (it is part of π

(∗)), we express π
(2) in terms

of π
(0) and π

(1) using Ramaswami’s formula:

π
(2) = −(π(0)Ŝ(2) + π

(1)S(1))(S(0))−1

Substituting this for π
(2) in the second line in Eq.(3.1) we obtain:

π
(0) · F̂(1) + π

(1) · L− (π(0)Ŝ(2) + π
(1)S(1))(S(0))−1 ·B = 0.(3.6)

We can further simplify the above by expressing B using the definition of the G
matrix:

B + LG +
∞∑

j=1

F(j)Gj+1 = 0 ⇔

B = −(LG +
∞∑

j=1

F(j)Gj+1) = −(L +
∞∑

j=1

F(j)Gj) ·G = −S(0) ·G(3.7)

Substituting this expression for B in equation (3.6) we obtain:

π
(0) · F̂(1) + π

(1) · L + (π(0)Ŝ(2) + π
(1)S(1)) · G =

π
(0) · (F̂(1) + Ŝ(2) · G) + π

(1) · (L + S(1) · G) = 0.(3.8)

(iii) Another set of n equations is obtained by summing all the remaining lines in
Eq.(3.1):

π
(0) ·

∞∑

i=2

F̂(i) + π
(1) ·

∞∑

i=1

F(i) +

∞∑

j=2

π
(j) ·

(
L +

∞∑

i=1

F(i)

)
+

∞∑

j=3

π
(j) · B = 0

7

Since
∑∞

j=3 π
(j) · B can be expressed as a function of π

(0), π
(1), and π

(∗) only, the
above equation can be rewritten as:

π
(0) ·

(
∞∑

i=2

F̂(i) +

∞∑

i=3

Ŝ(i) ·G

)
+ π

(1) ·

(
∞∑

i=1

F(i) +

∞∑

i=2

S(i) ·G

)
+

π
(∗) ·

(
∞∑

i=1

F(i) + L +
∞∑

i=1

S(i) · G

)
= 0.(3.9)

In steps (i) through (iii) we showed that the vector [π(0), π
(1), π

(∗)] satisfies
Eqs. (3.5), (3.8), (3.9), and the normalization (3.4), hence it is a non trivial solution
of Eq.(3.2). Now we have to show that this solution is unique, or equivalently, that
the rank of Xnew is m + 2n − 1. Because the last n columns are the same as in
the ETAQA matrix, and these have previously been proved linearly independent, it
suffices to show that all except one of the first m + n columns of Xnew are linearly
independent. Note that the sub-matrix

X̃11 =

[
L̂ F̂(1) + Ŝ(2) ·G

B̂ L + S(1) · G

]
(3.10)

of Xnew is an infinitesimal generator that results when applying stochastic comple-
mentation to QM/G/1 so that it only contains states in S(0) and S(1). Thus, its rank
is m + n− 1 which does not change if we extend it with two zero submatrices to yield
the first m + n columns of Xnew , and this completes the proof.

Because QBD processes are a special case of M/G/1-type processes, the aggregate
solution that we propose for M/G/1-type processes holds also for QBD processes.

Corollary 3.2 (newETAQA for QBDs). The matrix Xnew for QBD processes
takes the following form:

Xnew =




L̂ F 0

B̂ L + F ·G F
0 0 L + F + F · G



(3.11)

Proof. The proof that the matrix X in Eq.(3.11) admits a unique solution of the
form [π(0), π(1), π(∗)] follows the same steps as the proof of Theorem 2.1.

In some cases a larger number of probability vectors may be needed, i.e., if one
needs the exact vectors of π

(i), 2 ≤ i < k, where k is a predefined level. newETAQA
can be extended to these cases, as Theorem 3.1 can be restated as follows.

Corollary 3.3 (newETAQA parameterized). Assume an ergodic CTMC with
infinitesimal generator QM/G/1 having the structure shown in Eq.(2.1), with station-

ary probability vector π = [π(0), π
(1), π

(2), ...]. Let also π
(k,∗) =

∑∞
i=k π

(i). Then
the homogeneous system of linear equations

xk ·Xnew(k) = 0 ,

where Xnew(k) ∈ IR
(m+k·n)×(m+k·n) is defined by

Xnew(k) =(3.12)

8





L̂ F̂(1) F̂(2) · · · F̂(k−2) F̂(k−1) + Ŝ(k) ·G
∞∑

i=k

F̂(i) +
∞∑

i=k+1

Ŝ(i) ·G

B̂ L F(1) · · · F(k−3) F(k−2) + S(k−1) · G
∞∑

i=k−1

F(i) +
∞∑

i=k

S(i) · G

0 B L · · · F(k−4) F(k−3) + S(k−2) · G

∞∑

i=k−2

F(i) +

∞∑

i=k−1

S(i) · G

...
...

...
. . .

...
...

...

0 0 0 · · · L F(1) + S(2) ·G

∞∑

i=2

F(i) +

∞∑

i=3

S(i) · G

0 0 0 · · · B L + S(1) ·G

∞∑

i=1

F(i) +

∞∑

i=2

S(i) · G

0 0 0 · · · 0 0
∞∑

i=1

F(i) + L +
∞∑

i=1

S(i) ·G





,

admits a unique solution xk =
[

π
(0)

π
(1) . . . π

(k−1)
π

(k,∗)
]
, with normalization

condition xk · 1T = 1.
Proof. The proof is trivial as it follows the same steps as the proof of Theorem 2.1.

We remark briefly that computing the matrix Xnew(k) requires no additional
costs than computing the matrix Xnew , as all matrix multiplications and sums are
computed in the process. Naturally, the factorization of Xnew(k) is more expensive
because of the larger dimension m + kn. Still, the block Hessenberg structure of
Xnew(k) implies a factorization cost that grows as O(k2n3). Although it is interesting
to identify the level k at which the Xnew(k) approach starts to become more expensive
than Ramaswami’s method, we defer this question for future research as it distracts
from the focus of this paper.

4. Benefits of new ETAQA and connection to Ramaswami. There are
obvious computational advantages from the new decoupled structure of Xnew,

Xnew =

[
X̃11 X12

0 X33

]
.

Instead of factorizing an m + 2n matrix with O(2/3(m + 2n)3) computational cost,
we solve the system in two phases. We first compute π

(0) and π
(1) as a non trivial

solution of the infinitesimal generator X̃11 in (3.10). This involves O(2/3(m + n)3)
operations and it is as numerically stable as Ramaswami’s or any other algorithm. At
the second step, we use π

(0) and π
(1) to compute π

(∗) from the Schur complement as
follows:

π
(∗) = −[π(0)

π
(1)] · X12 · X

−1
33 .(4.1)

This involves an additional O(2/3n3) computational cost. Overall, the inversion pro-
cess alone in newETAQA is 3 times faster than the one in ETAQA if m = n, and it
is 4 times faster if m = 1. The total computational costs for each method should also
include the time to build X and Xnew.

The following corollary is central not only to estimating the computational costs,
but also for establishing the connection with Ramaswami’s method.

9

Corollary 4.1.

Xnew =




L̂ Ŝ(1)

∑∞
i=2 Ŝ(i)

B̂ S(0)
∑∞

i=1 S(i)

0 0
∑∞

i=0 S(i)



 ,

X =




L̂

∑∞
i=1 F̂(i) −

∑∞
i=2 Ŝ(i)

∑∞
i=2 Ŝ(i)

B̂
∑∞

i=0 F(i) −
∑∞

i=1 S(i)
∑∞

i=1 S(i)

0 B−
∑∞

i=0 F(i) −
∑∞

i=0 S(i)
∑∞

i=0 S(i)



 .

Proof. First, we show the equality for each subblock of Xnew .

Xnew(12) = F̂(1) + Ŝ(2) · G = F̂(1) · G1−1 + (
∞∑

i=2

F̂(i) ·Gi−2) ·G

=

∞∑

i=1

F̂(i) ·Gi−1 = Ŝ(1)

Xnew(22) = L + S(1) ·G = F(0) ·G0 + (
∞∑

i=1

F(i) ·Gi−1) ·G =
∞∑

i=0

F(i) · Gi = S(0)

Xnew(13) =

∞∑

i=2

F̂(i) +

∞∑

i=3

Ŝ(i) ·G =

∞∑

i=2

F̂(i) +

∞∑

i=3

∞∑

l=i

F̂(l) · Gl−i · G

=

∞∑

i=3

(
F̂(i−1) +

∞∑

l=i

F̂(l) · Gl−i+1

)
=

∞∑

i=3

∞∑

l=i−1

F̂(l) ·Gl−i+1

=

∞∑

i=3

Ŝ(i−1) =

∞∑

i=2

Ŝ(i)

Xnew(23) =

∞∑

i=1

F(i) +

∞∑

i=2

S(i) ·G =

∞∑

i=2

(
F(i−1) +

∞∑

l=i

F(l) · Gl−i+1

)

=
∞∑

i=2

S(i−1) =
∞∑

i=1

S(i)

Xnew(33) = Xnew(23) + L + S(1) ·G =

∞∑

i=1

S(i) + S(0) =

∞∑

i=0

S(i).

Using the above expressions we obtain the following for the old ETAQA matrix:

X(12) = F̂(1) −

∞∑

i=3

Ŝ(i) · G = F̂(1) +

∞∑

i=2

F̂(i) −

∞∑

i=2

Ŝ(i)

X(22) = L −

∞∑

i=2

S(i) · G = F(0) +

∞∑

i=1

F(i) −

∞∑

i=1

S(i)

X(32) = B−
∞∑

i=1

S(i) ·G = B − (
∞∑

i=0

S(i) − L −
∞∑

i=1

F(i)).

10

We start examining the consequences of the Corollary by noting first that the
third block column of the old ETAQA matrix is added to its second block column.
Therefore, we could formulate the old ETAQA method to use the following equivalent
matrix, which can be computed without subtractions except for the (2,3) block:

X′ =




L̂

∑∞
i=1 F̂(i)

∑∞
i=2 Ŝ(i)

B̂
∑∞

i=0 F(i)
∑∞

i=1 S(i)

0 B −
∑∞

i=0 F(i)
∑∞

i=0 S(i)



 .(4.2)

Finally, we could formulate Xnew(k) of Eq. (3.12) in a similar way:

Xnew(k) =





L̂ F̂(1) F̂(2) · · · F̂(k−2) Ŝ(k−1)

∞∑

i=k

Ŝ(i)

B̂ L F(1) · · · F(k−3) S(k−2)

∞∑

i=k−1

S(i)

0 B L · · · F(k−4) S(k−3)

∞∑

i=k−2

S(i)

...
...

...
. . .

...
...

...

0 0 0 · · · L S(1)

∞∑

i=2

S(i)

0 0 0 · · · B S(0)

∞∑

i=1

S(i)

0 0 0 · · · 0 0

∞∑

i=0

S(i)





.(4.3)

4.1. Computational costs of the methods. Following [17], we note that in
order to solve a homogeneous linear system of equations stably, we perform an LU
decomposition of the matrix and replace the last diagonal element of U (U(n,n) should
be zero) with machine precision. Then, we set the last element of the zero right
hand side to 1 and proceed with the solution. Later, we can enforce the required
normalization on the solution vector.

Before we solve for the probability vector, all methods require the computation of
all S(i), Ŝ(i) for i = 0, . . . , Lm, where Lm is a maximum bandwidth of the infinitesimal
generator. The algorithm to compute those is simply: S(Lm) = F(Lm), and S(i) =
F(i) + S(i+1) · G, i = Lm − 1, . . . , 0. Therefore, the total computational time is
O(2Lmn3). The Ŝ(i) are computed similarly for a total cost of O(2(Lm − 1)2mn2).
Thus, the setup time is

Tsetup = O
(
2Lmn3 + 4(Lm − 1)mn2

)
.

Ramaswami’s method. Based on the first alternative that we described, we
need to invert the matrix S(0) (for a cost O(4/3n3)), setup the Schur complement of
equation (2.5) (cost O(2mn2 + 2m2n)), and solve it for π

(0) (cost O(2/3m3)). After
that, every probability vector π

(i) is obtained through the recurrence (2.3) for a cost
of O(2mn + (2Lm + 1)n2). Assuming that Nit number of iterations are needed, the
total cost of Ramaswami’s method, including Tsetup is:

TRam = O
(
(2Lm + 4/3)n3 + (4Lm − 2)mn2 + 2m2n + 2/3m3 + Nit ·

(
2mn + (2Lm + 1)n2

))
.

11

ETAQA. Using the alternative matrix in equation (4.2) for the old ETAQA
method, we observe that the setup time covers all expensive operations (i.e., matrix
multiplications) for building the matrix. What is still needed is the summations in
the subblocks. Note that the sub blocks in line 2, ((2,2), (2,3)) can be obtained as
a byproduct of the subblocks line 3. Overall, however, these summations should be
negligible compared with the setup and the inversions in the program. Thus, the total
time of old ETAQA should be:

Told = O
(
2Lmn3 + 4(Lm − 1)mn2 + 2/3(m + 2n)3

)
.

newETAQA. The computation of the matrix Xnew is obviously slightly faster
than X, because it does not require any additions to obtain the second block column.
The difference, however, is negligible. The rest of the three steps are: the solution of
the X̃11 (cost O(2/3(m + n)3), the multiplication with X12 (cost O(mn + n2)), and
finally the solution with X33 (cost O(2/3)n3).

Tnew = O
(
(2Lm + 2/3)n3 + 4(Lm − 1)mn2 + 2/3(m + n)3

)
.

The table in Figure 4.1 shows how these times simplify in the extreme case of
m = 1 and in the typical m = n. Note that Tnew is always smaller than Told, and it
is always smaller than Ramaswami’s method for small values of m, regardless of the
number of iterations of the latter. When m = n, Tnew is comparable to TRam when
the iterations and Lm are both small. In practice, however, Ramaswami’s method
requires a large number of steps to converge, especially as the utilization of the system
grows. The graph shown in Figure 4.1, shows that the number of iterations grows
exponentially with the system utilization (1−π

(0)), and that it is relatively insensitive
to the size of the case.

4.2. Numerical stability of newETAQA. The probabilities π
(0) and π

(1) are
obtained in the same way as with Ramaswami’s method (by Schur complementation),
and therefore their computation is stable. To obtain π

(∗), we need to factorize X33.
We show that this is usually a very stable process.

Lemma 4.2. (see 2.5.3.12 [6]) A matrix X is an M-matrix if and only if there is
a positive vector y ∈ <n with y ·X > 0.

Theorem 4.3. The matrix X33 is a negative M-matrix, i.e., −X33 is an M-
matrix.

Proof. We show for a negative M-matrix, because X33 =
∑

F(i) + L +
∑

S(i)G
has negative diagonals and positive off diagonals. Based on the Lemma above, we
must find a positive vector y, with y ·X33 < 0. If the chain is recurrent, there exists
the probability vector π

(∗), which is obviously positive. From the Schur complement
derivation of π

(∗) in equation (4.1), and the definition of the matrix Xnew we have
that X12 has positive elements, and therefore π

(∗) · X33 = −[π(0)
π

(1)] ·X12 < 0.
The M-matrix property of X33 is a highly desirable property but to guarantee a

bounded growth factor in factorizations, the matrix also has to be diagonally domi-
nant. The following describes a sufficient condition.

Lemma 4.4. The matrix X33 is diagonally dominant if
∑∞

i=1 iF(i)1T < B1T .
Proof. From the definition of Xnew we have:

X33 =
∞∑

i=1

F(i) + L +
∞∑

i=1

∞∑

l=i

F(l)Gl−i+1.

12

TRam Told Tnew

m = 1 (2Lm + 4/3)n3 + Nit · (2Lm + 1)n2 (2Lm + 16/3)n3 (2Lm + 4/3)n3

m = n (6Lm + 2)n3 + Nit · (2Lm + 3)n2 (6Lm + 14)n3 (6Lm + 6)n3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

600
Number of Ramaswami iterations required for various utilization levels

Utilization

N
um

be
r

of
 it

er
at

io
ns

n=4, m=1
n=40, m=1

Fig. 4.1. The table compares of computational costs for two typical values of m and for each of
the three methods: Ramaswami, old ETAQA, and newETAQA. The graph below shows for two cases
m = 1, n = 4 and m = 1, n = 40 that the dominant cost in Ramaswami’s method is the iterative
process, more so as the utilization increases.

Let ej be the j-th unit vector. F(i),B and L are subblocks of the infinitesimal
generator, and thus satisfy:

Ljj = −
∑

k 6=j

Lj,k − ej

∞∑

i=1

F(i)1T − ejB1T .(4.4)

For any row j, we denote by dj the absolute value of the diagonal element of X33.
Then,

dj =

∣∣∣∣∣∣

∞∑

i=1

F
(i)
jj + Ljj +

(
∞∑

i=1

∞∑

l=i

F(l)Gl−i+1

)

(j,j)

∣∣∣∣∣∣

≡ |fj + Ljj + hj |.(4.5)

In the above, the scalars fj and hj are used to denote the summations of F
(i)
jj and the

(j, j) diagonal element of the double summation of matrices, correspondingly. Let us
now denote by ∆j the sum of all off-diagonal (all positive) elements X33(jk), k 6= j.
Being careful not to add the diagonals in the row sums, and using equations (4.4),
(4.5), and G1T = 1T , we have:

∆j =
∑

k 6=j

Lj,k + ej

∞∑

i=1

F(i)1T − fj + ej

∞∑

i=1

∞∑

l=i

F(l)1T − hj

13

=
∑

k 6=j

Lj,k + ej

∞∑

i=1

F(i)1T + ej

∞∑

i=1

iF(i)1T − fj − hj

<
∑

k 6=j

Lj,k + ej

∞∑

i=1

F(i)1T + ejB1T − fj − hj

= −Ljj − fj − hj = | − Ljj − fj − hj | (since ∆j > 0)

= dj .

The assumption of the above Lemma has an interesting interpretation from the
point of view of recurrency of the Markov chain. It is well known, [7, 16], that for the
chain to be recurrent, the following condition has to be satisfied:

π̃

∞∑

i=1

iF(i)1T < π̃B1T ,

where π̃ is the solution of the infinitesimal generator (B+L+
∑∞

i=1 F(i)). Obviously,
our assumption in the Lemma is stronger, and is not satisfied by all recurrent chains.
Yet, it characterizes the chains that maintain diagonal dominance. First, observe
that for “strongly recurrent” chains, i.e., chains where π

(∗)1T is very small, the above
condition is more likely to be satisfied. Even if it is not, the effect on the relative
error in the solution is small. More interestingly, observe that our condition requires
that each row on the left side of the inequality is smaller than each row on the right.
The recurrency condition above, however, only requires that the weighted average of
the rows on the left is less than the average of the rows on the right. Therefore, for
Markov chains whose elements of F(i) and B do not vary greatly along rows and from
each other, the two conditions are expected to be close. Moreover, high variability of
the elements between rows is also a cause of high condition numbers for X33 and the
generator as well, showing how this property captures the stability behavior of such
chains.

4.3. Connection of newETAQA to Ramaswami. We have frequently pointed
out that the computation of the probability vectors π

(0) and π
(1) are identical for

both newETAQA and Ramaswami’s method. To compute π
(∗), Ramaswami’s method

has the choice between an a posteriori normalization, driving the iterations to ma-
chine precision (assuming π

(0)1T = 1 for equation (2.5)), or solving the additional
equation (2.6) to compute the exact norm of π

(0). It should be clear by now, that
the latter condition is identical to newETAQA, as the additional equation involves
the inverse of X33! Thus, using Ramaswami’s method with equation (2.6) to compute
π

(∗) is completely wasteful, as it does not realize that π
(∗) is implicitly available as

the result of the normalization condition. Of course, other π
(j) may be required.

Following Ramaswami’s formula with the a posteriori normalization should be much
more efficient, although still far slower than newETAQA.

An immediate consequence of the above observations is the equivalent numerical
behavior of newETAQA and Ramaswami’s method with equation (2.6). There seems
to be a discrepancy with the literature, therefore, because Ramaswami’s method is re-
ported as unconditionally numerically stable. The practical difference from newETAQA
is that the inversion of X33 in equation (2.6) is not used to obtain the π

(∗), but only to
normalize π

(0). An error in the inversion would imply an error in the size of π
(0)1T ,

14

which may in turn signal the recursive formula to stop too early, without having com-
puted the accurate π

(∗). In that case, the numerical behavior of Ramaswami’s method
is identical to newETAQA. The numerical advantage of Ramaswami’s method is that
the summation can be continued beyond machine precision, thus correcting some of
the numerical errors in the norm estimation. Note that because the probability vec-
tor has to be renormalized at the end, there is no predetermined target value for the
norm, and the stopping criterion becomes unclear.

5. Experiments on numerical stability. We provide experiments that con-
firm our theoretical results and observations about both conditioning and stability of
the problem. To be able to control both utilization (which essentially characterizes
the drift of the process) and conditioning, as well as to describe a tractable chain,
we have used a test case with only two F off diagonal identical blocks, as described
below:

F = F(1) = F(2) =





1 1 1 1
2 2 2 2

200 200 200 200
100 100 100 100



 .

The rest of the parameters are defined below:

B = zT · y, with various vectors z andy = [.25, .25, .25, .25]
L = −diag(

∑
rows B + 2 ∗

∑
rows F)

F̂ = F(1, :), B̂ =
∑

rows B, L̂ = −2 ∗
∑

rows F(1, :)

.

The above choice simplifies the computation of G = zT · 1.
Our first set of experiments is run in Matlab to establish the relative effect of

utilization and the stiffness of the coefficients in the conditioning of X33. Table
5.1 shows the vectors z we have used and the coefficient of variation (CV) of their
elements. Our goal was not only to increase the condition number but also to force
X33 to lose diagonal dominance. Figure 5.1 plots the condition number of X33 against
various levels of system utilization (1 − π

(0)). Each curve corresponds to a different
vector z, displaying its CV. To achieve various utilization levels without affecting the
CV, we change z by multiplying all its elements by a constant factor (.9) until we
reach the recurrency threshold.

We first observe that the condition number grows both with the stiffness of the
coefficients and with the system utilization, but the CV has by far the dominant role.
The dependency on the utilization seems linear for most of the utilization spectrum,
and it is not until utilization approaches 0.96 (i.e., a barely recurrent chain) that the
condition number rises rapidly. Therefore, newETAQA is not expected to have numer-
ical problems even for chains that are barely recurrent. For those cases, Ramaswami’s
method would require vastly more time to converge as Figure 4.1 shows.

In our second set of experiments we measure the actual numerical error incurred
by each of the three methods, ETAQA, newETAQA and Ramaswami. To do so, we
need a very accurate solution vector as our reference. As analytical solutions are
not known, even for the simple test case described above, we ran our tests in Maple,
which can simulate arbitrary floating point precision in software. In the experiments,
we first run newETAQA, requiring Maple to compute the probability vector with
all floating point arithmetic happening in software with 100 digits in the mantissa.
Then, we switch to a much smaller number of digits in the mantissa, and we run the

15

CV z
1.0 [750, 742, 750, 730]
4.26 [1e5, 1e2, 5e3, 600.44]
5.16 [1e10, 1e4, 3e3, 340.44]
6.24 [1e14, 3e6, 1.1e3, 64]

Table 5.1
The choices of the vector z in creating smooth or highly stiff coefficients in B.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

Utilization (1−p
0
)

C
on

di
tio

n
N

um
be

r

Condition number of X
33

 as a function of CV and Utilization

CV = 1

CV = 4.26

CV = 5.16

CV = 6.24

Fig. 5.1. The norm-2 condition number of X33 as a function of system utilization (1 − π
(0))

for four different cases with increasing coefficient of variation (CV) in the matrix elements. The
stiffness caused by high CVs has a larger impact on the condition number.

three methods above, reporting the 2-norm of the difference of their solution from the
accurate solution. We report results for 6, 8, 10, 12, 14, and 16 digits in the mantissa,
effectively simulating machines with various numerical precisions.

Figure 5.2 shows results from two highly ill conditioned problems, which are
constructed as in the previous set of experiments, the first with z =[1e14,1e5,1e3,12.71
], and the second with z =[1e14,1e5,1e3,19]. Despite their high conditioning, their
utilizations are very different; the first 0.988, almost non-recurrent, and the second
0.50. The ETAQA matrix and method is implemented in the original way. The
newETAQA is implemented in the way described in this paper. For Ramaswami’s
method we use the a priori normalization of (2.6). For the first test case, Ramaswami’s

code is iterated until π
(j)1T < 10−(Digits used), while for the second case, π

(j)1T <

10−(Digits used+1).

The first observation is that none of the methods achieves accuracy equal to the
(virtual) machine precision, with newETAQA being the closest for both cases. The
condition number of X33 is obviously the limiting factor. The original ETAQA is
performing surprisingly well too. Ramaswami’s method, despite several hundreds of
thousands of iterations, did not achieve a better accuracy. This is exactly the behavior
we predicted in the previous section. In fact, in the second test Ramaswami’s method
has come slightly closer to the precision of newETAQA, as we allowed it to iterate

16

6 7 8 9 10 11 12 13 14 15 16
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Error in various methods with k(X
33

) =1.7e15 and utilization = 0.988

Digits in floating point mantissa

E
rr

or
 (

di
st

an
ce

 fr
om

 e
xa

ct
 s

ol
ut

io
n)

Etaqa
New Etaqa
Ramaswami
Machine Precision

6 7 8 9 10 11 12 13 14 15 16
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

Error in various methods with k(X
33

) =2e13 and utilization = 0.50

Digits in floating point mantissa

E
rr

or
 (

di
st

an
ce

 fr
om

 e
xa

ct
 s

ol
ut

io
n)

Etaqa
New Etaqa
Ramaswami
Machine Precision

Fig. 5.2. Numerical accuracy of the methods of Ramaswami, ETAQA and newETAQA for two
ill conditioned cases. We plot the difference from the accurate solution ‖x − xaccurate‖2 for each
method, under various machine precisions. The methods are implemented in Maple, which allows
for software simulated arbitrary machine precision, by setting the digits in the mantissa of floating
point numbers. 100 digits are used for the accurate solution.

6 7 8 9 10 11 12 13 14 15 16
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

Error in various methods with k(X
33

) =103 and utilization = 0.005

Digits in floating point mantissa

E
rr

or
 (

di
st

an
ce

 fr
om

 e
xa

ct
 s

ol
ut

io
n)

Etaqa
New Etaqa
Ramaswami
Machine Precision

Fig. 5.3. Numerical accuracy of the methods of Ramaswami, ETAQA and newETAQA for a
well conditioned case. We plot the difference from the accurate solution ‖x − xaccurate‖2 for each
method, under various machine precisions. The methods are implemented in Maple, which allows
for software simulated arbitrary machine precision, by setting the digits in the mantissa of floating
point numbers. 100 digits are used for the accurate solution.

longer, crossing the machine precision boundary by one digit.

For the third experiment, we modified a z from Table 5.1 so that it yields a very
low condition number and an extremely low utilization. We run the same experiments
as before, only now Ramaswami’s code is allowed to converge to two digits lower than

the machine precision, i.e., 10−(Digits used+2). Figure 5.3 shows the results. The
difference between ETAQA and newETAQA is negligible, and they are both within the
machine precision noise. Ramaswami’s method, however, is able to achieve, in certain
cases, accuracy about two orders of magnitude better than the machine precision. This
is because we allowed it to continue computing probabilities for two more orders of
magnitude lower, and also because the low utilization implies that just a few iterations
are sufficient. This is in full agreement with our theoretical results.

17

6. Conclusions. We have provided a restructuring of the ETAQA matrix for
the solution of the M/G/1-type processes, that leads to significant computational sav-
ings for the direct computation of the aggregate probability vector π

(∗), as explained
via Big-O notation. More importantly, we provide a theoretical explanation of the
proximity of the newETAQA method to Ramaswami’s recursive formula. The com-
putation of the π

(∗), that ETAQA is based on, is also implicitly provided (but not
explicitly used) by Ramaswami’s formula.

Additionally, the computations in this new ETAQA formulation are numerically
stable as the resulting Xnew matrix is an M-matrix, which under conditions of strong
recurrency, is also diagonally dominant. Regardless of diagonal dominance, the nu-
merical behavior is theoretically equivalent to that of Ramaswami’s method that uses
a typical normalization condition. The advantage of Ramaswami’s method is that it
could continue the iteration beyond machine precision, albeit at additional computa-
tional expense and an unclear stopping criterion. These theoretical connections have
thus provided new intuition on Ramaswami’s numerical behavior, and have suggested
an alternative implementation that is faster and potentially more stable. Experimen-
tation using arbitrary floating point precision is in strong agreement with the above
theoretical results.

Acknowledgments. We thank B. Meini and V. Ramaswami for insightful dis-
cussions.

REFERENCES

[1] D. A. Bini and B. Meini. Using displacement structure for solving non-skip-free M/G/1 type
Markov chains. In A. S. Alfa and S. R. Chakravarthy, editors, Advances in Matrix Analytic
Methods for Stochastic Models, pages 17–37, NJ, 1998. Notable Publications Inc.

[2] D. A. Bini, B. Meini, and V. Ramaswami. Analyzing M/G/1 paradigms through QBDs: the
role of the block structure in computing the matrix G. In G. Latouche and P. Taylor,
editors, Advances in Matrix Analytic Methods for Stochastic Models, pages 73–86, NJ,
2000. Notable Publications Inc.

[3] G. Ciardo and E. Smirni. ETAQA: An efficient technique for the analysis of QBD-processes by
aggregation. Performance Evaluation, 36-37:71–93, 1999.

[4] W. K. Grassman and D. A. Stanford. Matrix analytic methods. In W. K. Grassman, editor,
Computational Probability, pages 153–204, Boston, MA, 2000. Kluwer Academic Publishers.

[5] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia,
1996.

[6] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University
Press, Cambridge, UK, 1991.

[7] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic Model-
ing. SIAM, Philadelphia PA, 1999. ASA-SIAM Series on Statistics and Applied Probability.

[8] D. M. Lucantoni. The BMAP/G/1 queue: A tutorial. In L. Donatiello and R. Nelson, editors,
Models and Techniques for Performance Evaluation of Computer and Communication Sys-
tems, pages 330–358. Springer-Verlag, 1993.

[9] B. Meini. An improved FFT-based version of Ramaswami’s formula. Comm. Statist. Stochastic
Models, 13:223–238, 1997.

[10] B. Meini. Solving M/G/1-type Markov chains: Recent advances and applications. Comm.
Statist. Stochastic Models, 14(1 - 2):479–496, 1998.

[11] N.C. Oguz N. Akar and K. Sohraby. Matrix-geometric solution in finite and infinite m/g/1 type
markov chains: A unifying generalized state-space approach. Journal of Selected Areas in
Communications, 16(5), 1998.

[12] M. F. Neuts. Matrix-geometric Solutions in Stochastic Models. Johns Hopkins University Press,
Baltimore, MD, 1981.

[13] M. F. Neuts. Structured Stochastic Matrices of M/G/1-type and their Applications. Marcel
Dekker, New York, NY, 1989.

[14] V. Ramaswami. A stable recursion for the steady state vector in Markov chains of M/G/1-type.
Commun. Statist. Stochastic Models, 4:183–189, 1988.

18

[15] A. Riska and E. Smirni. Exact aggregate solutions for M/G/1-type Markov processes. In
Proceedings of ACM SIGMETRICS Conference, pages 86–96, Marina del Rey, CA, June
2002.

[16] A. Riska and E. Smirni. M/G/1-type Markov processes: A tutorial. In M. C. Calzarossa and
S. Tucci, editors, Performance Evaluation of Complex Computer Systems: Techniques and
Tools, LNCS 2459, pages 36–63. Springer-Verlag, 2002.

[17] William J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, 1994.

19

