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Abstract Iterative methods often provide the only
means of solving large eigenvalue problems. Their
block variants converge slowly but they are robust
especially in the presence of multiplicities. Precon-
ditioning is often used to improve convergence. Yet,
for large matrices, the demands posed on the avail-
able computing resources are huge.

Clusters of workstations and SMPs are becom-
ing the main computational tool for many scientific
and engineering groups. In these environments,
high communication costs suggest coarse grain im-
plementations of iterative methods.

We have combined the block and preconditioning
functionalities into a parallel implementation of a
block Jacobi-Davidson method. We combine a fine-
grain iterative scheme with the coarse grain capa-
bility that each processor can precondition different
eigenpairs. We outline the design and present some
timings and convergence results on a small worksta-
tion cluster and on a SUN Enterprise.
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1 Introduction

Many scientific and engineering applications
require the computation of a few eigenpairs
of large, symmetric matrices. Iterative meth-
ods are often the only means of solving these
large eigenproblems. Traditionally, Lanczos
and subspace iteration [4, 5, 1] have been the
two methods of choice. Their strengths are
complementary since Lanczos is an efficient
algorithm, but it frequently misses multiple
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eigenvalues, while subspace iteration is robust
but slow.

Recently, preconditioning, a powerful tech-
nique in the iterative solution of linear systems,
has been gaining popularity for eigenproblems.
Jacobi-Davidson (JD) [2] is an Arnoldi-like
method that can use preconditioning to solve
approximately the correction equation for a
specific eigenvector. Although, JD can often
resolve multiplicities if converged eigenpairs
are locked, because of its rapid convergence it
misses high multiplicities. Evidently, an effi-
cient and robust combination of JD and sub-
space iteration is needed.

The increasing availability of inexpensive
but powerful workstations and small Shared
Memory Multiprocessors (SMPs) has facili-
tated the migration of many scientific and en-
gineering codes to these environments from the
more traditional vector supercomputers and
MPPs. Usually, this migration also implies
modifying the algorithms and their parallel im-
plementations to effectively use the new envi-
ronment. Traditionally, iterative methods have
been implemented on MPPs in a data paral-
lel way [3]. The power of data parallel imple-
mentations is their structured simplicity, in-
volving only global reduction operations and
matrix vector multiplications. However, com-
munication and synchronization occurs several
times per iteration making these implemen-
tations less suitable for coarse grain environ-
ments. Developing efficient, coarse grain iter-



ative methods has been challenging because of
the sequential nature of the iterations.

Block methods are hybrids of subspace iter-
ation and Lanczos-like methods, where the it-
erative method is applied simultaneously on a
block of vectors. Block methods improve ro-
bustness but pay a penalty on the speed of
convergence. On parallel environments, block
methods provide more computation between
communications and thus increase the granu-
larity of the computation. The goal is to coun-
teract the convergence penalty by improved
parallel speedup.

In this paper, we outline an implementation
of a variable block, JD method, that combines
both fine and coarse grain parallelism. The
variable block allows for improved robustness
in those cases that need it, and the combina-
tion of granularities allows for flexible use of
the code both on parallel environments with
many processors and faster interconnects and
on small clusters of workstations with typical
Ethernet connections. We present some con-
vergence results and timings to demonstrate
the effectiveness of the implementation.

2 A parallel Jacobi-Davidson
implementation

Consider the standard eigenvalue problem
Az} = Xz;, where A is a large symmetric
matrix, and a few extreme (A}, z]) eigenpairs
are required. Although the following discussion
considers only symmetric matrices, the results
and methods can be trivially extended to the
nonsymmetric case. Starting from an initial
vector, the JD algorithm successively builds a
basis for a space from where the approxima-
tions of the eigenpairs are obtained, usually,
by the Rayleigh-Ritz procedure [2]. The JD ex-
pands the basis by adding the approximate so-
lution t; of the correction equation (1) for some
approximate eigenpair (Ritz pair) (\;, z;):

(I — :L‘Z:L‘;F)(A — NI — .TZ.TZT)tz =r. (1)

ri = (A—N\I)z; is the residual of the Ritz pair.

A block version of the JD starts with a block
of k initial vectors, and expands the basis by
a block of k vectors at a time. These vectors
are the approximate solutions of k correction
equations, each for a different Ritz pair.

This algorithm is easily parallelizable in a
data parallel way. Each processor keeps a sub-
set of the rows for each basis vector and eigen-
vector, and performs all vector updates locally.
The major difference from the sequential code
is that inner products require a global reduc-
tion operation (summation), and that a paral-
lel matrix vector multiplication and precondi-
tioning operations must be provided. Below,
we outline the data parallel JD algorithm:

JD

V starting k trial vectors, and let W = AV
While not converged do:

H = VTW (local contributions)

Global Sum(H) over all processors.

Solve Hy; = Ay, @ =1 : k (all procs)

x; = Vi, 2z = Wy;,i = 1: k (local rows)

ri = 2; — Ny, © =1 :k (local rows)

Correction equation Solve for each ;

Orthogonalize t;,i =1: k. Addin V

Matrix-vector W; = AV;, i=1:k

end while

P NSO W=

The easiest way to apply the (I — z;z]) pro-
jections in the correction equation (1) is to use
an iterative method for linear systems (such as
GMRES or BCGSTAB) and perform the projec-
tions before and after the matrix vector multi-
plication. In our implementation we have used
BCGSTAB because it is based on a short recur-
rence, and thus we can take many steps with-
out having to store a large number of vectors.
The BCGSTAB is also implemented in a simi-
lar, data parallel way. If a preconditioner is
available this can be applied directly to the
BCGSTAB for solving the correction equation.
Finally, note that the block size k and the
number of processors can take arbitrary values.
However, for faster convergence, it is better to
keep k smaller — and often much smaller —
than the number of required eigenpairs.



2.1 A coarse grain interface

In the above data parallel implementation we
assume that steps 6 and 8 (correction equa-
tion and matrix vector multiplication) are per-
formed through user provided, data parallel
functions. However, the above JD design is
flexible enough to allow various functions in
steps 6, and 8, requiring only that the results
are distributed over the processors in a data
parallel way (by rows).

Consider the situation where every processor
has access to the entire matrix A. This is often
the case, not only when A is very sparse, but
especially in applications that do not store the
matrix, providing instead a function for com-
puting the matrix vector product. In these ap-
plications, matrix storage is not an issue. A
typical example (and our initial motivation for
this implementation) comes from the area of
materials science [6]. When discretizing the
Schrodinger operator on a planewave basis, the
matrix can be represented as two diagonals.
The problem is that one of these diagonals is
in real space and the other in Fourier space. To
compute the action of the matrix on a vector,
we transform the vector from Fourier to real
space, and transform the result back to Fourier
space. Thus the matrix vector multiplication
consists of two vector updates and two FFTs.

If a processor has access to A, and also stores
all the rows of a vector, the matrix vector prod-
uct can be performed locally (sequentially).
The parallelism comes from having each pro-
cessor gather all the rows of one of the block
vectors and apply the matrix vector product
independently from other processors. Assum-
ing for simplicity that the block size is equal to
the number of processors, the following is an
example of a coarse grain step 8.

8. Coarse grain matrix-vector
Perform all-to-all communication:
send local piece of V; to proc i
receive a piece for Vp,y;q from proc i
Perform Wi,yiq = AViyyiq locally
Perform all-to-all communication:
send the i-th piece of W,y:q to proc i
receive a piece for W; from proc ¢

Although the matrix vector products are
performed in parallel, the expensive all-to-all
personalized communication limits the scala-
bility for general sparse matrices. However, the
power of this interface is in the coarse grain so-
lution of the correction equations for the vec-
tors in the block. If each processor gathers all
the rows of a vector, it can apply any number
of preconditioned BCGSTAB steps completely
independently from other processors. Thus,
all the correction equations for the block are
solved in parallel. The following is an example
of this coarse grain interface.

6. Coarse grain correction equation
Perform all-to-all communication:
send local pieces of x;,r; to proc %
receive a piece for Tyyid, Tmyia from proc 4
Apply m steps of (preconditioned) BCGSTAB
on eq.(1) with the gathered ry,y;q
Perform all-to-all communication:
send the i-th piece of ¢,,,;4 to proc i
receive a piece for ¢; from proc ¢

In this method, larger number of BCGSTAB
steps (m) means more parallel work between
communications. Therefore, by increasing m
we can improve arbitrarily the parallel speedup
of the method. Typically, we choose a small
m for easy problems (requiring few iterations),
and a larger m for hard problems. In addition,
we gradually increase m in later JD iterations.

As mentioned earlier, the communication re-
quirements for the all-to-all phase could be
excessive for general sparse matrices, where
matrix vector product requires communication
only of a small subset of the vector V. How-
ever, in cases such as the one from materials
science the matrix is not sparse, and the prod-
uct is performed through the use of FFTs or a
similar complicated function. In this case, the
communication requirements of the FFTs are
comparable to the all-to-all of our methods.

2.2 Other implementation features

For portability and efficiency, we have imple-
mented the above code in Gnu Fortran 77,
using MPI message passing. In step 7, we



use Gram-Schmidt with re-orthogonalization
to assure both orthogonality and efficient par-
allelization. Small eigenproblems in step 3 are
solved by LAPACK calls. We also adopt a lock-
ing and window technique for finding a large
number of eigenpairs by utilizing only small ba-
sis sizes. Finally, we apply thick restarting [7]
when the size of the basis V reaches a user
specified upper limit.

The global summations in the JD driver are
delayed as much as possible, and are applied
on blocks of partial results. Thus, the code has
1 synchronization point at step 2, and 2 addi-
tional ones in orthonormalization (step 7). An
additional synchronization point occurs when-
ever the need for reorthogonalization emerges.
From the above, the code is well tuned as a
fine grained method, and if data parallel ma-
trix vector product and preconditioner are pro-
vided, the code is scalable to a large number of
processors on MPPs.

The flexibility of the code stems from the
coarse grain interfaces discussed earlier. These
are particularly useful in computational envi-
ronments with high latencies and low band-
widths, such as clusters of workstations and
PCs. The block size in our implementation
can vary from 1 (fine grain JD) to the max-
imum basis size (preconditioned subspace iter-
ation). Therefore, the block size can be consid-
ered a tuning knob between different methods.
Finally, the code handles any combination of
number of processors and block size. The im-
plementation involves the dynamic creation of
processor subgroups and its details are not dis-
cussed in this paper. The experiments in the
next section reflect the simple case where the
number of processors is equal to the block size.

3 Timing experiments

We have tested the above code with various
choices of block size k, number of BCGSTAB it-
erations m, with or without preconditioning,
and on two different parallel environments. We
have also compared against PARPACK, an effi-
cient data parallel implementation of the pop-

ular ARPACK package. Both PARPACK and JD
use a maximum basis size of 25, and five small-
est or largest eigenpairs are required. The
residual tolerance is set to ||A||r1071*. To
facilitate the table illustration of the compar-
isons we adopt the following notation:

P Number of processors.
PAR The PARPACK method.

JDb(m) The block JD, with block size k =p.
Each JD iteration performs m steps
of unpreconditioned BCGSTAB on
each vector in the block.

JDb(m)-i As with JDb(m), only the BCGSTAB
steps are preconditioned with ILUT.
JDb(m)-d As with JDb(m)-i, only diagonal
preconditioning is used instead.
JD(0) Fine grain JD, block size kK = 1, and
no correction equation (Arnoldi).

We have run experiments on two parallel
machines. The first is a SUN Enterprise 450
server with 4 processors. The processors are
UltraSparc II 300 MHz, with 2 MB level 2
cache each. The total available memory is
512 MB, and is accessible through a crossbar
switch. The second, is a cluster of three PCs,
connected through Ethernet, each with a Pen-
tium II, 400 MHz processor, 512 KB level 2
cache, and 360 MB of memory. The sizes of
these machines are rather small, but typical of
the computational resources available to many
small scientific and engineering groups.

We used two symmetric test matrices in
Harwell-Boeing format, which are available
from MatrixMarket! We favor these over ma-
trices from materials science because it is easier
for other researchers to confirm and juxtapose
our results. The first matrix is NASASRB of
dimension 54870, and with 2677324 non zero
elements. While the largest part of its spec-
trum is easily obtained, the lower part is ex-
tremely clustered and difficult to converge to.
The second matrix is the BCSSTK16 of dimen-
sion 4884, and with 290378 non zero elements.
The interesting characteristic is that its lowest

'"URL: http//math.nist.gov/MatrixMarket/



eigenvalue (1) has a very high numerical mul-
tiplicity (more than 40).

3.1 Testing scalability

Demonstrating parallel scalability of the im-
plementation is complicated because differ-
ent numbers of processors have different block
sizes, and thus different convergence behaviors.
First, we simply demonstrate the scalability
of the JD driver, by ignoring convergence and
stopping the codes after a certain number of
matrix vector products. To test solely the scal-
ability of the driver, we use two diagonal ma-
trices of sizes 5000 and 50000 that incur no
communication in the matrix vector function.
All tests are versus the PARPACK.

The speedups in Table 1 show that the JD
is at least as scalable as PARPACK, despite the
more complicated step. The MPI_alltoall in
the matrix vector product of the NASASRB
proves communication intensive for both meth-
ods. In fact, neither of the fine grain methods
can exploit parallelism on the PC cluster. In
contrast, the coarse grain JD can achieve ar-
bitrarily high speedup by increasing the inde-
pendent number of BCGSTAB steps.

3.2 Timings for an easy problem

Because the number of matrix vector products
typically increases with the block size, the scal-
ability observed in the previous section does
not always translate into speedup. In Table 2
we show results from converging to the five
largest eigenpairs of NASASRB on the SUN
SMP. Beyond scalability, we see that PARPACK
and JD(0) have similar convergence character-
istics. Although identical in theory, JD(0) typ-
ically results in fewer iterations while PARPACK
in lower times.

The coarse grain algorithm turns out to be
an overkill for this problem. As expected for
JDb(10), the number of iterations decreases
but the number of matrix vector products in-
creases both with block size and BCGSTAB
steps. Therefore, four processors perform more
work than one processor and the observed par-

allel efficiency is less than 50%. This problem is
too easy to require a sophisticated block, inner-
outer method.

3.3 Timings for a difficult problem

The lowest eigenvalues of the NASASRB have
relative gap ratios that are on the order of
1071% making their computation by Krylov
methods a hard problem. After 350000 matrix
vector products, PARPACK was far from con-
vergence. Applying shift and invert on large,
sparse matrices is usually not possible or it
involves excessive memory and time require-
ments. On the other hand, powerful precon-
ditioners such as incomplete factorization, are
often easily computed. This is a significant ad-
vantage of the JD variants. For NASASRB, the
ILUT(20, 0), which is the SPARSKIT incomplete
factorization with 0 threshold, is computed in
merely 30 seconds (both on the SUN and the
PCs). For stability, we computed the 1ILUT of
the shifted matrix A + 10°7. The results in
Table 3 show that the coarse grain algorithm
using ILUT-preconditioned BCGSTAB converges
to the five lowest eigenpairs in less than one
hour, both on the SUN and the PCs. As be-
fore, the number of matrix vector multiplica-
tions increases with the block size, but so does
the parallel speedup.

It is interesting to note that for difficult
problems, a larger number of BCGSTAB steps
improves convergence. This is in contrast with
the results in Table 2. Dynamically deciding
the number of BCGSTAB steps according to the
difficulty of the problem would be a desirable
feature of robust JD implementations. Finally,
it is worth noting, that the coarse granularity
of the method masks completely the large Eth-
ernet latencies on PCs, providing better tim-
ings and speedups than the SUN SMP.

3.4 Resolving high multiplicities

Besides better computational and parallel effi-
ciency, the strength of subspace iteration and
block methods lies in their ability to find eigen-
pairs with high multiplicities. We confirm this



SUN speedups:

NASASRB Diag(5000) | Diag(50000)
p | PAR | JDb(150) | JD(0) | PAR | JD(0) | PAR | JD(0)
2| 1.94 1.97 1.90 | 1.60 | 1.75 | 2.01 | 2.01
3| 2.65 2.80 2.64 | 1.99 | 2.30 | 3.17 | 3.09
4| 3.34 3.42 3.55 | 2.03 | 2.55 | 4.26 | 4.26

PC speedups:

NASASRB Diag(5000) | Diag(50000)
p | PAR | JDb(150) | JD(0) | PAR | JD(0) | PAR | JD(0)
2| 091 1.84 1.06 | 1.79 | 1.74 | 2.09 | 2.16
3| 0.61 2.36 0.71 | 2.01 | 1.99 | 3.09 | 3.26

Table 1: SUN Enterprise and PC cluster speedups of 2, 3, and 4 processors over 1 processor, for

three different matrices.

PAR JD(0) JDb(10)-d
p | Mvec Time Sp | Mvec Time Sp | Mvec Time Sp
11215 153.45 1162 218.78 1| 724 246.56 1
2| 215 79.21 1.94 | 161 116.46 1.90 | 824 160.95 1.53
3| 215 57.81 2.65 | 162 82.74  2.64 | 880 126.79 1.95
4| 215 45.98 3.34 | 164 61.52 3.55 | 1070 131.11 1.88

Table 2: Matrix vector products (Mvec), time, and speedup (Sp) for five largest eigenpairs of the

NASASRB on the SUN Enterprise.

strength in our variable block JD implementa-
tion by running an experiment on BCSSTK16
from Harwell-Boeing. The numerical multi-
plicity of the lowest eigenvalue is more than
40. As Table 4 shows, typical Krylov methods
such as PARPACK fail to find any multiplici-
ties. Instead, the five smallest distinct eigen-
pairs are computed. However, the JD variants
are able to locate 3 multiplicities even with-
out using a block method (block size = 1 =
# processors). This is achieved by requiring
a low convergence tolerance, and by explicitly
locking converged eigenpairs. Even when the
tolerance is relaxed to || A||#10~8, the JDb(10)
still computes two multiple eigenvalues. By in-
creasing the number of processors (and thus
the block size) a larger number of multiplici-
ties can be obtained. This suggests a robust
behavior of the JDb methods without neces-
sarily paying the price of a larger block size.

4 Conclusions

We have outlined an implementation of a
robust and efficient, variable block, Jacobi-
Davidson method that can be used in a va-
riety of computational environments. The ro-
bustness is the outcome of several state-of-the-
art techniques for blocking, orthogonalization,
restarting, and locking. The flexibility stems
from interfacing with various matrix vector
multiplication and preconditioning functions.
Sequential implementations of these functions
allow for an efficient use on a uniprocessor,
while data parallel implementations facilitate
runs on massively parallel computers. The im-
plementation is at least as scalable as other
data parallel codes such as PARPACK.

In addition, we have provided a novel in-
terface for the code by applying the correc-
tion equation for each vector in the block in-



JDb(150)-i on SUN JDb(5)-i on SUN JDb(150)-i on PCs
p| Mvec Time Sp | Mvec Time Sp | Mvec Time Sp
1] 10815 6052 1| 12077 8446 119989 6108 1
2 | 12581 3784 1.60 | 27425 10065 0.84 | 11777 3659 1.67
3| 13570 3038 1.99 | 30814 8349 1.01 | 13804 3013 2.03
4 | 19517 3525 1.72 | 57233 12429 0.68 | - - -

Table 3: Matrix vector products (Mvec), time, and speedup (Sp) for five lowest eigenpairs of the
NASASRB. The BCGSTAB is preconditioned by 1LUT(20,0).

Tol: [|A||p10~14 Tol: ||A]|r10~8
PAR JDb(100) JDb(10) JDb(10)
p | Mvec Time Mult | Mvec Time Mult | Mvec Time multpc | Mvec Time Mult
1115 93.6 1| 2749 76.2 1645 54.9 3 | 1209 39.2 2
2| 115 52.4 12621 449 2155 37.9 411859 324 4
4| 115 36.5 11 5029 50.8 4141 414 5 | 2663 26.3 5

Table 4: Matrix vector products (Mvec), time, and number of multiplicities found (Mult) for the
BCSSTK16 matrix on the SUN Enterprise. Results from two residual tolerences are reported.

dependently. Although this may result in an
increase of the number of matrix vector prod-
ucts, it dramatically improves the coarse gran-
ularity of the algorithm. The resulting code
can achieve high parallel efficiencies even on
coarse grain environments with high latencies,
such as clusters of workstations. Finally, this
variable block code can be used to find eigen-
pairs with high multiplicities.
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