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Abstract

Parallel iterative solvers are often the only means of sgharge linear systems and eigenproblems.
However, these solvers are usually implemented in a finegnanner and, when scaled to large numbers
of processors on MPP’s, can incur significant performanoalpies due to synchronization overheads.
This problem is exacerbated in clusters of workstations\M@Pand SMPs that are interconnected via
a hierarchy of commaodity networking components using stesthdommunication protocols. Because
overheads in MPPs and LAN technologies have not improvedynasa much as network bandwidth in
recent years, there is a need for innovative parallel implaations of scientific applications that are
capable of hiding overheads. In this paper, we describe alisotieme for improving the scalability of
a particular class of numerical algorithms, specificallyhiling the overheads of block iterative solvers
that employ flexible preconditioning through an inner iteeamethod.

Block methods are not only robust in the presence of eigapvaiultiplicities and multiple right-
hand sides, but provide better latency tolerance by peifgrmore floating-point operations between
synchronizations. We take a different approach to indulztency tolerance by increasing the granular-
ity at which the preconditioning is performed for each blagkctor. This is accomplished by splitting
the processors into smaller subgroups which are then uspretmndition each block vector concur-
rently. The rest of the algorithm is still performed in fineagp. We call this combination of fine and
coarse-grain parallelismultigrain.

To test the effectiveness of the multigrain parallelism,implemented a multigrain, block Jacobi-
Davidson algorithm for computing a few extreme eigenvalokea symmetric matrix. We obtained
improvements of 45-50% over both the block and non-blockémgntations of the fine-grain method
when testing on an IBM SP and on a collection of clusters atingj of Sun workstations.

1 Introduction

Many applications in science and engineering require thatisn of linear systems of equations or the
computation of a few extreme eigenvalues of a large, spasex. Iterative methods are often the only
way of solving these problems. GMRES [21] for linear systemd Arnoldi [6] for symmetric eigenvalue
problems are two popular choices. Preconditioning can Ipiegbto accelerate convergence when the
matrix is ill-conditioned in the case of linear systems [2§]its eigenvalues are tightly clustered in the case
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of eigenproblems [20]. Two popular variants of GMRES anddkin FGMRES [24] and Jacobi-Davidson
[28], are methods that allow for flexible preconditionindo& algorithms may be used to further accelerate
convergence on linear systems with multiple right-haneésid 8] and eigenproblems with highly clustered
or multiple eigenvalues [12]. They are also more robust bseaingle-vector methods can misconverge to
unwanted eigenvalues in the presence of eigenvalue mcikigg. Although block methods improve cache
performance, the number of matrix-vector operations (dnus flops) performed is usually higher than
their single-vector counterparts. Hybrid techniques Hasen developed that attempt to keep the number
of matrix-vector multiplications from increasing excesdy [26]. In our approach, we use the original
block approach and take advantage of its coarse-grainigesal to tolerate high overheads despite a slight
increase in the number of matrix-vector operations.

Most iterative methods are implemented in a data-pardilet{grain) manner [9] that requires several
synchronization points at each iteration and is more skaitai MPP’s, Global reductions, a common reason
for synchronization in linear algebra codes, are partitplexpensive because the data being exchanged
between processors is small compared to the overheads.ymbierenization costs become even greater in
collections of clusters and Grids where the networking ueses incur a higher latency and are shared by
multiple parallel jobs competing for the network. Yet, coodity components and high-speed networking
media make these environments an increasingly cost effeapition for scientific computing [14]. These
environments can consist of a single cluster of workstat{@OW) or a collection of COW’s interconnected
via a hierarchy of switches. The result is a heterogeneougoning environment where not all nodes incur
the same latency to communicate with each other. Thereasdlend toward Grid environments where the
clusters may be geographically dispersed and intercoadédxst a high-latency WAN [11].

Reductions in overheads have not kept up with increasingarktbandwidth and processor speeds — a
trend that seems will continue. Although this is true for MP#Pis even more apparent in low-end parallel
environments such as COWSs. For instance, Fast Ethernet mathiGEthernet have estimated combined
hardware and software overheads of abbifiusec and300usec respectively and the IBM SP h#usec
[13]. Even though recent versions of Myrinet with expengiveprietary network interface cards claim
latencies of undetOusec, these timings do not include overheads from messagagadibraries such as
MPI. As hardware doesn’'t seem to provide a solution to theniat problem, we turn to algorithmic design.

Because of the sequential nature of iterative methods,diffisult to incorporate coarse-grain paral-
lelism into them. Related research has focused mainly drerefeducing the number of synchronization
points per iteration, or by introducing more work betweeduions through block methods [8, 3, 19, 29],
but it hardly addresses the above overhead problems, afipeni COWs and heterogeneous networks. A
completely coarse-grain implementation was discussetidjvfhere processors store entire columns of the
basis vectors but the amount of interprocessor commuaicatiiring the orthogonalization and projection
phases is unreasonably high.

In [30], we introduced a coarse-grain Jacobi-Davidson esotiiat lets each processor apply the pre-
conditioning to a distinct block vector independently. Shilowed us to arbitrarily increase the compu-
tation/communication ratio by increasing the accuracyhefinner solve. However, this implementation
was restrictive because it required the block size be a phltf the number of processors and that each
processor store the whole matrix. We eliminated theseicgetrs in [17] by splitting the processors into
k, the block size, subgroups that perform the preconditpoineach block vector concurrently. Within the
individual subgroups, the inner solve is implemented in e-frain way. The rest of the solver is performed
in fine grain. We refer to this combination of fine and coarssrgparallelism asnultigrain. For a fixed
problem size, the speedup of the fine-grain solver impleatiemt begins to decrease beyond a certain num-
ber of processor®,,;. The purpose of multigrain is to exterd,; by as much as a factor & To reduce



inter-cluster communication in collections of clusterg @efine the subgroups so that they correspond to
separate COWSs or subsets of processors within the same C@@h the abundance of RAM in modern
workstations and MPP’s, this does not place an unreasobabdien on memory resources since each pro-
cessor must only store an additiod¥f g rows of the coarse-grain partitioning whepds the total number

of processors ang is the size of each subgroup. This is a reasonable requitegnesn the low cost of
RAM and the fact that workstations now support up to a gigaloytmore of RAM.

In this paper we first describe a class of iterative methodsvfoch the multigrain technique is appli-
cable — block methods formulated as an inner-outer itemafile then describe the implementation of the
multigrain technique and its variations for use in clustari®nments and on MPPs. We build on previous
work by extending the capabilities of our multigrain libyao work efficiently on MPP’s that are clusters
of SMP’s (such as the IBM SP) and more traditional MPP’s suclCiys. To show the benefits of these
extended capabilities, we conducted new tests with ouikhlacobi-Davidson solver with multigrain capa-
bilities on an IBM SP and on a collection of clusters conggtf Sun workstations. Finally, we construct a
model that describes under what conditions multigrain reefieial.

2 A multigrain paradigm for preconditioned, block iterative methods

Many scientific and engineering applications involve thieitson of a system of linear equationst = b

for the unknown vectof or the solution of the eigenvalue problet; = );#;, for the: = 1,...[ smallest

or largest eigenvalues; and the corresponding eigenvectdts When the matrix4 is large and sparse,
iterative methods provide the only means of solving theeblpms. Our research is focused on a class of it-
erative methods that have an inner-outer iterative straatinere the inner iterations are used to precondition
the linear system.

Many block iterative methods such as block GMRES for lingatems and block Jacobi-Davidson for
eigenvalue problems follow this structure. Considerindaglb size ofk, these methods build a subspace
V from where they extract their approximate solutions. Athesieration, they build the next vectors
by approximating solutions t& different correction equations, one per block vector. Thpreximate
solutions are then orthogonalized and appended to the acdBp This process is illustrated in Figure 1.
The correction equations are usually solved usingteps of another preconditioned iterative solver such as
CG Oor BCGSTAB. It is preferable to employ an inner solver that depends ot shcurrences because they
require a fixed amount of computation per iteration and orfigvavectors to store. The more accurately
the inner systems are solved the fewer outer iterationslgmitam performs. However, there is usually
an optimal number of inner iterations beyond which the ddioze, as measured by the total number of
matrix-vector multiplications, slowly increases.

Despite improved cache efficiency and a relatively coarsmmgarity in data-parallel implementations,
block algorithms are only competitive when access to theirmiatexpensive so that it is beneficial to block
several matrix-vector operations per matrix access. dsté increasing the amount of work performed dur-
ing matrix-vector operations, as has been the case witlk Iol@thods, multigrain increases the granularity
of the matrix-vector and dot product operations during thigection equation. We note that the correction
equations are independent for each of the block vectors acldl may take an arbitrarily long amount of
time. If we assign each correction equation to a differefigsoup of processors, each subgroup should
be able to perform the majority of its computation withoutreounicating with other groups. Thus, for
subgroups of equal size, we effectively reduce the latenicieur parallel computer to the latencies of a
computer withl /kth the number of processors. As a result, the multigrainesatan be scaled to times
as many processors as the fine-grain solver. This is patlgubeneficial when each subgroup represents
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Figure 1. Inner-outer methods with this structure can bdemgnted with multigrain parallelism. The inner
iterations are often themselves a preconditioned itexatdlver. They; are the column vectors of the basis
V andk is the block size

a COW with high performance intracluster, but not interdusmetworks. Note that each subgroup (COW)
should be able to keep the whole matrixo solve the correction equation. The additional memorgénr
is usually affordable since each processor needs to stéré:dimes more rows than its fine grain partition.
For example, multigrain on a relatively dense sparse mafrb00 non-zero elements per row arzg, 000
local rows, would requiré12MB of RAM — a small amount by todays standards. If 100 processaoe
used, the solvable problem size would be 12.8 million unkmsiw

Except the correction equation, the rest of the steps of ld@rithm in Figure 1 (orthogonalization,
computation of new approximations, etc.) cannot be peréaretficiently in the above coarse-grain setting.
Fortunately, they comprise only a small portion of the teedcution time. Thus, multigrain follows the
traditional fine-grain partitioning for all the other stepsd switches to coarse grain only for the correction
phase. An all-to-all operation is required to transitiookeaf the fine grain vectors; andt; to their coarse-
partitioned counterparts on each processor, so that ebgnaip has its respective vector. We refer to this
first all-to-all as arMG.Gat her operation. Despite the high cost of the all-to-all operatithe number of
inner iterations (and thus granularity) can be increasbrarily to diminish the associated latencies. This
is reasonable for difficult problems where several innaiattens must be applied. After the inner solve
is complete, a second all-to-all operation, MA.Scat t er, is needed to transition the coargdrom the
coarse-grain partitioning back to their original fine-grpartitioning among all processors.

2.1 Partitioning schemes

The complexity of the all-to-alls depends on how the fine avat®e-grain partitionings are constructed. If
the two partitionings are independent, the all-to-alls himolve all processors. The overheads in a total
exchange between all processors can greatly impede trempearfice of the multigrain solver. To reduce the
all-to-all time, we construct a hierarchical partitionimipere the fine-grain matrix is derived by partitioning
the coarse-grain matrix. Before we go into detail of how tkislone we next describe the method of
independent partitionings.



2.1.1 Multigrain algorithm using independent partitionings

In the most general case, a single fine-grain and multipleseegrain partitionings, one for each subgroup,
are computed separately from each other using some pairtigigoftware [22, 15]. Thus, no assumptions
can be made about which coarse-grain rows of the vegprocessor will need to acquire before executing
the inner-solve. For instance, processor 0 may have rowss?d83 of the fine-grain matrix, but may require
rows 0, 5, 7, 12, 16, and 30 of the coarse-grain matrix. Thes @yrocessor requires may reside on several
different processors, increasing the amount of commupitand requiring that all of the processors be
involved in the all-to-alls.

Despite the high cost of all-to-alls in this case, this mdtlb independent partitionings is useful on
heterogeneous collections of clusters where each clusteibmof different size, and thus there is no simple
matching between fine and coarse-grain partitions. Bedateeogeneity of subgroups, henceforth referred
to assolve groupsload imbalance could occur during the preconditioningsehdn [16] an application-level
load balancing scheme which forces all solve groups to sgemdame amount of time in the inner solve
regardless of how few iterations each performs. In this pape compare the global all-to-all performed
by the method of independent partitionings with the morecieifit method of hierarchical partitionings
discussed below.

2.1.2 Multigrain algorithm using a hierarchical partitioning

When the solve groups are relatively homogeneous and of sipea we can significantly reduce the all-
to-all time, by considering the following hierarchical paoning of the matrix. Assume for simplicity that
the block sizeg, divides the number of processoB, First, we obtain the coarse-grain partitioning of the
matrix onto P/k processors. This will be used by each of the solve groups\glutie correction phase.
Each of the resultind®/k coarse-grain partitions are then partitioned further infmeces by applying the
partitioner to the square diagonal block which is roughlysiak N/(P/k). This yields each processor’s
local fine-grain partition. NowP/k groups can perform their all-to-all operations simultarsdp These
groups, which we refer to as all-to-all groups, are only ré&i processors each — significantly decreasing
the amount of traffic and overhead involved with the all-iceperations.

Figure 2 illustrates the behavior of multigrain with hiedaical partitionings through an example with
P = 6 andk = 2. Before the correction phase, each member of an all-toraligsends its fine-grain
portions of thek vectorss; to the members of its solve group, and receives the piecésdinapose its
coarse-grain portion of;. After each solve group finishes its inner iterations, thecahll is reversed and
each processor’s coarse-grain portiort 06 distributed across all the processors in the all-to4allg.

2.2 Process-to-node mapping

Processes should be assigned to solve groups depending tamght parallel environment: MPP of SMP’s,
COW, or collection of clusters. We describe this mappinghwed typical parallel environments.

We first describe the simplest environment, a traditionalPMiach as a Cray T3E capable of running
SPMD programs. In these environments, users often do nat tantrol over and cannot even discover
which processors are allocated to their job. Once the nraltigibrary is initialized by the application at
run time, the processes are assigned fine and coarse-gwarofdhe vectors and matrix according to the
default mapping in Figure 2.

Second, on MPPs that are clusters of SMP’s such as the IBWVh&Rrbcess mapping becomes more
complicated. As in the case of traditional MPP’s, the usex liile or no control over which nodes are
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Figure 2: Example of multigrain with hierarchical partiting with six processorsK = 6) and two block
vectors/solve groups:(= 2). Before the preconditioning phase, nodes in the same-allHgroup receive
the coarse-grain portions of the vectassthey are responsible for. Each solve group then performs its

respective preconditioning. Afterwards, each node saite coarse-grain portion df among its fellow
all-to-all members.

allocated. However, the application can control how SMP&assigned to solve groups. We would like
processes on the same SMP to be members of the same solvesgrthgt, during the correction phase,
communications between processes of another solve gronptdoterfere with the traffic on this node. We
have implemented a mapping that guarantees solve grougmsist of collections of SMP’s and that no
two solve groups share the same SMP. We accomplish thisgimitralization of the multigrain library by
having each process call the Unix system galt host nane, and then binding processes with the same
host name to the same solve group. This grouping of SMP’datsidates nearest neighbor communication
and utilization of shared memory during the correction phlag placing processes with contiguous MPI
solve group ranks on the same SMP.

Collections of clusters are the most general case. Due &dgeneity in the network, a user needs to
be able to specify which machines will comprise each soleaigr Therefore, we assume that the batch
scheduler, if one is being used, allows users to request imexhy name. Given this assumption, we
explicitly map processes to nodes using a solve group caatigu file that gives the names of the machines
to be included in each solve group. If more than one procassiiging on an SMP, then both processes are
made members of the solve group with which the SMP is assatiat

3 A multigrain, block Jacobi-Davidson implementation

Jacobi-Davidson is an algorithm for computing extreme migkies of large, sparse matrices and is best
suited for difficult eigenproblems where the desired eigkmes are clustered together. During the correction
phase, it performs a substantial amount of work to computections to the approximate eigenvectors, and
thus it is a natural candidate for multigrain.

At each iteration, the method computes the current apprad@reigenvalues;, i = 1...k, referred
to as Ritz values, and the approximate eigenvectgrseferred to as Ritz vectors, using the Rayleigh-Ritz

procedure. The associated residugls= Axz; — Az; are then computed and used to sokveorrection
equations,
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for the vectorg;, which are approximations to the errorip Usuallyo; = A; in the correction equation, but

it can also be chosen so that it is close to the eigenvaluéthhaser wants to compute. The corrections are
then orthogonalized against the bakibefore being appended 16. Extension ofl” using the corrections
improves the accuracy of the approximations in future ftens. An outline of a fine grain, block JD
algorithm is given below.

Algorithm Block JD

starting withk trial vectorst;

While not converged do:

Orthogonalize;, s = 1 : k. Add them toV/
Matrix-vector W; = AV;, i =1:k

H = VTW (local contributions)
GlobalSum(#) over all processors.
SolveHy; = \jy;, i = 1 : k (all procs)

z; = Vi, zi = Wy, i = 1: k (local rows)
T, =2 — )\i.’Ei, 1=1:k (|OC6.| I'OWS)

. Correction equation Solve eq. (1) for eacly
end while

N~ WONE

Steps 1-7, referred to as tipeojection phasgperform the orthogonalization, extension16f and the
Rayleigh-Ritz projection. During the correction/precitimhing phasek different equations (1) are solved
approximately for the;, usually by employing an iterative solver for linear systesnch a®8CcGSTAB or
CG [25] that make use of short recurrences. Preconditioneais asl sparse approximate inverse or incom-
plete LU factorization may be used to accelerate the convergense®$TAB. When more thak eigenval-
ues are to be computed, the implementation replaces a gauerwith one of the remaining unconverged
Ritz vectors and continues.

3.1 Multigrain Jacobi-Davidson implementation

The projection phase of the algorithm remains the same imthiégrain modification, but step 8 must be
expanded by callinf5.Gat her andMG_Scat t er before and after the correction equation as was shown
in Figure 2. Before the correction phase, each solve grougt whtain its respective coarse-grainand

r; vectors. The preconditioned inner solver is then appliecedgh solve group to solve for a different
correction vector using the technique described in [27fgplying a preconditioner ol to the projected
matrix in 1. For the difficult problems in our experiments;2AM iterations of the inner solver are usually
needed to obtain timely convergence of the target eigeokseciifter the corrections have been computed
they must be transitioned back to fine grain before they caarttmgonalized and appended%o The
required modification to step 8 is given in Figure 3.



8. Multigrain correction phasein Jacobi-Davidson
M5 Gat her :
send local fine-grain rows of;, r; to each solve group
receive coarse-grain rows fat,,ygroup, Tmygroup from each proc
Apply m steps of (preconditionedCGSTAB on
eq.(1) with the gathered,ygroup: Tmygroup
MG. Scatter:
send coarse-grain rows af;,¢roup t0 €ach proc
receive fine-grain rows fort; from solve group

Figure 3: The multigrain modification of step 8 in the block dlgorithm.
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Figure 4: SciClone: The William and Mary heterogeneoustelusf three homogeneous clusters: Typhoon,
Tornado (also called C), and Hurricane (also called D). \Bérdjuish between A and B, the subclusters of
Typhoon, because their intercommunication passes thringgigabit switch.



SPAI Parameters
Matrix Dimension| Non Zeros| m,,. | Level | Threshold
FL3D268 268,515 | 3,926,823 20 2 0.10
CFD2 123,440 | 3,087,898 10 1 0.05
NASASRB 54,870 2,677,324 10 2 0.05

Table 1: The dimension, number of non zero elements, maximumber of inner iterationg,,,,, and
the preconditioning parameters are given for each testixmdthe level and threshold control the density
of the preconditioner. Higher values fbevel result in denser preconditioners while higher values of
t hr eshol d result in sparser preconditioners. Recommended valugsiioesh € [0.01,0.10] [5].

4 Experiments

We conduct experiments with the fine-grain and multigraicobaDavidson code on two parallel archi-
tectures: a collection of clusters consisting of Sun watkshs and an IBM SP. The workstation clusters,
collectively referred to as SciClone, are used for sciendifid parallel computing research at the College of
William and Mary. It is a suitable environment for experirteeim cluster computing because it is composed
of heterogeneous LAN technologies and is organized as arbigr of switches linking various COWs (Fig-
ure 4). The IBM SP uses a single proprietary low-latency @viity technology to interconnect SMP nodes
of 16 processors each [2, 1].

4.1 Test matricesand solver parameters

We perform tests using three matrices. The first matrix, F2&E) is derived from a finite-element prob-
lem [4]. The second matrix, CFD2 [7], is derived from compiotaal fluid dynamics. The third matrix,
NASASRB [7], is a much smaller but more dense matrix. Thestices are chosen because their corre-
sponding eigenproblems are difficult to solve and requirggaifecant number of inner iterations for the
algorithm to converge in a timely manner. We @& STAB from SPARSKIT [23] as the inner solver, pre-
conditioned by the ParaSails sparse approximate inve&l 8brary [5]. Table 1 gives the sizes of each
matrix and the parameters used to generate the precoradiiof shift ofc = 0 is used because each matrix
is symmetric positive definite and we target the lower endhefdpectrum. For each te56 eigenvalues are
computed and a maximum basis sizel08 with a restart size 080 vectors is used. The performance of
the fine-grain and multigrain codes are compared using Hottklsizesk = 1 andk = 4. The multigrain
experiments are tested using two and four solve groups. \Wihigriwo solve groups are created, each solve
group solves two correction equations for every outer tik@na(for two out of the four block vectors).
Approximate eigenvalues are considered converged onceesiidual norm is belowt0 15| A|| for
matrices CFD2 and FL3D268, and~!!||A||r for NASASRB. The inner solver is given a zero vector as
initial guess and iterates far,,,., steps (see Table 1) or undil,, the residual of the inner system, satisfies:

(2)

wheregqy is the initial residual of system (1jter is the number of outer iterations performed by JD thus
far [10], Ajnaz IS the maximum Ritz value computed thus far, apg.; is machine epsilon. We usg,,,,

as an approximation tfjal||o. For CFD2 and FL3D26&ase = 1.05, and for NASASRBpase = 0.8. All

the above parameters are chosen because they result it fexecution of the fine-grain code.

gm < base_itequoH + AMnaz€machs



Independent partitionings

| Configuration| A;6416C16C\6 - 64 processors || AspBs2C32C3, - 128 processors |
Gather MG MG | FG | Gather MG MG | FG
Matrix Scatter inner solve Total Scatter inner solve Total
FL3D268 0.212 3.05 3.26| 5.28| 1.820 2.27 4.09| 5.27
CFD2 0.176  2.58 2.76| 3.61| 0.319 1.79 211} 3.11
NASASRB 0.071 1.62 1.69| 1.81| 0.770 1.04 1.81| 1.60

Figure 5: Timings for one correction phase for fine-grain Y&@d multigrain (MG Total) Jacobi-Davidson,
using the method of independent partitionings on 64 and t@8gsors, with 4 solve groups ahd- 4. We
also show the times for multigrain to perform both M& Gat her andMG.Scat t er , and for solve groups
to executen,,,, iterations ofBCGSTAB (MG inner solve). The configuration stringlis A16C16C16” indi-
cates that four solve groups td processors each were used — two groups of size 16 from cldsted two
groups of size 16 from clust&r. A similar string describes the 128-processor configunatio

4.2 SciClonetests

We perform several fine-grain experiments by using variardigurations from 16 up to 128 processors
on the typhoon and tornado subclusters. Tests on the typhdaciuster requiring 32 or fewer processors
can be performed without communication traveling acrossentitan one switch. Because contention for
the Ethernet interface can occur when more than one pracissstilized on the Ultra 60’s, tests requiring
only 16 or 32 processors on the tornado subcluster are rug asie processor per node. All tests were
performed using a shared memory version of LAM MPI and Fas¢Eet.

4.2.1 Independent versus hierarchical partitioning

The method of independent partitionings of Section 2.1usiful in heterogeneous clusters, but it incurs
high overhead because the all-to-all operations are betwkgrocessors. Our hierarchical partitioning
limits the all-to-all operations to groups of processorssiak equal to the number of solve groups. We
have recorded the amount of time spent performingNBeGat her and Ma.Scat t er operations and
the amount of time spent executing,,,.. iterations ofBCGSTAB. Tables 5 and 6 show the results for each
matrix and each partitioning scheme, for 64 and 128 procgsadlock size ok = 4, and four solve groups.
The two methods are competitive for 64 nodes, but the scatidigather operations become too expensive
when independent partitionings are used with 128 nodesselbperations are significantly faster under the
hierarchical partitioning because data is exchanged nvihito-all groups of size 4. The remainder of the
performance tests described in this paper are performed tls hierarchical partitioning.

4.2.2 Fine-grain versus multigrain Jacobi-Davidson

We test the fine-grain and multigrain Jacobi-Davidson cotthe three matrices using the parameters given
in Section 4.1. The tests were run on collections of homogenenachines (Clusters A and B), SMP’s
(Cluster C), and heterogeneous collections (Clusters A, C together). The fine-grain tests show the
scalability of the application using only one solve groupghat = 1,4. The multigrain experiments use
k = 4 and two or four solve groups to solve the four correction &qua at each iteration. We construct the
solve groups so that machines within the same solve groulpoanegeneous.

10



Hierarchical partitionings

| Configuration| A;6416C16C\6 - 64 processors || AspBs2C32C3, - 128 processors |
Gather MG MG | FG | Gather MG MG | FG
Matrix Scatter inner solve Total Scatter inner solve Total
FL3D268 0.264 3.00 3.26| 5.28| 0.092 2.12 2.21| 5.27
CFD2 0.034 253 2.56| 3.61| 0.035 1.48 1.51| 3.11
NASASRB 0.021 156 1.58| 1.81|| 0.012 0.98 0.99| 1.60

Figure 6: Timings for one correction phase for fine-grain Y&@d multigrain (MG Total) Jacobi-Davidson,
using the method of hierarchical partitionings on 64 and g28essors, with 4 solve groups athe- 4.

The first set of tests given in Figure 7 shows that the sc#lalmf the fine-grain implementation de-
creases significantly for each matrix when scaling from 384@rocessors. The multigrain algorithm is
competitive with the fine-grain implementation in the caBELBD268 and CFD2, showing an improvement
of 13-17% over FG1 and FG4. The tests performed with NASASRBvsthat MG2 is only competitive for
32 or more processors and MG4 is only competitive with 64 @geors. MG2 and MG4 show performance
degradation in the case of NASASRB for 16 and 32 processaaLige on average only four inner iterations
are required per block vector to satisfy inequality (2). Wsedss this further in Section 5.

Similar tests were performed on the cluster of dual progeS86P Ultra 60's (Figure 8). With all
methods, the speedup is greatly reduced when scaling froto 82 processors. We believe this is due to
contention for the network interface card when two procgsse running on each machine. As a result,
only the 64 node tests for FL3D268 and CFD2 show a significarfopmance improvementi§ — 22%)
over the fine-grain tests.

The final set of tests on the SciClone combine the Ultra 5’slditrd 60’s and are given in Figure 9. The
results obtained by combining 32 Ultra 5's and 32 Ultra 60& similar to those shown above for 64 Ultra
5’'s. Multigrain is able to overcome latencies and provideher improvements in run time. For each test
matrix, Py, is between 32 and 64 processors on the SciClone. Multigtaioessfully extend#,,., by a
factor ofk = 4. Furthermore, the SciClone results show that the multigcaide achieves the smallest run
time in each of the three tests.

4.3 |IBM SPtests

We perform some tests on an IBM SP at the National Energy Res&8aientific Computing Center (NERSC).
The SP consists of 184 compute nodes each with 16 375MHz gsore 8MB of level 2 cache per proces-
sor, 16-64GB of memory, and two network switch interfacadsaifo reduce network traffic, we configured
all processes on a node to belong to the same solve groupibrel shared memory MPI. Four solve groups
were created for each of the multigrain tests.

The test results obtained for FL3D268 and CFD2 are given guiéi 10. The fine-grain tests show
improvements up to 128 processors. The multigrain codenaglishes the goal of extending the speedup
by a factor of the block size. It reduces the effects of lagfemed achieves up to 60% lower run time
compared to the fine-grain implementation.
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Ultra 5 Solve Group Configurations
P | Fine grain (fg1,4)| Multigrain (mg2,4)
16 Aig AgAsg
Ay AL AL A
32 A32 A16A16
AgAgAgAg
64 (A32B32) A32 B39
A6A16A16A16
CFD2 timefor finegrain and multigrain on Ultra5's
6000 119 1
50001 o 1
4000 1
3000 1
20001 1
1000 1
0
16 32 64 Procs

7000
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3000
2000
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2500

2000
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1000

500

FL3D268 timefor finegrain and multigrain on Ultra5's

fgl

fg4
] mg2
L mg4

16 32

64 Procs

NASASRB timefor finegrain and multigrain on Ultra5's

mg4

64 Procs

Figure 7:Run times of the fine-grain and multigrain Jacobi-Davidsoplementations on the Ultra 5's for each matrix
tested with block sizé = 4. The bar charts measure run time in seconds for various nisnobprocessors. For each
number of processors, there is a string representing the carafiguration used. The letters indicate which subcluster
was used, and the subscripts indicate the number of prasassed in that subcluster. For the fine-grain experiments,
there is only one solve group. For multigrain experimengsheetter and subscript combination represents a solve
group. For those multigrain experiments with only two letfescriptions, two solve groups were used to solve the
four correction equations. Letters within parenthesisasent processors from different subclusters that aregpart
the same solve group. FG1 and FG4 indicate fine-grain tegtisiwi 1 andk = 4 while MG2 and MG4 indicate the
tests with two and four solve groups with= 4.
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FL3D268 time for finegrain and multigrain on Ultra60's

fg4
4500r [ mg4 1
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Figure 8: Comparison of the fine-grain and multigrain impéenations on the cluster of Ultra 60’s. For
16 and 32 processors, only one processor on each machinkzisdutWhen both processors are used, the
scalability of the application suffers due to contentiontfee network interface.
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FL3D268 time for fine grain and multigrain on Ultra5'sand 60's
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Figure 9: Comparison of the fine-grain and multigrain impdenations by combining the Ultra 5's and
Ultra 60’s. There is little or no improvement achieved by fime-grain code when scaling from 64 to
128 processors. Multigrain does perform significantly dretthough. We expect it would continue to show
improvements for more than 128 processors.
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CFD2 timefor finegrain and multigrain on IBM SP FL3D268 time for fine grain and multigrain on IBM SP
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Figure 10: Comparison of fine-grain and multigrain Jacohiddson on an IBM SP. FG1 and FG4 indicate
the run time of the fine grain code with= 1 andk = 4 respectively. The multigrain tests were run with
four solve groups ané = 4.

5 Performance mode€

We now present a performance model of the correction phasertteer explain our test results and to
predict when the multigrain algorithm should be used. The-§irain model depends on the parameters:
N, P, k, m, TA(P), TM(P), Thiast Tallreduce(P)v andTall_to_all(P, k‘) The parameter’fA(P), TM(P),
andTy;,.s1 are the times to perform one matrix-vector multiply, onecprelitioner application, and one
floating-point operation during a BLAS dot product or daxpgpectively. The parametety equce (P),
and Ty —to—au (P, k) are the times for MPI allreduce and all-to-all as a functiémpmcessors and block
size. All the parameters exceply (P) and T, (P) can be measured once for varioBsvalues on some
machine and used in later experiments. Because the mairbotvmultiply and preconditioning operators
are user defined, the values®f(P) andT,,(P) must be measured for each particular problem. Note that
for multigrain, P should be the number of processors in the solve group.

Based on these variables, we obtain the time for ddot andydapgrations as:

N N
Tddot(P) =2 ?Tblasl + Tallreduce(P)a and Tdaz‘py(P) =2x F * Thigst-

The correction equation can be modeled as an initializatiep andn steps 0BCGSTAB. In eachBCGSTAB
step, besides some vector updates and dot products, twix wedttor multiplication and preconditioning
operations are needed. All-to-all times are not includefthia grain.

Tcor(P) = 2 *TM(P) +Tdawpy(P) +4*Tdd0t(P) +
8 % m * Tador (P) + 12 % m % Tyagpy(P) + 2 x m % Ta(P) + 2 % m x T (P) +
3 * Tou—to-au(Ps k)

To test the model, we forceglc GsTAB to perform 10 iterations per block vector during each cdioec
phase with matrix NASASRB. The eigensolver was allowed to far several iterations and the time to
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Predicted runtime of inner solve vs. number of processors with NASASRB Speedup of inner solve vs. number of processors with NASASRB
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Figure 11. Model predictions for run time and correspondépgedup of the fine grain and multigrain
correction phases when 10 iterationsBafGSTAB are applied per block vector. The predictions were made
with k = 4 and four solve groups and the speedups are with respect poegtieted run time achieved with
16 processors.

complete the correction phase was averaged over the tesati-urthermore, tests run on 64 or fewer nodes
were run strictly on clusterd and B. The model was able to predict the length of the correcticaspto
within 5% for all fine grain and multigrain tests except theltiguain case for 128 processors which was
10% higher than the experimental time. This may be relatetthédfact that cluste€' consists of faster
machines which the model does not account for.

In Figure 11 we show the run times and speedup given by the lleqiedications for NASASRB. The
model shows that multigrain does indeed extend the speeding gorrection phase. Of further interest is
the fact that multigrain outperforms the fine grain impletagon for the four configurationsd, A4 A4 Ay,
AgAgAgAg, A15A16B16B1g, and A3 B32C30C32. However, we do not see commensurate gains in the
previous experiments when solving for the 50 lowest eiglelega This is because the quality of the pre-
conditioner was high, so on average only four inner iteretimstead of ten per block vector were needed
to obtain convergence. Furthermore, not all processorgecged in the same number of steps during each
outer iteration, resulting in large load imbalances. Obslg, multigrain is a powerful technique but it
requires problems that need many inner iterations.

6 Conclusions

We have proposed multigrain, a latency-tolerant modifocabf parallel, block iterative methods that per-
form preconditioning using an inner iterative method. Nyrkin employs fine-grain parallelism during the
projection phase and coarse-grain parallelism during teegmditioning phase. This is a reasonable appli-
cation of coarse-grain parallelism when solving difficutbiplems that require many inner iterations because
most of the execution time and communication is attributetthé inner solver.

In the case of the Jacobi-Davidson method, we can inducsegaanularity during the correction phase
by splitting the processors into subgroups and having eabfreup solve a distinct correction equation.
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Fine graink = 1 Fine graink = 4
Configuration| Time | Matvecs| lterations|| Time | Matvecs| Iterations
Ase 5424 | 63210 | 1745 6627 | 74560 | 647
Asz 3306 | 63468 | 1740 3463 | 69944 | 621
A3z Bs3o 2417 | 64184 | 1763 2544 | 71170 | 629
Cis 3961 | 63210 | 1745 4512 | 74560 | 647
Cso 2355 | 63468 | 1740 2457 | 69944 | 621
Céea 2526 | 64184 | 1763 2722 | 71170 | 629
A32C39 2353 | 64184 | 1763 2491 | 71170 | 629
A32B32C%4 2377 | 64939 | 1778 2552 | 71852 | 628
Multigrain k = 4
Configuration || Time | Matvecs| Iterations
AgAg 6197 | 70716 | 624
AgALALA, 5948 | 71180 | 627
A4 3288 | 70536 | 623
AgAgAgAg 3234 | 71798 | 633
A3z9Bso 2107 | 71890 | 628
A16A16B16B1g || 1885 | 73356 | 641
CsCs 4315 | 70716 | 624
CyC4C4Cy 4293 | 71180 | 627
C16C16 2529 | 70536 | 623
CsCsCsCs 2318 | 71798 | 633
C32C30 2122 | 71890 | 628
C16C16C16C16 || 1819 | 73356 | 641
A32C39 2041 | 71890 | 628
A16A16C16C16 || 1918 | 73356 | 641
(A32B32)Ce4 1778 | 75124 | 649
A39B30C39C30 || 1302 | 70992 | 623

Figure 12: Fine grain and multigrain results for FL3D268 @iCione

Since each solve group can be associated with a physicéftyatit cluster, computation occurs locally at a
much smaller latency rate, and with minimal interclustenowunication. Our experiments with a multigrain
Jacobi-Davidson code show that the multigrain paralleksttended the scalability of the solver both on a
collection of clusters and an MPP composed of SMP’s.

Multigrain should be applied only when fine grain starts toefscalability problems. We have con-
structed a model that can be used to predict how much timejisrezl by the fine and coarse-grain Jacobi-
Davidson correction phase. The model serves as an andlgaafor determining why and under what
conditions the multigrain method is effective.

17



Fine graink =1 Fine graink = 4
Configuration| Time | Matvecs| lterations|| Time | Matvecs| Iterations
Ase 5590 | 43261 | 2074 5863 | 47188 | 574
Ass 2924 | 43345 | 2078 3056 | 47354 | 576
As2 B30 1933 | 43742 | 2097 1974 | 47280 | 575
Cis 4579 | 43261 | 2074 4861 | 47188 | 574
Cso 2207 | 43345 | 2078 2284 | 47354 | 576
Céea 2158 | 43742 | 2097 2209 | 47280 | 575
A32C39 2074 | 43742 | 2097 2116 | 47280 | 575
A32B32C%4 1809 | 44531 | 2134 1817 | 47532 | 578
Multigrain k = 4
Configuration || Time | Matvecs| Iterations
AgAg 5458 | 47020 | 572
AgALALA, 4963 | 47166 | 574
AigAi6 2925 | 46348 | 564
AgAgAgAg 2725 | 48952 | 595
A3z2 B3 1814 | 47522 | 578
Ai6A16B16B1g || 1652 | 46768 | 569
CsCs 4598 | 47020 | 572
C,C4C4Cy 4349 | 47166 | 574
C16Ci6 2451 | 46348 | 564
CsCsCsCy 2403 | 48952 | 595
C52C39 1704 | 47522 | 578
016016016C16 1612 | 46768 569
A39C39 1754 | 47522 | 578
A16A416C16C16 || 1599 | 46768 | 569
(A32B32)Ce4 1275 | 47112 | 573
A39B39C39C39 || 976 | 47942 | 583

Figure 13: Fine grain and multigrain results for CFD2 on $ai@
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Fine graink =1 Fine graink = 4
Configuration| Time | Matvecs| lterations|| Time | Matvecs| Iterations
Ase 2031 | 16565 | 1831 1982 | 16636 | 449
Ass 1100 | 16021 | 1764 1107 | 17032 | 443
As2 B30 828 | 16326 | 1868 742 | 16916 | 509
Cis 1539 | 16565 | 1831 1455 | 16636 | 449
Cso 844 | 16021 | 1764 815 | 17032 | 443
Céea 810 | 16326 | 1868 780 | 16916 | 509
A32C39 714 | 16326 | 1868 666 | 16916 | 509
A32B32C%4 692 | 15301 | 1724 621 | 16288 | 422
Multigrain k = 4
Configuration || Time | Matvecs| Iterations
AgAg 2437 | 17810 | 509
AgALALA, 2708 | 16934 | 471
AigAi6 1178 | 17076 | 467
AgAgAgAg 1513 | 18298 | 495
A3z2 B3 682 | 16184 | 398
A1gA16B16B1g || 824 | 17688 | 543
CsCy 1983 | 17810 | 509
C,C4C4Cy 2281 | 16934 | 471
C16C1s 916 | 17076 | 467
CsCsCsCy 1323 | 18298 | 495
C39C'39 657 | 16184 | 398
016016016C16 806 17688 543
A39C39 604 | 16184 | 398
A16A16C16C16 || 734 | 17688 | 543
(A32B32)Ce4 517 | 16836 | 483
A39B39C39C3o || 463 | 15934 | 422
Figure 14: Fine grain and multigrain results for NASASRB @iC3one
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