
Parallel, multigrain iterative solvers for hiding networklatencies on
MPP’s and networks of clusters

�

James R. McCombs
�

Andreas Stathopoulos
�

January 15, 2003

Abstract

Parallel iterative solvers are often the only means of solving large linear systems and eigenproblems.
However, these solvers are usually implemented in a fine grain manner and, when scaled to large numbers
of processors on MPP’s, can incur significant performance penalties due to synchronization overheads.
This problem is exacerbated in clusters of workstations (COWs) and SMPs that are interconnected via
a hierarchy of commodity networking components using standard communication protocols. Because
overheads in MPPs and LAN technologies have not improved nearly as much as network bandwidth in
recent years, there is a need for innovative parallel implementations of scientific applications that are
capable of hiding overheads. In this paper, we describe a novel scheme for improving the scalability of
a particular class of numerical algorithms, specifically, by hiding the overheads of block iterative solvers
that employ flexible preconditioning through an inner iterative method.

Block methods are not only robust in the presence of eigenvalue multiplicities and multiple right-
hand sides, but provide better latency tolerance by performing more floating-point operations between
synchronizations. We take a different approach to inducinglatency tolerance by increasing the granular-
ity at which the preconditioning is performed for each blockvector. This is accomplished by splitting
the processors into smaller subgroups which are then used toprecondition each block vector concur-
rently. The rest of the algorithm is still performed in fine-grain. We call this combination of fine and
coarse-grain parallelismmultigrain.

To test the effectiveness of the multigrain parallelism, weimplemented a multigrain, block Jacobi-
Davidson algorithm for computing a few extreme eigenvaluesof a symmetric matrix. We obtained
improvements of 45-50% over both the block and non-block implementations of the fine-grain method
when testing on an IBM SP and on a collection of clusters consisting of Sun workstations.

1 Introduction

Many applications in science and engineering require the solution of linear systems of equations or the
computation of a few extreme eigenvalues of a large, sparse matrix � . Iterative methods are often the only
way of solving these problems. GMRES [21] for linear systemsand Arnoldi [6] for symmetric eigenvalue
problems are two popular choices. Preconditioning can be applied to accelerate convergence when the
matrix is ill-conditioned in the case of linear systems [25], or its eigenvalues are tightly clustered in the case

�
Work supported by the National Science Foundation (ITR/ACS-0082094 and ITR/AP-0112727), and performed using compu-

tational facilities at the National Energy Research Supercomputing Center and the College of William and Mary (National Science
Foundation [EIA-9977030] and Sun Microsystems [SAR EDU00-03-793]).�

Department of Computer Science, College of William and Mary, Williamsburg, Virginia 23187-8795, (mccom-
bjr/andreas@cs.wm.edu).

1

of eigenproblems [20]. Two popular variants of GMRES and Arnoldi, FGMRES [24] and Jacobi-Davidson
[28], are methods that allow for flexible preconditioning. Block algorithms may be used to further accelerate
convergence on linear systems with multiple right-hand sides [18] and eigenproblems with highly clustered
or multiple eigenvalues [12]. They are also more robust because single-vector methods can misconverge to
unwanted eigenvalues in the presence of eigenvalue multiplicities. Although block methods improve cache
performance, the number of matrix-vector operations (and thus flops) performed is usually higher than
their single-vector counterparts. Hybrid techniques havebeen developed that attempt to keep the number
of matrix-vector multiplications from increasing excessively [26]. In our approach, we use the original
block approach and take advantage of its coarse-grain parallelism to tolerate high overheads despite a slight
increase in the number of matrix-vector operations.

Most iterative methods are implemented in a data-parallel (fine-grain) manner [9] that requires several
synchronization points at each iteration and is more suitable for MPP’s, Global reductions, a common reason
for synchronization in linear algebra codes, are particularly expensive because the data being exchanged
between processors is small compared to the overheads. The synchronization costs become even greater in
collections of clusters and Grids where the networking resources incur a higher latency and are shared by
multiple parallel jobs competing for the network. Yet, commodity components and high-speed networking
media make these environments an increasingly cost effective option for scientific computing [14]. These
environments can consist of a single cluster of workstations (COW) or a collection of COW’s interconnected
via a hierarchy of switches. The result is a heterogeneous networking environment where not all nodes incur
the same latency to communicate with each other. There is also a trend toward Grid environments where the
clusters may be geographically dispersed and interconnected by a high-latency WAN [11].

Reductions in overheads have not kept up with increasing network bandwidth and processor speeds – a
trend that seems will continue. Although this is true for MPPs, it is even more apparent in low-end parallel
environments such as COWs. For instance, Fast Ethernet and Gigabit Ethernet have estimated combined
hardware and software overheads of about����sec and����sec respectively and the IBM SP has���sec
[13]. Even though recent versions of Myrinet with expensiveproprietary network interface cards claim
latencies of under���sec, these timings do not include overheads from message passing libraries such as
MPI. As hardware doesn’t seem to provide a solution to the latency problem, we turn to algorithmic design.

Because of the sequential nature of iterative methods, it isdifficult to incorporate coarse-grain paral-
lelism into them. Related research has focused mainly on either reducing the number of synchronization
points per iteration, or by introducing more work between reductions through block methods [8, 3, 19, 29],
but it hardly addresses the above overhead problems, especially on COWs and heterogeneous networks. A
completely coarse-grain implementation was discussed in [19] where processors store entire columns of the
basis vectors but the amount of interprocessor communication during the orthogonalization and projection
phases is unreasonably high.

In [30], we introduced a coarse-grain Jacobi-Davidson solver that lets each processor apply the pre-
conditioning to a distinct block vector independently. This allowed us to arbitrarily increase the compu-
tation/communication ratio by increasing the accuracy of the inner solve. However, this implementation
was restrictive because it required the block size be a multiple of the number of processors and that each
processor store the whole matrix. We eliminated these restrictions in [17] by splitting the processors into�
, the block size, subgroups that perform the preconditioning of each block vector concurrently. Within the

individual subgroups, the inner solve is implemented in a fine-grain way. The rest of the solver is performed
in fine grain. We refer to this combination of fine and coarse-grain parallelism asmultigrain. For a fixed
problem size, the speedup of the fine-grain solver implementation begins to decrease beyond a certain num-
ber of processors��	
. The purpose of multigrain is to extend��	
 by as much as a factor of

�
. To reduce

2

inter-cluster communication in collections of clusters, we define the subgroups so that they correspond to
separate COWs or subsets of processors within the same COW. Given the abundance of RAM in modern
workstations and MPP’s, this does not place an unreasonableburden on memory resources since each pro-
cessor must only store an additional� �� rows of the coarse-grain partitioning where� is the total number
of processors and� is the size of each subgroup. This is a reasonable requirement given the low cost of
RAM and the fact that workstations now support up to a gigabyte or more of RAM.

In this paper we first describe a class of iterative methods for which the multigrain technique is appli-
cable — block methods formulated as an inner-outer iteration. We then describe the implementation of the
multigrain technique and its variations for use in cluster environments and on MPPs. We build on previous
work by extending the capabilities of our multigrain library to work efficiently on MPP’s that are clusters
of SMP’s (such as the IBM SP) and more traditional MPP’s such as Crays. To show the benefits of these
extended capabilities, we conducted new tests with our block Jacobi-Davidson solver with multigrain capa-
bilities on an IBM SP and on a collection of clusters consisting of Sun workstations. Finally, we construct a
model that describes under what conditions multigrain is beneficial.

2 A multigrain paradigm for preconditioned, block iterative methods

Many scientific and engineering applications involve the solution of a system of linear equations� �� � �
for the unknown vector�� or the solution of the eigenvalue problem� �� � � ��� ���, for the	 � �
 � � � � smallest
or largest eigenvalues��� and the corresponding eigenvectors���. When the matrix� is large and sparse,
iterative methods provide the only means of solving these problems. Our research is focused on a class of it-
erative methods that have an inner-outer iterative structure where the inner iterations are used to precondition
the linear system.

Many block iterative methods such as block GMRES for linear systems and block Jacobi-Davidson for
eigenvalue problems follow this structure. Considering a block size of

�
, these methods build a subspace

from where they extract their approximate solutions. At each iteration, they build the next
�

vectors
by approximating solutions to

�
different correction equations, one per block vector. The approximate

solutions are then orthogonalized and appended to the subspace

. This process is illustrated in Figure 1.
The correction equations are usually solved using� steps of another preconditioned iterative solver such as
CG or BCGSTAB. It is preferable to employ an inner solver that depends on short recurrences because they
require a fixed amount of computation per iteration and only afew vectors to store. The more accurately
the inner systems are solved the fewer outer iterations the algorithm performs. However, there is usually
an optimal number of inner iterations beyond which the actual time, as measured by the total number of
matrix-vector multiplications, slowly increases.

Despite improved cache efficiency and a relatively coarser granularity in data-parallel implementations,
block algorithms are only competitive when access to the matrix is expensive so that it is beneficial to block
several matrix-vector operations per matrix access. Instead of increasing the amount of work performed dur-
ing matrix-vector operations, as has been the case with block methods, multigrain increases the granularity
of the matrix-vector and dot product operations during the correction equation. We note that the correction
equations are independent for each of the block vectors and each may take an arbitrarily long amount of
time. If we assign each correction equation to a different subgroup of processors, each subgroup should
be able to perform the majority of its computation without communicating with other groups. Thus, for
subgroups of equal size, we effectively reduce the latencies in our parallel computer to the latencies of a
computer with��� th the number of processors. As a result, the multigrain solver can be scaled to

�
times

as many processors as the fine-grain solver. This is particularly beneficial when each subgroup represents

3

while(� � � � � � � are unconverged)
�

if (solving linear systems)
Set�� � � �, for 	 � �
 � � �
 �

elseif (solving eigenvalue problem)
Set�� � ��, for 	 � �
 � � �
 �

endif
Apply � inner iterations on �� to obtain ��
Append�� to

and orthogonalize

Compute the new approximations� � � � � ���

Figure 1: Inner-outer methods with this structure can be implemented with multigrain parallelism. The inner
iterations are often themselves a preconditioned iterative solver. The� � are the column vectors of the basis

and
�

is the block size

a COW with high performance intracluster, but not intercluster networks. Note that each subgroup (COW)
should be able to keep the whole matrix� to solve the correction equation. The additional memory burden
is usually affordable since each processor needs to store only

�
times more rows than its fine grain partition.

For example, multigrain on a relatively dense sparse matrixof 100 non-zero elements per row and���
 ���
local rows, would require	 ��MB of RAM – a small amount by todays standards. If 100 processors are
used, the solvable problem size would be 12.8 million unknowns!

Except the correction equation, the rest of the steps of the algorithm in Figure 1 (orthogonalization,
computation of new approximations, etc.) cannot be performed efficiently in the above coarse-grain setting.
Fortunately, they comprise only a small portion of the totalexecution time. Thus, multigrain follows the
traditional fine-grain partitioning for all the other steps, and switches to coarse grain only for the correction
phase. An all-to-all operation is required to transition each of the fine grain vectors�� and�� to their coarse-
partitioned counterparts on each processor, so that each subgroup has its respective vector. We refer to this
first all-to-all as anMG Gather operation. Despite the high cost of the all-to-all operation, the number of
inner iterations (and thus granularity) can be increased arbitrarily to diminish the associated latencies. This
is reasonable for difficult problems where several inner iterations must be applied. After the inner solve
is complete, a second all-to-all operation, anMG Scatter, is needed to transition the coarse�� from the
coarse-grain partitioning back to their original fine-grain partitioning among all processors.

2.1 Partitioning schemes

The complexity of the all-to-alls depends on how the fine and coarse-grain partitionings are constructed. If
the two partitionings are independent, the all-to-alls must involve all processors. The overheads in a total
exchange between all processors can greatly impede the performance of the multigrain solver. To reduce the
all-to-all time, we construct a hierarchical partitioningwhere the fine-grain matrix is derived by partitioning
the coarse-grain matrix. Before we go into detail of how thisis done we next describe the method of
independent partitionings.

4

2.1.1 Multigrain algorithm using independent partitionings

In the most general case, a single fine-grain and multiple coarse-grain partitionings, one for each subgroup,
are computed separately from each other using some partitioning software [22, 15]. Thus, no assumptions
can be made about which coarse-grain rows of the vector�� a processor will need to acquire before executing
the inner-solve. For instance, processor 0 may have rows 2, 5, and 8 of the fine-grain matrix, but may require
rows 0, 5, 7, 12, 16, and 30 of the coarse-grain matrix. The rows a processor requires may reside on several
different processors, increasing the amount of communication and requiring that all of the processors be
involved in the all-to-alls.

Despite the high cost of all-to-alls in this case, this method of independent partitionings is useful on
heterogeneous collections of clusters where each cluster may be of different size, and thus there is no simple
matching between fine and coarse-grain partitions. Becauseheterogeneity of subgroups, henceforth referred
to assolve groups, load imbalance could occur during the preconditioning phase. In [16] an application-level
load balancing scheme which forces all solve groups to spendthe same amount of time in the inner solve
regardless of how few iterations each performs. In this paper, we compare the global all-to-all performed
by the method of independent partitionings with the more efficient method of hierarchical partitionings
discussed below.

2.1.2 Multigrain algorithm using a hierarchical partitioning

When the solve groups are relatively homogeneous and of equal size, we can significantly reduce the all-
to-all time, by considering the following hierarchical partitioning of the matrix. Assume for simplicity that
the block size,

�
, divides the number of processors,� . First, we obtain the coarse-grain partitioning of the

matrix onto� �� processors. This will be used by each of the solve groups during the correction phase.
Each of the resulting� �� coarse-grain partitions are then partitioned further into

�
pieces by applying the

partitioner to the square diagonal block which is roughly ofsize� � �� �� �
. This yields each processor’s

local fine-grain partition. Now� �� groups can perform their all-to-all operations simultaneously. These
groups, which we refer to as all-to-all groups, are only of size

�
processors each — significantly decreasing

the amount of traffic and overhead involved with the all-to-all operations.
Figure 2 illustrates the behavior of multigrain with hierarchical partitionings through an example with

� � � and
� � �. Before the correction phase, each member of an all-to-all group sends its fine-grain

portions of the
�

vectors�� to the members of its solve group, and receives the pieces that compose its
coarse-grain portion of��. After each solve group finishes its inner iterations, the all-to-all is reversed and
each processor’s coarse-grain portion of� � is distributed across all the processors in the all-to-all group.

2.2 Process-to-node mapping

Processes should be assigned to solve groups depending on the target parallel environment: MPP of SMP’s,
COW, or collection of clusters. We describe this mapping on three typical parallel environments.

We first describe the simplest environment, a traditional MPP such as a Cray T3E capable of running
SPMD programs. In these environments, users often do not have control over and cannot even discover
which processors are allocated to their job. Once the multigrain library is initialized by the application at
run time, the processes are assigned fine and coarse-grain rows of the vectors and matrix according to the
default mapping in Figure 2.

Second, on MPPs that are clusters of SMP’s such as the IBM SP, the process mapping becomes more
complicated. As in the case of traditional MPP’s, the user has little or no control over which nodes are

5

s s1

p1

p2

p3

p4

p5

p6

all−to−all

s

t

solve_groupsolve_group
(p1,p3,p5) (p2,p4,p6)

2

p1

p5

p2

p4

p6

a2a_group

a2a_group

a2a_group
(p1,p2)

(p3,p4)

(p5,p6)

p3

Figure 2: Example of multigrain with hierarchical partitioning with six processors (� � �) and two block
vectors/solve groups (

� � �). Before the preconditioning phase, nodes in the same all-to-all group receive
the coarse-grain portions of the vectors�� they are responsible for. Each solve group then performs its
respective preconditioning. Afterwards, each node scatters its coarse-grain portion of� � among its fellow
all-to-all members.

allocated. However, the application can control how SMP’s are assigned to solve groups. We would like
processes on the same SMP to be members of the same solve groupso that, during the correction phase,
communications between processes of another solve group donot interfere with the traffic on this node. We
have implemented a mapping that guarantees solve groups to consist of collections of SMP’s and that no
two solve groups share the same SMP. We accomplish this during initialization of the multigrain library by
having each process call the Unix system callgethostname, and then binding processes with the same
host name to the same solve group. This grouping of SMP’s alsofacilitates nearest neighbor communication
and utilization of shared memory during the correction phase by placing processes with contiguous MPI
solve group ranks on the same SMP.

Collections of clusters are the most general case. Due to heterogeneity in the network, a user needs to
be able to specify which machines will comprise each solve group. Therefore, we assume that the batch
scheduler, if one is being used, allows users to request machines by name. Given this assumption, we
explicitly map processes to nodes using a solve group configuration file that gives the names of the machines
to be included in each solve group. If more than one process isrunning on an SMP, then both processes are
made members of the solve group with which the SMP is associated.

3 A multigrain, block Jacobi-Davidson implementation

Jacobi-Davidson is an algorithm for computing extreme eigenvalues of large, sparse matrices and is best
suited for difficult eigenproblems where the desired eigenvalues are clustered together. During the correction
phase, it performs a substantial amount of work to compute corrections to the approximate eigenvectors, and
thus it is a natural candidate for multigrain.

At each iteration, the method computes the current approximate eigenvalues
��, 	 � � � � � � , referred

to as Ritz values, and the approximate eigenvectors�� , referred to as Ritz vectors, using the Rayleigh-Ritz
procedure. The associated residuals� � � ��� � ��� are then computed and used to solve

�
correction

equations,

6

�� � ����� � �� � � �� � �� � ����� ��� � � �
 (1)

for the vectors��, which are approximations to the error in��. Usually� � � �� in the correction equation, but
it can also be chosen so that it is close to the eigenvalues that the user wants to compute. The corrections are
then orthogonalized against the basis

before being appended to

. Extension of

using the corrections

improves the accuracy of the approximations in future iterations. An outline of a fine grain, block JD
algorithm is given below.

Algorithm: Block JD
starting with

�
trial vectors��

While not converged do:
1. Orthogonalize��, 	 � � � � . Add them to

2. Matrix-vector � � � �
�
 	 � � � �

3. � �
 � � (local contributions)
4. GlobalSum(�) over all processors.
5. Solve� � � � ��� �
 	 � � � � (all procs)
6. �� �
 � �
 �� � � � �
 	 � � � � (local rows)
7. � � � �� � ��� �
 	 � � � � (local rows)
8. Correction equation Solve eq. (1) for each��
end while

Steps 1-7, referred to as theprojection phase, perform the orthogonalization, extension of

, and the
Rayleigh-Ritz projection. During the correction/preconditioning phase,

�
different equations (1) are solved

approximately for the��, usually by employing an iterative solver for linear systems such asBCGSTAB or
CG [25] that make use of short recurrences. Preconditioners such as sparse approximate inverse or incom-
plete�	 factorization may be used to accelerate the convergence ofBCGSTAB. When more that

�
eigenval-

ues are to be computed, the implementation replaces a converged�� with one of the remaining unconverged
Ritz vectors and continues.

3.1 Multigrain Jacobi-Davidson implementation

The projection phase of the algorithm remains the same in themultigrain modification, but step 8 must be
expanded by callingMG Gather andMG Scatter before and after the correction equation as was shown
in Figure 2. Before the correction phase, each solve group must obtain its respective coarse-grain�� and
� � vectors. The preconditioned inner solver is then applied byeach solve group to solve for a different
correction vector using the technique described in [27] forapplying a preconditioner of� to the projected
matrix in 1. For the difficult problems in our experiments, 10-20 iterations of the inner solver are usually
needed to obtain timely convergence of the target eigenvectors. After the corrections have been computed
they must be transitioned back to fine grain before they can beorthogonalized and appended to

. The

required modification to step 8 is given in Figure 3.

7

8. Multigrain correction phase in Jacobi-Davidson
MG Gather:

send local fine-grain rows of��, � � to each solve group	
receive coarse-grain rows for�������	
 �������	 from each proc

Apply � steps of (preconditioned)BCGSTAB on
eq.(1) with the gathered�������	 , �������	

MG Scatter:
send coarse-grain rows of�������	 to each proc
receive fine-grain rows for�� from solve group	

Figure 3: The multigrain modification of step 8 in the block JDalgorithm.

36−port Fast Ethernet Switch36−port Fast Ethernet Switch

32 SUN Ultra5s... ...

36−port Fast Ethernet Switch

32 SUN Ultra5s... ...

A B C D

Ultra5 333

Ultra420

Ultra60

450

360

MHz Mem Cache

256

512

4GB 4MB

2MB

2MB

...

Typhoon Tornado Hurricane

SUN Ultra60s Ultra 420Rs

12−port Gigabit Ethernet

32 Dual processor 4 Quad processor

SciClone Cluster

12−port Gigabit Ethernet

Figure 4: SciClone: The William and Mary heterogeneous cluster of three homogeneous clusters: Typhoon,
Tornado (also called C), and Hurricane (also called D). We distinguish between A and B, the subclusters of
Typhoon, because their intercommunication passes throughthe Gigabit switch.

8

SPAI Parameters
Matrix Dimension Non Zeros �� �� Level Threshold
FL3D268 ���
 	 �	 �
 ���
 ��� �� � � ���
CFD2 ���
 ��� �
 ���
 ��� �� � � ��	
NASASRB 	�
 ��� �
 ���
 ��� �� � � ��	

Table 1: The dimension, number of non zero elements, maximumnumber of inner iterations�� �� , and
the preconditioning parameters are given for each test matrix. The level and threshold control the density
of the preconditioner. Higher values forlevel result in denser preconditioners while higher values of
threshold result in sparser preconditioners. Recommended values forthresh � [� �� �
 � ���] [5].

4 Experiments

We conduct experiments with the fine-grain and multigrain Jacobi-Davidson code on two parallel archi-
tectures: a collection of clusters consisting of Sun workstations and an IBM SP. The workstation clusters,
collectively referred to as SciClone, are used for scientific and parallel computing research at the College of
William and Mary. It is a suitable environment for experiments in cluster computing because it is composed
of heterogeneous LAN technologies and is organized as a hierarchy of switches linking various COWs (Fig-
ure 4). The IBM SP uses a single proprietary low-latency switching technology to interconnect SMP nodes
of 16 processors each [2, 1].

4.1 Test matrices and solver parameters

We perform tests using three matrices. The first matrix, FL3D268, is derived from a finite-element prob-
lem [4]. The second matrix, CFD2 [7], is derived from computational fluid dynamics. The third matrix,
NASASRB [7], is a much smaller but more dense matrix. These matrices are chosen because their corre-
sponding eigenproblems are difficult to solve and require a significant number of inner iterations for the
algorithm to converge in a timely manner. We useBCGSTAB from SPARSKIT [23] as the inner solver, pre-
conditioned by the ParaSails sparse approximate inverse (SPAI) library [5]. Table 1 gives the sizes of each
matrix and the parameters used to generate the preconditioners. A shift of� � � is used because each matrix
is symmetric positive definite and we target the lower end of the spectrum. For each test,	� eigenvalues are
computed and a maximum basis size of��� with a restart size of�� vectors is used. The performance of
the fine-grain and multigrain codes are compared using both block sizes

� � � and
� � �. The multigrain

experiments are tested using two and four solve groups. Whenonly two solve groups are created, each solve
group solves two correction equations for every outer iteration (for two out of the four block vectors).

Approximate eigenvalues are considered converged once theresidual norm is below��� �� ��
�

��� for
matrices CFD2 and FL3D268, and��� �� ��

�
��� for NASASRB. The inner solver is given a zero vector as

initial guess and iterates for�� �� steps (see Table 1) or until�� , the residual of the inner system, satisfies:

�� 	 �
����
�� ���
 �� � �� �� �� ���
 (2)

where�
 is the initial residual of system (1),	��� is the number of outer iterations performed by JD thus
far [10],

�� �� is the maximum Ritz value computed thus far, and�� ��� is machine epsilon. We use
�� ��

as an approximation tor�� �� . For CFD2 and FL3D268,�
�� � � ��	, and for NASASRB,�
�� � � ��. All
the above parameters are chosen because they result in the fastest execution of the fine-grain code.

9

Independent partitionings
Configuration � ��� ��� ��� �� - 64 processors � ����������� - 128 processors

Gather MG MG FG Gather MG MG FG
Matrix Scatter inner solve Total Scatter inner solve Total
FL3D268 0.212 3.05 3.26 5.28 1.820 2.27 4.09 5.27
CFD2 0.176 2.58 2.76 3.61 0.319 1.79 2.11 3.11
NASASRB 0.071 1.62 1.69 1.81 0.770 1.04 1.81 1.60

Figure 5: Timings for one correction phase for fine-grain (FG) and multigrain (MG Total) Jacobi-Davidson,
using the method of independent partitionings on 64 and 128 processors, with 4 solve groups and

� � �. We
also show the times for multigrain to perform both theMG Gather andMG Scatter, and for solve groups
to execute�� �� iterations ofBCGSTAB (MG inner solve). The configuration string “� ��� ��� ��� ��” indi-
cates that four solve groups of�� processors each were used – two groups of size 16 from cluster� and two
groups of size 16 from cluster� . A similar string describes the 128-processor configuration.

4.2 SciClone tests

We perform several fine-grain experiments by using various configurations from 16 up to 128 processors
on the typhoon and tornado subclusters. Tests on the typhoonsubcluster requiring 32 or fewer processors
can be performed without communication traveling across more than one switch. Because contention for
the Ethernet interface can occur when more than one processor is utilized on the Ultra 60’s, tests requiring
only 16 or 32 processors on the tornado subcluster are run using one processor per node. All tests were
performed using a shared memory version of LAM MPI and Fast Ethernet.

4.2.1 Independent versus hierarchical partitioning

The method of independent partitionings of Section 2.1.1 isuseful in heterogeneous clusters, but it incurs
high overhead because the all-to-all operations are between all processors. Our hierarchical partitioning
limits the all-to-all operations to groups of processors ofsize equal to the number of solve groups. We
have recorded the amount of time spent performing theMG Gather andMG Scatter operations and
the amount of time spent executing�� �� iterations ofBCGSTAB. Tables 5 and 6 show the results for each
matrix and each partitioning scheme, for 64 and 128 processors, a block size of

� � �, and four solve groups.
The two methods are competitive for 64 nodes, but the scatterand gather operations become too expensive
when independent partitionings are used with 128 nodes. These operations are significantly faster under the
hierarchical partitioning because data is exchanged within all-to-all groups of size 4. The remainder of the
performance tests described in this paper are performed using the hierarchical partitioning.

4.2.2 Fine-grain versus multigrain Jacobi-Davidson

We test the fine-grain and multigrain Jacobi-Davidson code on the three matrices using the parameters given
in Section 4.1. The tests were run on collections of homogeneous machines (Clusters A and B), SMP’s
(Cluster C), and heterogeneous collections (Clusters A, B,and C together). The fine-grain tests show the
scalability of the application using only one solve group with

� � �
 �. The multigrain experiments use� � � and two or four solve groups to solve the four correction equations at each iteration. We construct the
solve groups so that machines within the same solve group arehomogeneous.

10

Hierarchical partitionings
Configuration � ��� ��� ��� �� - 64 processors � ����������� - 128 processors

Gather MG MG FG Gather MG MG FG
Matrix Scatter inner solve Total Scatter inner solve Total
FL3D268 0.264 3.00 3.26 5.28 0.092 2.12 2.21 5.27
CFD2 0.034 2.53 2.56 3.61 0.035 1.48 1.51 3.11
NASASRB 0.021 1.56 1.58 1.81 0.012 0.98 0.99 1.60

Figure 6: Timings for one correction phase for fine-grain (FG) and multigrain (MG Total) Jacobi-Davidson,
using the method of hierarchical partitionings on 64 and 128processors, with 4 solve groups and

� � �.

The first set of tests given in Figure 7 shows that the scalability of the fine-grain implementation de-
creases significantly for each matrix when scaling from 32 to64 processors. The multigrain algorithm is
competitive with the fine-grain implementation in the case of FL3D268 and CFD2, showing an improvement
of 13-17% over FG1 and FG4. The tests performed with NASASRB show that MG2 is only competitive for
32 or more processors and MG4 is only competitive with 64 processors. MG2 and MG4 show performance
degradation in the case of NASASRB for 16 and 32 processors because on average only four inner iterations
are required per block vector to satisfy inequality (2). We discuss this further in Section 5.

Similar tests were performed on the cluster of dual processor SMP Ultra 60’s (Figure 8). With all
methods, the speedup is greatly reduced when scaling from 32to 64 processors. We believe this is due to
contention for the network interface card when two processes are running on each machine. As a result,
only the 64 node tests for FL3D268 and CFD2 show a significant performance improvement (�� � ���)
over the fine-grain tests.

The final set of tests on the SciClone combine the Ultra 5’s andUltra 60’s and are given in Figure 9. The
results obtained by combining 32 Ultra 5’s and 32 Ultra 60’s are similar to those shown above for 64 Ultra
5’s. Multigrain is able to overcome latencies and provide further improvements in run time. For each test
matrix, ��	
 is between 32 and 64 processors on the SciClone. Multigrain successfully extends�� �� by a
factor of

� � �. Furthermore, the SciClone results show that the multigrain code achieves the smallest run
time in each of the three tests.

4.3 IBM SP tests

We perform some tests on an IBM SP at the National Energy Research Scientific Computing Center (NERSC).
The SP consists of 184 compute nodes each with 16 375MHz processors, 8MB of level 2 cache per proces-
sor, 16-64GB of memory, and two network switch interface cards. To reduce network traffic, we configured
all processes on a node to belong to the same solve group and utilize shared memory MPI. Four solve groups
were created for each of the multigrain tests.

The test results obtained for FL3D268 and CFD2 are given in Figure 10. The fine-grain tests show
improvements up to 128 processors. The multigrain code accomplishes the goal of extending the speedup
by a factor of the block size. It reduces the effects of latency and achieves up to 60% lower run time
compared to the fine-grain implementation.

11

Ultra 5 Solve Group Configurations
� Fine grain (fg1,4) Multigrain (mg2,4)
16 � �� � � � �

� � � � � � � �
32 � �� � ��� ��

� � � � � � � �
64 �� ����� � � �����

� ��� ��� ��� ��

mg2
fg4

mg4

fg1

16 32 64 Procs

CFD2 time for fine grain and multigrain on Ultra 5’s

� �

��
��
��
��
��
��
��
��
��
��
�

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�

� �� �� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �� �� �� �� �

� �
� �
� �
� �
� �
� �

	
	
	
	
	
	

� �� �� �� �� �� �� �

� �
� �
� �
� �

0

1000

2000

3000

4000

5000

6000

mg2
mg4

fg1

fg4

FL3D268 time for fine grain and multigrain on Ultra 5’s

� �

� �

��
��
��
��
��
��
�

��
��
��
��
��
��
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� �� �� �� �� �� �� �� �� �

��
��
��
��

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�
�

0

1000

2000

3000

4000

5000

6000

7000

16 32 64 Procs

NASASRB time for fine grain and multigrain on Ultra 5’s

fg1 fg4

mg2

mg4

� �

� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
�

��
��
��
��
��
�

!
!
!
!
!
!
!

" "" "" "" "" "" "

##
##
##

$ $
$ $
$ $
$ $
$ $

% %
% %
% %
% %
% %

0

500

1000

1500

2000

2500

3000

16 32 64 Procs

Figure 7:Run times of the fine-grain and multigrain Jacobi-Davidson implementations on the Ultra 5’s for each matrix
tested with block size& ' (. The bar charts measure run time in seconds for various numbers of processors. For each
number of processors, there is a string representing the node configuration used. The letters indicate which subcluster
was used, and the subscripts indicate the number of processors used in that subcluster. For the fine-grain experiments,
there is only one solve group. For multigrain experiments, each letter and subscript combination represents a solve
group. For those multigrain experiments with only two letter descriptions, two solve groups were used to solve the
four correction equations. Letters within parenthesis represent processors from different subclusters that are partof
the same solve group. FG1 and FG4 indicate fine-grain tests with & ') and& ' (while MG2 and MG4 indicate the
tests with two and four solve groups with& ' (.

12

Ultra 60 Solve Group Configurations
� Fine grain (fg1,4) Multigrain (mg2,4)
�� � �� � �� �

� �� �� �� �
�� � �� � ��� ��

� �� �� �� ��� � �� � ��� ��
� ��� ��� ��� ��

fg2
fg1 mg2

mg4

CFD2 time for fine grain and multigrain on Ultra 60’s

� �

� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �� �� �� �� �� �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� �� �� �� �� �� �� �� �� �� �

	 		 		 		 		 		 		 		 		 		 	

� �
� �
� �
� �
� �

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

16 32 64 Procs

16 32 64 Procs

fg1
mg4

mg2

fg4

FL3D268 time for fine grain and multigrain on Ultra 60’s

� �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

0

500

1000

1500

2000

2500

3000

3500

4000

4500

fg1
fg4

mg2

mg4

NASASRB time for fine grain and multigrain on Ultra 60’s

� �

� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �� �� �

� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �

! ! !! ! !! ! !! ! !! ! !! ! !! ! !

" " "
" " "
" " "
" " "
" " "

#
#
#
#
#

0

500

1000

1500

2000

2500

16 32 64 Procs

Figure 8: Comparison of the fine-grain and multigrain implementations on the cluster of Ultra 60’s. For
16 and 32 processors, only one processor on each machine is utilized. When both processors are used, the
scalability of the application suffers due to contention for the network interface.

13

Heterogeneous Solve Group Configurations
� Fine grain (fg1,4) Multigrain (mg2,4)�� �� ��� ��� � ��� ��

� ��� ��� ��� ��
��� �� ��� ��� �� � �� ��� ���� ��

� ��� ��� ��� ��

fg4fg1

mg2
mg4

CFD2 time for fine grain and multigrain on Ultra 5’s and 60’s

� �

� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

0

500

1000

1500

2000

12864 Procs

fg1

mg2
mg4

fg4

FL3D268 time for fine grain and multigrain on Ultra 5’s and 60’s

� �

	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 	

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

0

500

1000

1500

2000

2500

12864 Procs

fg1
fg4

mg2

mg4

NASASRB time for fine and multigrain on Ulra 5’s and 60’s

� �

� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �

0

100

200

300

400

500

600

700

800

Procs64 128

Figure 9: Comparison of the fine-grain and multigrain implementations by combining the Ultra 5’s and
Ultra 60’s. There is little or no improvement achieved by thefine-grain code when scaling from 64 to
128 processors. Multigrain does perform significantly better though. We expect it would continue to show
improvements for more than 128 processors.

14

fg1

mg4

fg4

CFD2 time for fine grain and multigrain on IBM SP

��
��
��
��
��
��
��

��
��
��
��
��
��
��

� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �

��
��
��
��

� �� ��� ��		

� �� �

0

500

1000

1500

2000

2500

16 32 64 128 256 512Procs

fg1 mg4

fg4

FL3D268 time for fine grain and multigrain on IBM SP

� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �

��
��
��
�

����� �� �� �� �
� �� �� �� �

� �� �� �� �
� �� ���

0

200

400

600

800

1000

1200

1400

1600

1800

16 32 64 256128 512 Procs

Figure 10: Comparison of fine-grain and multigrain Jacobi-Davidson on an IBM SP. FG1 and FG4 indicate
the run time of the fine grain code with

� � � and
� � � respectively. The multigrain tests were run with

four solve groups and
� � �.

5 Performance model

We now present a performance model of the correction phase tofurther explain our test results and to
predict when the multigrain algorithm should be used. The fine-grain model depends on the parameters:
� , � ,

�
, � , �� �� �

, �� �� �
, � �����, � � ��� ����� �� �

, and� � ���
��� �� ��
 � �
. The parameters�� �� �

, �� �� �
,

and � ����� are the times to perform one matrix-vector multiply, one preconditioner application, and one
floating-point operation during a BLAS dot product or daxpy respectively. The parameters� � ��� ��� �� �� �

,
and� � ���
��� �� ��
 � �

are the times for MPI allreduce and all-to-all as a function of processors and block
size. All the parameters except�� �� �

and�� �� �
can be measured once for various� values on some

machine and used in later experiments. Because the matrix-vector multiply and preconditioning operators
are user defined, the values of�� �� �

and�� �� �
must be measured for each particular problem. Note that

for multigrain,� should be the number of processors in the solve group.
Based on these variables, we obtain the time for ddot and daxpy operations as:

����
 �� � � � � �
�

� ����� � � � ��� ����� �� �
 !" ����	 � �� � � � � �
�

� � ����� �
The correction equation can be modeled as an initializationstep and� steps ofBCGSTAB. In eachBCGSTAB

step, besides some vector updates and dot products, two matrix vector multiplication and preconditioning
operations are needed. All-to-all times are not included infine grain.

� ��� �� � � � � �� �� � � ����	 � �� � �
� � � ���
 �� � �

� � � � ����
 �� � �
�� � � � ����	 � �� � �

� � � � �� �� � �
� � � � �� �� � �

� � � � ���
��� �� ��
 � �

To test the model, we forcedBCGSTAB to perform 10 iterations per block vector during each correction
phase with matrix NASASRB. The eigensolver was allowed to run for several iterations and the time to

15

0 20 40 60 80 100 120 140
1

2

3

4

5

6

7

8
Predicted runtime of inner solve vs. number of processors with NASASRB

Number of processors

R
un

 ti
m

e
(s

ec
.)

Fine grain
Multigrain

0 20 40 60 80 100 120 140
1

1.5

2

2.5

3

3.5

4

4.5

5
Speedup of inner solve vs. number of processors with NASASRB

Number of processors

S
pe

ed
up

Fine grain
Multigrain

Figure 11: Model predictions for run time and correspondingspeedup of the fine grain and multigrain
correction phases when 10 iterations ofBCGSTAB are applied per block vector. The predictions were made
with

� � � and four solve groups and the speedups are with respect to thepredicted run time achieved with
16 processors.

complete the correction phase was averaged over the iterations. Furthermore, tests run on 64 or fewer nodes
were run strictly on clusters� and� . The model was able to predict the length of the correction phase to
within 5% for all fine grain and multigrain tests except the multigrain case for 128 processors which was
10% higher than the experimental time. This may be related tothe fact that cluster� consists of faster
machines which the model does not account for.

In Figure 11 we show the run times and speedup given by the model’s predications for NASASRB. The
model shows that multigrain does indeed extend the speedup of the correction phase. Of further interest is
the fact that multigrain outperforms the fine grain implementation for the four configurations:� � � � � � � � ,
� � � � � � � � , � ��� ��� ��� �� , and� ����������� . However, we do not see commensurate gains in the
previous experiments when solving for the 50 lowest eigenvalues. This is because the quality of the pre-
conditioner was high, so on average only four inner iterations instead of ten per block vector were needed
to obtain convergence. Furthermore, not all processors converged in the same number of steps during each
outer iteration, resulting in large load imbalances. Obviously, multigrain is a powerful technique but it
requires problems that need many inner iterations.

6 Conclusions

We have proposed multigrain, a latency-tolerant modification of parallel, block iterative methods that per-
form preconditioning using an inner iterative method. Multigrain employs fine-grain parallelism during the
projection phase and coarse-grain parallelism during the preconditioning phase. This is a reasonable appli-
cation of coarse-grain parallelism when solving difficult problems that require many inner iterations because
most of the execution time and communication is attributed to the inner solver.

In the case of the Jacobi-Davidson method, we can induce coarse granularity during the correction phase
by splitting the processors into subgroups and having each subgroup solve a distinct correction equation.

16

Fine grain
� � � Fine grain

� � �
Configuration Time Matvecs Iterations Time Matvecs Iterations
� �� 5424 63210 1745 6627 74560 647
� �� 3306 63468 1740 3463 69944 621
� ����� 2417 64184 1763 2544 71170 629
� �� 3961 63210 1745 4512 74560 647
��� 2355 63468 1740 2457 69944 621
��� 2526 64184 1763 2722 71170 629
� ����� 2353 64184 1763 2491 71170 629
� �������� 2377 64939 1778 2552 71852 628

Multigrain
� � �

Configuration Time Matvecs Iterations
� � � � 6197 70716 624
� � � � � � � � 5948 71180 627
� ��� �� 3288 70536 623
� � � � � � � � 3234 71798 633
� ����� 2107 71890 628
� ��� ��� ��� �� 1885 73356 641
� � � � 4315 70716 624
�� �� �� �� 4293 71180 627
� ��� �� 2529 70536 623
� � � � � � � � 2318 71798 633
������ 2122 71890 628
� ��� ��� ��� �� 1819 73356 641
� ����� 2041 71890 628
� ��� ��� ��� �� 1918 73356 641
�� ����� ���� 1778 75124 649
� ����������� 1302 70992 623

Figure 12: Fine grain and multigrain results for FL3D268 on SciClone

Since each solve group can be associated with a physically different cluster, computation occurs locally at a
much smaller latency rate, and with minimal intercluster communication. Our experiments with a multigrain
Jacobi-Davidson code show that the multigrain parallelismextended the scalability of the solver both on a
collection of clusters and an MPP composed of SMP’s.

Multigrain should be applied only when fine grain starts to face scalability problems. We have con-
structed a model that can be used to predict how much time is required by the fine and coarse-grain Jacobi-
Davidson correction phase. The model serves as an analytical tool for determining why and under what
conditions the multigrain method is effective.

17

Fine grain
� � � Fine grain

� � �
Configuration Time Matvecs Iterations Time Matvecs Iterations
� �� 5590 43261 2074 5863 47188 574
� �� 2924 43345 2078 3056 47354 576
� ����� 1933 43742 2097 1974 47280 575
� �� 4579 43261 2074 4861 47188 574
��� 2207 43345 2078 2284 47354 576
��� 2158 43742 2097 2209 47280 575
� ����� 2074 43742 2097 2116 47280 575
� �������� 1809 44531 2134 1817 47532 578

Multigrain
� � �

Configuration Time Matvecs Iterations
� � � � 5458 47020 572
� � � � � � � � 4963 47166 574
� ��� �� 2925 46348 564
� � � � � � � � 2725 48952 595
� ����� 1814 47522 578
� ��� ��� ��� �� 1652 46768 569
� � � � 4598 47020 572
�� �� �� �� 4349 47166 574
� ��� �� 2451 46348 564
� � � � � � � � 2403 48952 595
������ 1704 47522 578
� ��� ��� ��� �� 1612 46768 569
� ����� 1754 47522 578
� ��� ��� ��� �� 1599 46768 569
�� ����� ���� 1275 47112 573
� ����������� 976 47942 583

Figure 13: Fine grain and multigrain results for CFD2 on SciClone

18

Fine grain
� � � Fine grain

� � �
Configuration Time Matvecs Iterations Time Matvecs Iterations
� �� 2031 16565 1831 1982 16636 449
� �� 1100 16021 1764 1107 17032 443
� ����� 828 16326 1868 742 16916 509
� �� 1539 16565 1831 1455 16636 449
��� 844 16021 1764 815 17032 443
��� 810 16326 1868 780 16916 509
� ����� 714 16326 1868 666 16916 509
� �������� 692 15301 1724 621 16288 422

Multigrain
� � �

Configuration Time Matvecs Iterations
� � � � 2437 17810 509
� � � � � � � � 2708 16934 471
� ��� �� 1178 17076 467
� � � � � � � � 1513 18298 495
� ����� 682 16184 398
� ��� ��� ��� �� 824 17688 543
� � � � 1983 17810 509
�� �� �� �� 2281 16934 471
� ��� �� 916 17076 467
� � � � � � � � 1323 18298 495
������ 657 16184 398
� ��� ��� ��� �� 806 17688 543
� ����� 604 16184 398
� ��� ��� ��� �� 734 17688 543
�� ����� ���� 517 16836 483
� ����������� 463 15934 422

Figure 14: Fine grain and multigrain results for NASASRB on SciClone

19

References

[1] RS/6000 SP: SP Switch and SP Switch2 Performance. Technical report, IBM Corporation, June 2001.

[2] Farazdel A., Archondo-Callao G.R., and Hocks E. et. al. Understanding and Using the SP Switch.
Technical Report SG24-5161-00, IBM Corporation, 1999.

[3] C. Aykanat, F.Ozguner, and D.S. Scott. Vectorization and parallelization of the conjugate gradient
algorithm on hypercube-connected vector processors.Microprocessing & Microprogramming, 29:67–
82, Sept 1990.

[4] L. Bergamaschi, G. Pini, and F. Sartoretto. Parallel preconditioning of a sparse eigensolver.Parallel
Computing, 27(7):963–76, 2001.

[5] Edmond Chow. ParaSails: Parallel sparse approximate inverse (least-squares) preconditioner. Techni-
cal report, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, L-560,
Box 808, Livermore, CA 94551, 2001.

[6] J. Cullum and R. A. Willoughby.Lanczos algorithms for large symmetric eigenvalue computations,
volume 1: Theory ofProgress in Scientific Computing; v. 3. Birkhauser, Boston, 1985.

[7] Tim Davis. University of florida sparse matrix collection. NA Digest, 97(23), June 1997.

[8] E. de Sturler and H.A. Van der Vorst. Reducing the effect of global communication in GMRES(m) and
CG on parallel distributed memory computers.Applied Numerical Mathematics, 18(4):441–59, Oct
1995.

[9] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H.A. van derVorst. Numerical Linear Algebra for High
Performance Computers. SIAM, Philadelphia, PA, 1998.

[10] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst. Jacobi-Davidson style QR and QZ algo-
rithms for the partial reduction of matrix pencils.SIAM J. Sci. Comput., 20(1), 1998.

[11] I. Foster and C. Kesselman, editors.The Grid — Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 1998.

[12] G. H. Golub and R. Underwood. The block Lanczos method for computing eigenvalues. In J. R. Rice,
editor,Mathematical Software III, pages 361–377, New York, 1977. Academic Press.

[13] J. L. Hennessy and D. A. Patterson.Computer Architecture A Quantitative Approach. Morgan Kauf-
mann, 340 Pine Street, San Francisco, CA 94104-3205, 2 edition, 1996.

[14] K. Hwang and Z. Xu.Scalable Parallel Computing. WCB/McGraw Hill, 1998.

[15] George Karypis and Vipin Kumar. A parallel algorithm for multilevel graph partitioning and sparse
matrix ordering.Journal of Parallel and Distributed Computing, 48:71–85, 1998.

[16] J. R. McCombs, R. T. Mills, and A. Stathopoulos. Dynamicload balancing of an iterative eigen-
solver on networks of heterogeneous clusters. InProceedings of the 17th International Parallel and
Distributed Processing Symposium, to appear, 2003.

20

[17] J. R. McCombs and A. Stathopoulos. Multigrain parallelism for eigenvalue computations on networks
of clusters. InProceedings of the Eleventh IEEE International Symposium On High Performance
Distributed Computing, pages 143–149, Los Alamitos, California, 2002. IEEE.

[18] Dianne P. O’Leary. The block conjugate gredient algorithm and related methods.Lin. Alg. Appl.,
29:293–322, February 1980.

[19] Dianne P. O’Leary. Parallel implementation of the block conjugate gradient algorithm.Parallel Com-
puting, 5:127–139, 1987.

[20] Beresford N. Parlett.The Symmetric Eigenvalue Problem. SIAM, Philadelphia, PA, 1998.

[21] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsym-
metric linear systems.SIAM J. Sci. Statist. Comput., 7:856–869, 1986.

[22] Y. Saad and K. Wu. Parallel SPARSe matrix LIBrary (PSPARSLIB): the iterative solvers module.
Technical Report 94-008, Army High Performance Computing Research Center, Minneapolis, 1994.

[23] Yosef Saad. SPARSKIT: A basic tool kit for sparse matrixcomputations. Technical report, Computer
Science Department, University of Minnesota, Minneapolis, MN 55455, June 1994. Version 2.

[24] Yousef Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput.,
14(2):461–469, March 1993.

[25] Yousef Saad.Iterative methods for sparse linear systems. PWS Publishing Company, 1996.

[26] V. Simoncini and E. Gallopoulos. A hybrid block gmres method for nonsymmetric systems with
multiple right-hand sides.Journal of Computational and Applied Mathematics, 66:457–69, Jan 1996.

[27] G. L. G. Sleijpen, A. G. L. Booten, D. R. Fokkema, and H. A.van der Vorst. Jacobi-davidson type
methods for generalized eigenproblems and polynomial eigenproblems.BIT, 36(3):595–633, 1996.

[28] Gerald L.G. Sleijpen and Henk A. van der Vorst. A Jacobi-Davidson iteration method for linear eigen-
value problems.SIAM Journal of Matrix Analysis and Applications, 17:401–425, 1996.

[29] A. Stathopoulos and C. F. Fischer. Reducing synchronization on the parallel Davidson method for the
large,sparse, eigenvalue problem. InSupercomputing ’93, pages 172–180, Los Alamitos, CA, 1993.
IEEE Comput. Soc. Press.

[30] A. Stathopoulos and J. R. McCombs. A parallel, block, Jacobi-Davidson implementation for solving
large eigenproblems on coarse grain environments. In1999 International Conference on Parallel and
Distributed Processing Techniques and Applications, pages 2920–2926. CSREA Press, 1999.

21

