
PRIMME SVDS: A PRECONDITIONED SVD SOLVER FOR

COMPUTING ACCURATELY SINGULAR TRIPLETS OF LARGE

MATRICES BASED ON THE PRIMME EIGENSOLVER

LINGFEI WU∗ AND ANDREAS STATHOPOULOS∗

Abstract. The computation of a few singular triplets of large, sparse matrices is a challenging
task, especially when the smallest magnitude singular values are needed in high accuracy. Most recent
efforts try to address this problem through variations of the Lanczos bidiagonalization method,
but algorithmic research is ongoing and without production level software. We develop a high
quality SVD software on top of the state-of-the-art eigensolver PRIMME that can take advantage of
preconditioning, and of PRIMME’s nearly-optimal methods and full functionality to compute both
largest and smallest singular triplets. Accuracy and efficiency is achieved through a hybrid, two-stage
meta-method, primme svds. In the first stage, primme svds solves the normal equations problem up
to the best achievable accuracy. If further accuracy is required, the method switches automatically
to an eigenvalue problem with the augmented matrix. Thus it combines the advantages of the two
stages, faster convergence and accuracy, respectively. For the augmented matrix, solving the interior
eigenvalue is facilitated by a proper use of the good initial guesses from the first stage and an efficient
implementation of the refined projection method. We also discuss how to precondition primme svds
and to cope with some issues that arise. The method can be used with or without preconditioning,
on large problems, and can be called with its full functionality from MATLAB through our MEX
interface. Numerical experiments illustrate the efficiency and robustness of the method.

1. Introduction. The Singular Value Decomposition (SVD) is a ubiquitous
computational kernel in science and engineering. Many applications require a few
of the largest singular values of a large sparse matrix A and the associated left and
right singular vectors (singular triplets). These applications are from diverse areas,
such as social network analysis, image processing, textual database searching, and
control theory. A smaller, but increasingly important, set of applications requires a
few smallest singular triplets. Examples include least square problems, determina-
tion of matrix rank, low rank approximation, and computation of pseudospectrum
[1, 2, 3, 4]. Recently we have used such techniques to reduce the variance in Monte
Carlo estimations of the the trace of the inverse of a large sparse matrix.

It is well known that the computation of the smallest singular triplets presents
challenges both to the speed of convergence and the accuracy of iterative methods. In
this paper, we mainly focus on the problem of finding the smallest singular triplets.
Assume A ∈ ℜm×n is a large sparse matrix with full column rank and m ≥ n. The
(economy size) singular value decomposition of A can be written as:

(1.1) A = UΣV T

where U = [u1, . . . , un] ∈ ℜm×n is an orthonormal set of the left singular vectors
and V = [v1, . . . , vn] ∈ ℜn×n is the unitary matrix of the right singular vectors.
Σ = diag(σ1, . . . , σn) ∈ ℜn×n contains the singular values of A, σ1 ≤ . . . ≤ σn. We
will be looking for the smallest k ≪ n singular triplets {σi, ui, vi}, i = 1, . . . , k.

There are two approaches to compute the singular triplets {σi, ui, vi} by using a
Hermitian eigensolver. Using MATLAB notation, the first approach seeks eigenpairs
of the augmented matrix B = [0 AT ; A 0] ∈ ℜ(m+n)×(m+n), which has eigenvalues ±σi

with corresponding eigenvectors ([vi; ui], [−vi; ui]), as well as m − n zero eigenvalues
[6, 7, 8]. The main advantage of this approach is that iterative methods can potentially

∗Department of Computer Science, College of William and Mary, Williamsburg, Virginia 23187-
8795, U.S.A.(lfwu@cs.wm.edu, andreas@cs.wm.edu)

1

compute the smallest singular values accurately, i.e., with residual norm close to
O(‖A‖ǫmach). However, convergence of eigenvalue iterative methods is slow since it is
a highly interior eigenvalue problem, and even the use of iterative refinement or inverse
iteration involves a maximally indefinite matrix [5]. For restarted iterative methods
convergence is even slower, irregular, and often the required eigenvalues are missed
since the Rayleigh-Ritz projection method does not effectively extract the appropriate
information for interior eigenvectors [29, 30, 33].

The second approach computes eigenpairs of the normal equations matrix C =
AT A ∈ ℜn×n which has eigenvalues σ2

i and associated eigenvectors vi. If σi 6= 0, the
corresponding left singular vectors are obtained as ui = 1

σi

AT vi. C is implicitly ac-
cessed through successive matrix-vector multiplications. The squaring of the singular
values works in favor of this approach with Krylov methods, especially with largest
singular values since their relative separations increase. Although the separations of
the smallest singular values become smaller, we show in this paper that this approach
still is faster than Krylov methods on B because it avoids indefiniteness. On the other
hand, squaring the matrix limits the accuracy at which smallest singular triplets can
be obtained. Therefore, this approach is typically followed by a second stage of itera-
tive refinement for each needed singular triplet which resolves the required accuracy
[11, 12, 13]. However, this one-by-one iterative refinement does not exploit informa-
tion from other singular vectors and thus is it not as efficient as an eigensolver applied
on B with the estimates of the first stage.

The Lanczos bidiagonalization (LBD) method [1, 6] is accepted as an accurate and
more efficient method for seeking singular triplets (especially smallest), and numerous
variants have been proposed [22, 17, 19, 14, 15, 16, 18, 25]. LBD builds the same
subspace as Lanczos on matrix C, but since it works on A directly, it avoids the
numerical problems of squaring. However, the Ritz vectors often exhibit slow, irregular
convergence when the smallest singular values are clustered. To address this problem,
harmonic projection [19, 14], refined projection [17], and their combinations [18] have
been applied to LBD. Despite remarkable algorithmic progress, current LBD methods
are still in development, with only few existing MATLAB implementations that serve
mainly as a testbed for mathematical research. Moreover, we show that a two stage
approach based on a well designed eigenvalue code (such as PRIMME) can be more
robust and efficient for a few singular triplets. Most importantly, our approach can
use preconditioning, something that is not directly possible with LBD but becomes
crucial because of the difficulty of the problem even for medium matrix sizes.

The Jacobi-Davidson type SVD method, JDSVD [9, 10], is based on an inner-outer
iteration and can also use preconditioning. It obtains the left and right singular vectors
directly from a projection of B on two subspaces and, although it avoids the numerical
limitations of matrix C, it needs a harmonic [29, 32, 31] or a refined projection method
[33, 34] to avoid the irregular convergence of the Rayleigh-Ritz method. JDSVD
often has difficulty computing the smallest singular values of a rectangular matrix A,
especially without preconditioning, due to the presence of zero eigenvalues of B. Also,
JDSVD is only available in a MATLAB research implementation.

Recently, based on [26], an inverse free preconditioned Krylov subspace method,
SVDIFP, has appeared for the singular value problem [27]. The implementation in-
cludes the robust incomplete factorization (RIF) [28] for the normal equations matrix,
but other preconditioners can also be used. To circumvent the intrinsic difficulties of
filtering out the zero eigenvalues of the augmented matrix B, the method works with
the normal equations matrix C, but computes directly the smallest singular values

2

of A and not the eigenvalues of C. Thus good numerical accuracy can be achieved
but, as we show later, at the expense of efficiency. Moreover, the design of SVDIFP
is based on restarting with a single vector, which is not effective when seeking more
than one singular values. Finally, the SVDIFP code is only available in MATLAB.

Given the above research activity in SVD algorithms, it is surprising that there
is a lack of good quality software for computing the partial SVD, especially with
preconditioning. Without preconditioning, SVDPACK [20] and PROPACK [21, 22]
implement variants of (block) Lanczos methods. In addition, PROPACK implements
an implicitly restarted LBD. However, SVDPACK can only compute largest singular
triplets while PROPACK has to leverage shift-and-invert techniques to search for
smallest. SLEPc offers some limited functionality for computing the partial SVD
problem of a large, sparse rectangular matrix using various eigensolvers working on
B or C [23]. It also implements a parallel LBD method but focuses mainly on largest
singular values [24]. With the growing size and difficulty of real-world problems,
there is a clear need for a high quality SVD solver software that allows for additional
flexibility, implements state-of-the-art methods, and allows for preconditioning.

In this paper we address this need by developing a high quality SVD software
based on the state-of-the-art package PRIMME (PReconditioned Iterative Multi-
Method Eigensolver) [37]. The novelty is not on the interface but on a hybrid, two-
stage method that achieves both efficiency and accuracy for both largest and small-
est singular values under limited memory. In the first stage, the proposed method
primme svds solves an extreme eigenvalue problem on C up to the user required ac-
curacy or up to the accuracy achievable by the normal equations. If further accuracy
is required, primme svds switches to a second stage where it utilizes the eigenvec-
tors and eigenvalues from C as initial guesses to a Jacobi-Davidson method on B,
which has been enhanced by a refined projection method. The appropriate choices
for tolerances, transitions, selection of target shifts, and initial guesses are handled
automatically by the method. We also discuss how to precondition primme svds and
to cope with possible issues that can arise. Our extensive numerical experiments show
that primme svds can be considerably more efficient than all other methods when com-
puting a few of the smallest singular triplets, even without a preconditioner. With a
good preconditioner, the primme svds method can be much more efficient and more
robust than the JDSVD and SVDIFP methods.

In Section 2 we motivate the two stage SVD method based on the convergence
of other Krylov methods to the smallest magnitude eigenvalue of B and C. In Sec-
tion 3, we develop the components of the two stage SVD method. In Section 4, we
describe how to precondition primme svds, and how to dynamically inspect the qual-
ity of preconditioning at the two different stages. In Section 5, we present extensive
experiments that corroborate our conclusions.

We denote by ‖.‖ the 2-norm of a vector or a matrix, by AT the transpose of A,
by I the identity matrix, κ(A) = σn

σ1

, and by Km(A, v) = span{v, Av, . . . , Am−1v}
the m-dimensional Krylov subspace generated by A and the initial vector v.

2. Motivation for PRIMME and a two stage strategy. We first introduce
some basic iterative methods for SVD, and discuss some of the features in PRIMME
that facilitate the development of a flexible SVD solver. Then, we study both the
asymptotic convergence of unpreconditioned Krylov methods applied on C and B,
and the quality of the subspaces built by different methods. Even without taking
into account the way we extract information from the subspaces, we arrive at the
conclusion that a hybrid strategy should be preferred.

3

2.1. The LBD, JDSVD, and SVDIFP methods. The LBD method, [6, 7],
starts with unit vectors p1 and q1 and after k steps produces the following decompo-
sition as a partial Lanczos bidiagonalization of A:

(2.1)
APk = QkBk,

AT Qk = PkBT
k + rkeT

k ,

where the rk is the residual vector at k-th step, ek is the k−th orthocanonical vector,

Bk =













α1 β1

α2
. . .

. . . βk−1

αk













= QT
k APk,

and Qk and Pk are orthonormal bases of the Krylov subspaces Kk(AAT , q1), and
Vk = Kk(AT A, p1) respectively. With properly chosen starting vectors, LBD produces
mathematically the same space as the symmetric Lanczos method on B or C [18, 19].

To approximate the singular triplets of A, LBD solves the small singular value
problem on Bk, and uses the corresponding Ritz approximations from Qk and Pk as
left and right singular vectors. To address the rapid loss of orthogonality of Pm and
Qm in finite precision, full [7], partial [22], or one-sided reorthogonalization [14, 18]
strategies have been applied to variants of LBD. Because, all such solutions become
expensive when k is large, restarted LBD versions have been studied [19, 14, 17, 22].
The goal is twofold: restart with sufficient subspace information to maintain a good
convergence, and identify the appropriate Ritz information to restart with. The former
problem is tackled with implicit or thick restarting [38]. The latter problem is tackled
with combinations of harmonic and refined projection methods. For example, IRLBA
[15] uses a thick restarted block LBD with harmonic projection, while IRRHLB [18]
first computes harmonic Ritz vectors, and then uses their Rayleigh quotients in a
refined projection to extract refined Ritz vectors from Pk and Qk.

The JDSVD method [9] extends the Jacobi-Davidson method and its correction
equation for singular value problems by exploiting the special structure of the aug-
mented matrix B. Similarly to LBD, JDSVD computes singular values, not eigenval-
ues, of the projection matrix, and the left and right singular vectors from separate
spaces. Because good quality approximations are important not only for restarting
but also in the correction equation, various projection methods can benefit JDSVD.
We introduce only the standard choice where the test and search space are the same.

Let U and V be the bases of the left and right search spaces with dimension k.
Computing a singular triplet of H = UT AV yields (θ, Uc, V d) as the Ritz approxima-
tion of a corresponding singular triplet of A. Then JDSVD obtains new corrections s
and t for U and V by solving (approximately) the following correction equation:

(2.2)

(

Pu 0
0 Pv

) (

−θIm A
AT −θIn

) (

Pu 0
0 Pv

) (

s
t

)

=

(

Av − θu
AT u − θv

)

where Pv = In − vvT , Pu = Im − uuT . The left and right corrections s, t are then
orthogonalized against U and V respectively. Clearly, different Galerkin choices can
be used to compute harmonic or refined singular triplets. JDSVD uses thick restarting
[38, 39] with possibly extra Ritz vectors retained from the previous iteration, similarly

4

to the locally optimal Conjugate Gradient recurrence [35]. Most importantly, the
JDSVD method can take advantage of preconditioning when solving (2.2).

The SVDIFP method [27] extends the EIGIFP method [26] by computing the
smallest singular values as eigenvalues of the generalized eigenvalue problem (C, I).
Given the current approximation (xi, ρi = xT

i Cxi/xT
i xi), it constructs a new approx-

imation xi+1 by a projection of (C, I) onto the Krylov subspace,

(2.3) Km(C − ρiI, xi) = span{xi, (C − ρiI)xi, . . . , (C − ρiI)m−1xi}.

The space can be preconditioned by any available preconditioner LDLT ≈ C−ρiI. To
avoid the numerical problems of projecting on C, SVDIFP computes the approximate
singular values directly from a two sided projection of C, similarly to the LBD.

2.2. The PRIMME eigenvalue package. Our goal is to enable practitioners
to solve a variety of large, sparse singular value problems with unprecedented effi-
ciency, robustness, and accuracy. Our methods should be able to use preconditioning
because very slow convergence is a limiting factor for seeking smallest singular triplets.
Moreover, large problem size suggests the use of advanced restarting techniques so
that memory savings do not impede convergence. These desired functionalities are
found in the PRIMME eigensolver [37], which also includes a host of additional fea-
tures that can further help develop and fine-tune an efficient SVD solver.

PRIMME implements a wide variety of preconditioned eigenvalue algorithms,
including the nearly optimal methods GD+k and JDQMR. Near optimality is used
in the sense of achieving similar convergence to a similar method with unlimited
memory (e.g., unrestarted Lanczos or unrestarted Generalized Davidson). PRIMME
also allows for a dynamic choice of the best method based on runtime measurements.
It also implements many techniques for improving efficiency and robustness, including
block-methods and locking. Unlike Lanczos or LBD, PRIMME can use as many
initial vector guesses as there are available. Also given a set of user provided shifts,
PRIMME can find interior eigenvalues closest to in absolute value or on the left or
right side of each of these shifts. These two features are important for our two stage
SVD method because there are very good eigenvalue and eigenvector approximations
from the first stage. PRIMME is a parallel, high performance implementation which
has proved faster and more robust than almost any other eigensolver when seeking a
small number of extreme eigenvalues of large sparse Hermitian matrices. It is natural,
therefore, to build our SVD solver on top of it.

First, we need to understand whether PRIMME should be used to solve the
SVD as an eigenvalue problem on C or on B, and whether its convergence will be
competitive to other SVD methods. The following sections address these issues.

2.3. Asymptotic convergence of Krylov methods on C and B. When
seeking largest singular values, it is accepted that Krylov methods on C are faster
than on B [9, 19, 27, 13]. The argument is straightforward.

Theorem 2.1. Let γB = σn−σn−1

σn−1+σn
and γC =

σ2

n
−σ2

n−1

σ2

n−1
−σ2

1

be the gap ratios of the

largest eigenvalue of matrices B and C, respectively. Then, for the largest eigenvalue,
the asymptotic convergence of Lanczos on C is 2 times faster than Lanczos on B.

Proof. The asymptotic convergence rate is the square root of the gap ratio. Then:

γC =
(σn − σn−1)(σn + σn−1)

2

(σn + σn−1)(σ2
n−1 − σ2

1)
= γB

(σn + σn−1)
2

(σ2
n−1 − σ2

1)
> γB

4σ2
n−1

(σ2
n−1 − σ2

1)
=

4γB

1 − (σ1

σn−1

)2
.

5

Therefore, for σ1 ≈ 0, the asymptotic convergence rate
√

γC > 2
√

γB . In the less
interesting case σ1 → σn−1, Lanczos on C is arbitrarily faster than on B.

For smallest singular values the literature is less clear, although methods that
work on C have been avoided for numerical reasons. In previous experiments we
have observed much faster convergence with approaches on C than on B [41]. To
obtain some intuition, we perform a basic asymptotic convergence analysis of Krylov
methods working on C or on B trying to compute the smallest magnitude eigenvalue.

Lemma 2.2. Let the union of two intervals: K = [−a,−b]∪[c, d], −b < 0 < c, and
pk(x) the optimal degree-k polynomial that is as small as possible on K and pk(0) = 1.

Let ǫk = maxx∈K |pk(x)|, and ρ = limk→∞ ǫ
1/k
k . Then asymptotically:

ρ ≃ 1 −
√

bc

da
.

Proof. This is an application of Theorem 5 in [40].
This ρ translates to an upper bound for the asymptotic convergence rate of any

Krylov solver applied to an indefinite matrix whose spectrum lies in the interval K.
Thus it can also be used for the convergence rate to the smallest positive eigenvalue
of the augmented matrix B. Assume σ1 is a simple eigenvalue of B and thus σ2

1 is a

simple eigenvalue of C. Define its gap ratio in C as, γ =
σ2

2
−σ2

1

σ2
n
−σ2

2

, and assume γ ≪ 1.

Theorem 2.3. Consider the spectrum of the matrix B − σ1I, which lies (except
for the zero eigenvalue) in the two intervals: K = [−σn−σ1,−2σ1]∪[σ2−σ1, σn−σ1].
The asymptotic convergence rate for any Krylov solver that finds σ1 is bounded by:

ρ = 1 −
√

γ
2σ1

σ2 + σ1

σ2
n − σ2

2

σ2
n − σ2

1

.

Proof. Clearly, the optimal polynomial pk(x) of Lemma 2.2 is the best polynomial
for finding σ1. Applying the Lemma for the specific bounds for this interval we get:

bc

ad
=

2σ1(σ2 − σ1)

(σn + σ1)(σn − σ1)
=

2σ1

σ2 + σ1

σ2
2 − σ2

1

σ2
n − σ2

1

=
2σ1

σ2 + σ1

σ2
2 − σ2

1

σ2
n − σ2

2

σ2
n − σ2

2

σ2
n − σ2

1

.

Lemma 2.4. The bound of the asymptotic convergence rate to σ2
1 of Lanczos on

C is approximately: q = 1 − 2
√

γ.
Proof. The bound on the rate of convergence of Lanczos for σ2

1 is approximated
as e−2

√
γ [5, p. 280]. Taking the first order approximation from Taylor series around

0, we obtain e−2
√

γ = 1 − 2
√

γ + O(γ).
Theorem 2.5. A Krylov method on C that computes σ2

1 has always faster asymp-
totic convergence rate than a Krylov method on B that finds σ1, by a factor of

(2.4) τ =
1 −√

γ
√

2σ1

σ2+σ1

σ2
n
−σ2

2

σ2
n
−σ2

1

1 − 2
√

γ
.

Proof. For the method on C to be faster it must hold τ > 1 or 2σ1

σ2+σ1

σ2

n
−σ2

2

σ2
n
−σ2

1

< 4.

Basic manipulations lead to the condition (4−2
σ2

n
−σ2

2

σ2
n
−σ2

1

)σ1 >= −4σ2. Since
σ2

n
−σ2

2

σ2
n
−σ2

1

< 1

and all σi > 0, the above condition always holds.

6

First, we observe that if σ1 is very close to 0, the normal equations approach
becomes arbitrarily faster than the augmented one, as long as σ2 remains bounded
away from 0. Second, it is not hard to see that τ = 1 + O(

√
σ2 − σ1), which means

that the two approaches become similar with highly clustered eigenvalues. In that
case, however, using a block method would increase the gap ratios and the gains from
the approach on C would be larger again.

Most importantly, the above asymptotic convergence rates reflect optimal meth-
ods applied to C and B, and an extraction of the best information from the subspaces.
While for extremal eigenvalues near-optimal methods, such as those in PRIMME,
coupled with the Rayleigh Ritz procedure can deliver this convergence, for interior
problems practical Krylov methods have a hard time achieving this convergence and
extracting the best eigenvectors from the subspace. Therefore, we expect in practice
the normal equations to be significantly faster than any approach based on B.

2.4. Comparison of subspaces from LBD, JDSVD and an eigenmethod.

We extend the discussion on Lanczos to include the two native SVD methods. The
relative differences between their convergence can be inferred by studying the subspace
they build. A higher dimensional Krylov subspace implies faster convergence, if we
assume eigenvector approximations can be extracted effectively from the subspace. We
compare LBD, JDSVD, and Lanczos (or equivalently unpreconditioned GD) working
on C and on B.

Suppose u1, v1 are left and right initial guesses. After k iterations (2k matvecs),
Lanczos working on the normal equations matrix C builds:

(2.5) Vk = Kk(AT A, v1).

The LBD method builds both left and right Krylov spaces [14]:

(2.6) Uk = Kk(AAT , Av1), Vk = Kk(AT A, v1).

The JDSVD method also builds two subspaces, each being a direct sum of two Krylov
spaces of half the dimension [9]:

(2.7) Uk = K k

2

(AAT , u1)⊕K k

2

(AAT , Av1), Vk = K k

2

(AT A, v1)⊕K k

2

(AT A, AT u1)

Lanczos working on B builds Kk(B, [v1; u1]) which does not correspond exactly to the
spaces above in general. In the special case of u1 = 0, the subspace is given below:

(2.8)

(

Uk

Vk

)

=

(

0
K k

2

(AT A, v1)

)

⊕
(

K k

2

(AAT , Av1)

0

)

.

Clearly, Lanczos (or GD) working on C and LBD build the same Krylov subspace
for right singular vectors. The LBD method also builds the Krylov subspace for left
singular vectors, and while that helps generate the bidiagonal projection, it does not
improve convergence of LBD over Lanczos on C. On the other hand, Lanczos (or GD)
on B and JDSVD may generate a k vector subspace, but this comes from a direct
sum of Krylov spaces of k/2 dimension. Thus, they are expected to take twice the
number of iterations of LBD in the worst case. The JDSVD subspace can also be
richer than that of Lanczos on B because JDSVD handles the left and right search
spaces independently for arbitrary initial guesses.

Figure 2.1(a) demonstrates the relative convergence behavior of these unrestarted
methods seeking the smallest singular value of a sample matrix. Only the outer

7

0 500 1000 1500 2000 2500 3000 3500
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Matvecs

||A
T
 u

 −
 σ

 v
||

pde2961: smallest singular value without restarting

GD on C
GD on B
JDSVD
LANSVD
||A||*1e−10

(a) unrestarted

0 1000 2000 3000 4000 5000 6000 7000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Matvecs

||A
T
 u

 −
 σ

 v
||

pde2961: smallest singular value with restarting

GD+1 on C
GD+1 on B
JDSVD+1−Refined
IRRHLB
||A||*1e−10

(b) restarted

Fig. 2.1. Comparing convergence speed of eigenmethods on C, B, Lanczos bidiagonalization,
and JDSVD in both unrestarted and restarted case for matrix pde2961. LANSVD implements bidi-
agonalization without restarting [22] while IRRHLB is currently the most advanced bidiagonalization
method with implicit restarting [18].

iteration of JDSVD is used (inner iterations = 1). The results agree with the above
analysis. The convergence speed of LBD is the same as GD on C. JDSVD is slower
than LBD or GD but faster than GD on B which is about twice as slow as LBD.

In practice, however, memory and computational requirements necessitate the
restarting of these methods. Because LBD, JDSVD, and GD on B extract interior
spectral information from the subspaces, critical directions may be dropped during
restarting, causing significant convergence slow downs and irregular behavior. The
use of harmonic or refined Ritz projections during restart help ameliorate this problem
up to a point. However, the problem is still an interior one. In contrast, GD+1 (one
of the nearly optimal methods in PRIMME) on C should see a far smaller effect on
its convergence. This is because first, it solves an extreme eigenvalue problem, where
the Rayleigh-Ritz projection results in optimal eigenvalue convergence, and second,
it combines thick restarting with the locally optimal conjugate gradient directions to
keep appropriate information during restart [38, 35].

Figure 2.1(b) reflects the above. Once restarting is used, GD+k is faster than any
other method. The only disadvantage is the limited accuracy because of the squared
conditioning of C. Therefore, a natural idea is to apply another phase to refine the
accuracy until user requirements are satisfied. Instead of iterative refinement, we
claim that a second stage eigensolver on B is more efficient.

3. Developing the two stage strategy. We develop primme svds, a two-stage
SVD meta-method that uses the suite of methods in PRIMME to first get a fast
solution of the eigenvalue problem on C to the best accuracy possible, and then
resolve the remaining accuracy with a PRIMME eigensolver on B. We discuss and
automate issues of accuracy, convergence tolerance, initial guesses, interior eigenvalues
of B, and how to apply preconditioning.

3.1. The first stage of primme svds. Although an eigensolver on C can be
much faster than other methods, the residual norms of the eigenvalues involve ‖C‖ =
‖A‖2. Thus achieving the required numerical accuracy may not be possible.

Let (σ, u, v) be a targeted singular triplet of A and (σ̃2, ṽ) the approximating Ritz

8

pair from an eigenmethod working on C. Using the approximation ũ = Aṽ/σ̃, we can
write the following four residuals:
(3.1)

rv = Aṽ − σ̃ũ, ru = AT ũ − σ̃ṽ, rC = Cṽ − σ̃2ṽ, rB = B

[

ṽ
ũ

]

− σ̃

[

ṽ
ũ

]

.

Typically a singular triplet is considered converged when ‖rv‖ and ‖ru‖ are less than
a given tolerance. Since our eigenvalue methods work on C and B we need to relate
the above quantities. First, it is easy to see that rC = AT (Aṽ) − σ̃2ṽ = σ̃AT ũ −
σ̃2ṽ = σ̃ru. To relate to the norm of the residual of the second stage note that
‖rB‖2 = (‖rv‖2 + ‖ru‖2)/(‖ṽ‖2 + ‖ũ‖2). If the Ritz vector is normalized, ‖ṽ‖ = 1, we
also obtain ‖ũ‖ = ‖Aṽ/σ̃‖ = 1 and rv = 0. Bringing it all together (see also [41, 27]),

(3.2) ‖ru‖ =
‖rC‖

σ̃
= ‖rB‖

√
2.

Given a user requirement ‖ru‖ < δ ‖A‖, the normal equations and the augmented
methods should be stopped when rC < δ σ̃ ‖A‖ and rB < δ ‖A‖/

√
2 respectively.

PRIMME’s stopping criterion is ‖rC‖ < δC‖C‖, so we must provide δC = δ σ̃/‖A‖. In
floating point arithmetic this may not be achievable since ‖rC‖ can only be guaranteed
to achieve O(‖C‖ǫmach) [5]. Thus, the criterion for the normal equations becomes,

(3.3) δC = max (δ σ̃/‖A‖, ǫmach) .

As σ̃ is not known a priori, we modify slightly the PRIMME stopping criterion.
First, note that for the largest σn, δC = δ and thus full residual accuracy is

achievable with the normal equations. Since σ ≈ σ̃, based on the Bauer-Fike bound,
|σ2 − σ̃2| ≈ |σ − σ̃|(2σ̃) ≤ ‖rC‖ < δC‖A‖2 = σ̃δ‖A‖ and thus |σ − σ̃| ≤ δ‖A‖/2 so the
singular values are as accurate as can be expected.

This does not hold for smaller, and in particular the smallest few, eigenvalues.
Thus, if the user requires δ < ‖A‖ǫmach/σ̃, primme svds first makes full use of the first
stage and then switches to the second stage working on B to resolve the remaining
accuracy of O(σ̃/‖A‖) < κ(A)−1. For not too ill conditioned matrices, most of the
time is then spent on the more efficient first stage.

A second, more subtle issue involves the accuracy of the Ritz vectors from C which
are used as initial guesses to B. We have observed that even though their residual
norms are below the desired tolerance, the convergence of the interior eigenvalues in
B is sometimes (but not often) irregular, with long plateaus, and might not be able to
reach machine precision. This occurs when the eigenvalues are highly clustered. On
the other hand, it does not occur when only one eigenvalue is sought, which implies
that it has to do with the sensitivity of interior eigenvalues to the nearby eigenvectors
that we pass as initial guesses [30]. Therefore, before we start stage two, we perform
a complete Rayleigh Ritz procedure with the converged eigenvectors of C. Providing
the new Ritz vectors as initial guesses completely cures this problem.

To understand the problem as well as the solution, consider the decomposition of
the smallest Ritz vector ũ1 on the exact eigenvectors of C, ũ1 = c1u1 +

∑n
i=2 ciui. On

exit from the first stage, its residual satisfies ‖rũ1
‖ < ‖C‖δC , and from Bauer-Fike

it also holds,
√

1 − c2
1 < ‖C‖δC and ci ≤ ‖C‖δC . Therefore, if we omit second and

higher order terms, the Rayleigh quotient and the residual of ũ1 can be written as:

µ =
ũT

1 Aũ1

ũT
1 ũ1

= λ1 +

n
∑

i=2

(
ci

c1
)2λi, rũ1

= Aũ1 − µũ1 ≈
n

∑

i=2

ci(λi − λ1)ui.(3.4)

9

0 5 10 15 20
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

jagmesh8: computed cosine value of angles

Index of smallest eigenvectors

C
os

in
e

va
lu

e
of

 a
ng

le
s

Original Eigenpairs
Post−process Eigenpairs

Smallest eigenvalue accuracy
Original 3.1e-13

Post-processing 1.9e-16
Smallest residual norm

Original 4.1e-13
Post-processing 1.3e-13

Fig. 3.1. The cosine of angles (ci = ũT
1

ui, i = 2, . . . , 19) between the smallest exact eigenvectors
and the smallest Ritz vector before and after pre-processing. The table compares the accuracy of the
Rayleigh quotient and the residual norm for ũ1 before and post-processing for matrix jagmesh8.

As a result of the convergence behavior of iterative methods, the ci tend to be larger
for nearby eigenpairs, and fall drastically as i increases. Then, from (3.4), the accu-
racy of µ is dominated by nearby (ci/c1)

2. The post-processing Rayleigh-Ritz uses
the k nearby converged Ritz vectors, recomputes the projection with less floating
point errors, and rearranges the directions to produce smaller ci, i = 2, . . . , k, and
thus better Ritz values. Of course, the additional Rayleigh-Ritz cannot improve the
residual norms without the incorporation of new information in the basis. Even in
floating point arithmetic, the improvements are minimal. This is evident also in (3.4)
where rũ1

depends on the ci linearly, so the effect of improving the nearby ci is small.
Figure 3.1 shows these effects on a matrix that presented the original problem.

In the second stage, the improvements on ci translate to a starting search space of
better quality, and thus better Ritz (or harmonic Ritz) pairs for the interior eigenvalue
problem. The original PRIMME implementation includes a verification phase which
checks if any converged eigenpairs have become slightly unconverged. If so, then
it performs another Rayleigh-Ritz procedure on the restarted basis and repeats the
algorithm. Therefore, it is only a minor modification to, based on a user input, force
another Rayleigh-Ritz procedure before PRIMME exits. Algorithm 1 shows how the
specific functionality needed for the first stage is given to PRIMME.

Algorithm 1 Dynamic threshold adjusting and additional Rayleigh-Ritz in the first
stage of primme svds

1: Every iteration, PRIMME checks convergence based on an external function that
obtains the current largest and targeted Ritz value σ̃n and σ̃i

2: if (target == largest or (target == smallest and σ̃i < 1.0)) then

3: adjust PRIMME’s δC = max (δuser σ̃i/σ̃n, ǫmach)
4: else

5: adjust PRIMME’s δC = max (δuser/σ̃n, ǫmach)
6: end if

7: If requested, perform Rayleigh-Ritz on the returned vector basis

10

3.2. The second stage of primme svds. We argue that solving an eigenvalue
problem on matrix B with an approximate eigenspace as initial guess is a better
approach than iterative refinement [12, 13] for the following reasons. First, with
iterative refinement, eigenvectors are improved one by one without any synergy from
the nearby subspace information. In contrast, a good quality eigensolver, such as
those in PRIMME, provides global convergence to all desired pairs. Second, an inner-
outer eigensolver such as JDQMR stops the inner linear solver dynamically and near-
optimally to avoid exiting too early (which increases the number of outer iterations) or
iterating too long (which increases the number of inner iterations). We are not familiar
with similar implementations for iterative refinement. Third, iterative refinement for
clustered interior eigenvalues may not be able to converge to the desired high accuracy
due to the lack of proper deflation strategies [43], both at the linear solver and at
the outer iteration. Naturally, a well designed eigensolver that employs locking and
blocking techniques is more robust to address these problems. Finally, we point out
that the correction equation of the Jacobi-Davidson method applied on BT ,

(3.5) (I − wwT)(BT − µI)(I − wwT)t̃ = σ̃w − BT w,

where wT =
[

uT vT
]

is equivalent to the iterative refinement proposed in [12] ([9]).
Therefore, JDQMR enjoys the benefits of both eigensolvers and iterative refinement.

PRIMME inserts any available initial guesses to its search space and if the guesses
are less than the minimum restart size, fills the rest of the positions with a Lanczos
space from a random vector to guard against extremely bad guesses. Because this is
not true for the second stage, we have modified the Lanczos space to start from the first
blocked targeted eigenvalue. Because of irregular convergence of interior eigenvalue
problems, sometimes eigenvector approximations that were introduced initially in
the search space but have not been targeted yet may degrade in quality or even be
displaced. For this reason, when an eigenvector converges and is locked out of the
search space, we re-introduce the initial guess of the next vector to be targeted. This
resulted in significant improvement in robustness and often in convergence speed.

PRIMME provides remarkable flexibility for seeking interior eigenvalues. It ac-
cepts multiple shifts and provides three different ways to select an interior Ritz value:
closest in absolute value to each shift (primme closest abs), or left or on the right of
each shift. Because of the very good accuracy of eigenvalue approximations from C,
the primme closest abs option is more effective at selecting the proper Ritz value
during the outer iterations. More importantly, with such accurate shifts, the correc-
tion equation in JDQMR often returns the exact correction to the eigenvector after
the solution of only one linear system. In the case of ill-conditioned matrices, where
the shifts from the first stage are less accurate, GD+k may be preferable for the second
stage because it provides better global convergence to nearby eigenvalues. However,
it is computationally more expensive per iteration than JDQMR [37].

For interior eigenvalues, the Rayleigh-Ritz procedure does not have the same
optimality as for extreme eigenvalues, causing the convergence to be irregular. In
the GD+k method with sufficiently large search space, such problems are transient
and do not affect the convergence and overall speed of the method. This is why
PRIMME only implemented the Rayleigh-Ritz method originally. In the second stage
of primme svds, the availability of accurate initial guesses and shifts calls for the
JDQMR method. For this method, spurious Ritz values can cause Ritz vectors to
fail to converge [34]. The effect can be detrimental also during restart where major
eigenvector components may be discarded and need to be recovered [29, 30, 31]. The
problem is accentuated in the maximally indefinite case of SVD problems.

11

We addressed this problem by extending PRIMME’s functionality to include the
refined projection that minimizes the residual ‖BV y − σ̃V y‖ over the search space
V and for a given σ̃ [33, 34]. Because the shifts σ̃ are very accurate, a harmonic
Ritz procedure is not necessary, and the refined one is expected to give the best
approximation for the targeted eigenpair. Our refined projection method is similar
to the one in [10] and [29] that produces refined Ritz vectors for all the required
eigenvectors (not just the closest to σ̃). Since σ̃ remains constant, there is no need
to perform a QR factorization of BV − σ̃V at every step. Instead, as part of Gram-
Schmidt, we add one more column to the orthonormal matrix Q and to the matrix R.
A full QR factorization is only needed at restart. Then, following [34], we compute
the refined Ritz vectors by solving the small SVD problem with R, and replace the
targeted Ritz value with the Rayleigh quotient of the first refined Ritz vector.

Algorithm 2 PRIMME enhancements and special algorithmic choices needed for the
second stage of primme svds

1: Initial shifts σ̃i, initial vectors [ṽi ; Aṽi/σ̃i], i = 1, ..., k qr full = 1
2: Build an orthonormal basis V of [Km−k(B, ṽ1), ṽi]. Set t as the Lanczos residual
3: while all k eigenvalues have not converged do

4: Orthonormalize t against (vi)
m−1
i=1 . Update vm = t, wm = Bvm, H:,m = V T wm

5: if qr full == 1 then

6: W − σ̃1V = QR, qr full = 0
7: else

8: During orthogonalization perform one-column QR updating
9: end if

10: Compute eigendecomposition H = SΘST with θj ordered by closeness to σ̃1

11: Compute SVD decomposition of R = UΣST , Rayleigh quotient θ1 = sT
1 Hs1

12: If (σi, [vi; ui]) converged, lock, and re-introduce [ṽi+1 ; Aṽi+1/σ̃i+1] into V
13: If restarting, set qr full = 1
14: Obtain the next vector t = Prec(r) (typically with JDQMR)
15: end while

Solving the small SVD problem for only one shift per iteration reduces the cost
of the refined procedure considerably, making it similar to the cost of computing
the Ritz vectors. However, the quality of other refined Ritz vectors reduces with
the distance of their Rayleigh quotient from σ̃, so they may not be as effective in a
block algorithm. Nevertheless, these approximations have the desirable property of
monotonic convergence as claimed in [10, 29] and also observed in our experiments.
This added robustness for JDQMR more than justifies the small additional cost.
Algorithm 2 shows all these second stage changes in the context of PRIMME.

3.3. Outline of the implementation. We first developed PRIMME MEX, a
MATLAB interface for PRIMME. This exposes the full functionality of PRIMME to
a broader class of users, who can now take advantage of MATLAB’s built-in matrix
times block-of-vectors operators and preconditioners. Its user interface is similar to
MATLAB eigs allowing it to be called not only by non-expert users but also by ex-
perts that can adjust over 30 parameters. The meta-method primme svds was then
implemented as a MATLAB function on top of PRIMME MEX. This allowed flexibil-
ity for algorithmically tuning the two stages. Many of the enhancements, such as the
refined projection method or a user provided stopping criterion, were implemented
directly in PRIMME and will be part of its next release, which will also include a

12

native C implementation of primme svds.

Algorithm 3 primme svds: a hybrid two stage method for SVD

1: Set up the problem and call PRIMME through the PRIMME MEX function
Use enhancements of Algorithm 1.

2: if (target == smallest) then

3: Form shifts and initial guesses for B from the approximations of C
4: Call PRIMME for interior eigenvalues of B through PRIMME MEX function.

Use enhancements of Algorithm 2.
5: end if

6: Return converged desired singular triplets to user

Algorithm 3 summarizes the primme svds without considering preconditioning.
At a minimum, users must provide the input matrix A, or function pointers that
perform matrix-vector operations with A and AT , or directly with B and/or C. Then,
primme svds sets up the matrix-vector functions for PRIMME. By default, the first
stage uses the PRIMME DYNAMIC method to decide between GD+k and JDQMR,
and the second stage uses JDQMR. But users can set different eigenmethods for each
stage just as they can tune any of PRIMME’s parameters. We form the initial guesses
for the second stage as [ṽi ; ũi], where (σ̃2

i , ṽi) are the approximate eigenpairs from C,
and ũi = 1

σ̃i
AT ṽi. When the singular value is extremely small or even zero, the first

stage provides low or no accuracy to ũi. In this extreme case, it is better to choose ũi

as a random vector and orthogonalize it to other left singular vectors computed after
the first stage. For tiny and highly clustered singular values, we suggest that the first
stage uses locking and block methods that are both available in PRIMME.

4. Preconditioning in primme svds. The shift-and-invert technique is some-
times thought of as a form of preconditioning. If a direct factorization of the matrix
A, C or B is possible, this is often the method of choice for highly indefinite or
highly clustered extreme eigenproblems. For smallest singular values, the MATLAB
svds relies solely on shift and invert ARPACK [46] using the LU factorization of B.
PROPACK follows a similar strategy on C, but uses QR factorization. However, as
pointed out in [27], for rectangular matrices svds often converges to the zero eigen-
values of B rather than the smallest singular value. Our method can also be used in
shift-and-invert mode, assuming the user provides the inverted operator as a matrix-
vector. For large matrices, however, preconditioners become a necessary alternative.

JDSVD accepts a preconditioner for a square matrix A or, if A is rectangular,
leverages a preconditioner for B − τI [9]. SVDIFP is combined with the robust
incomplete factorization (RIF) method [28] to provide a preconditioner directly for
C−τI [27]. The advantage is that it works seamlessly for both square and rectangular
matrices, but RIF may not be the best choice of preconditioner.

primme svds accepts any user-provided preconditioning operator. In the most
general form, any preconditioner directly for C or B can be used. When M ≈ A
is available (e.g., the incomplete LU factorization of a square matrix), primme svds
forms M−1M−T and [0 M−1; M−T 0] as the preconditioning operators for PRIMME
for the different stages. Moreover, if a preconditioner such as RIF is given M ≈ C−1,
we can build preconditioners for the second stage as [0 AM ; MAT 0]. It is not clear
in general how to form a preconditioner for C from a preconditioner of B.

13

4.1. A dynamic two stage method with preconditioning. The analysis in
Sections 2.3 and 2.4 holds for Krylov methods but it is less meaningful with precondi-
tioners. Clearly, if two different preconditioners are provided for C and B their relative
strengths are not known by primme svds. But we have also noticed cases where the
first stage benefits less than the second stage when a less powerful preconditioner M
for A is used to form preconditioners for both C and B. If M is ill-conditioned but
its near-kernel space does not correspond well to that of A, it may work for B, but
taking MT M produces an unstable preconditioner for C [42]. On the other hand,
with a sufficiently good preconditioner, both methods enjoy similar benefits on con-
vergence. If the relative strengths of the provided preconditioner are known, users can
choose the two-stage approach or only one of the stages (e.g., the second one). For
the general case, we present a method that, based on runtime measurements, switches
dynamically between the normal equations and the augmented approach to identify
the most effective one for the given preconditioning. This is shown in Algorithm 4.

To estimate the convergence of the two approaches, we run a set of initial tests
alternating between running on C and on B. Because JDQMR relies on good initial
guesses which are not available initially, the dynamic algorithm uses only the GD+k
method. Once the algorithm decides on the approach, other PRIMME methods can
be used as specified by the user. Without loss of generality, we only consider GD+k
for our dynamic primme svds experiments. The approximations obtained from one
run are passed as initial guesses to the next run.

We estimate the convergence rate by measuring the average reduction per iteration
of the residual norm. To be able to capture the convergence at different phases
of the iterative method, we must switch between the two approaches several times.
However, switching too frequently incurs a lot of overhead (rebuilding the initial
basis, performing extra Rayleigh-Ritz procedures, and possibly convergence loss from
restarting the search space). Switching too infrequently may be wasteful when the
preconditioner for C does not work well. Thus, we control the maximum number
of iterations for the next GD+k run, maxIter. This number is always larger than
initIter which is a reasonably small number, i.e., 50. If the same approach is chosen in
two successive runs, maxIter doubles. If the approach should be switched, maxIter
is reduced more aggressively for the next run (Step 12) to avoid wasting too much
time on the wrong approach. On the other hand, if one eigenvalue converges in the
initial tests or at least two eigenvalues converge later, we stop the dynamic switching
and choose the currently faster approach. If the faster approach is on the normal
equations, a two-stage method might be necessary to get to full accuracy. Although
two or three switches typically suffice to distinguish between approaches, we also limit
the number of switches.

5. Numerical experiments. Our first two experiments use diagonal matrices
to demonstrate the principle of the two stage method and that the method can com-
pute artificially clustered tiny singular values to full accuracy. Then, we conduct an
extensive set of experiments for finding the smallest singular values of several matrices.
Large singular values are also computed under the shift-invert setting. The matrix set
is chosen to overlap with those in other papers in the literature. We compare against
several state-of-the-art SVD methods: JDSVD [9, 10], SVDIFP [27], IRRHLB [18],
IRLBA [14], and MATLAB’s svds. First, we compute a few of the smallest singular
triplets on both square and rectangular matrices without a preconditioner. Then we
show a performance comparison between the two stage primme svds method and its
dynamic version with different quality of preconditioners. Subsequently, we demon-

14

Algorithm 4 Dynamic switching between stages for preconditioned primme svds

1: Set initIter, maxSwitch
2: numSwitch = numConverged = j = 0, maxIter = initIter, Undecided = true
3: Run initIter iterations of GD+k on C and on B and collect initial average con-

vergence rate of both approaches.
4: while (numSwitch < maxSwitch and Undecided) do

5: Choose estimated faster approach (C or B) for next call
6: if (numSwitch == 0 and numConverged > 0) or numConverged > 1 then

7: undecided = false (Choose faster approach and no more switching)
8: else

9: if Same approach is chosen again then

10: j = j + 1; maxIter = initIter ∗ 2j

11: else if Different approach is chosen then

12: j = floor(j/2); maxIter = initIter ∗ 2j

13: end if

14: end if

15: numSwitch = numSwitch + 1
16: Call PRIMME with maxIter and current chosen approach
17: end while

18: if All desired singular triplets are found on B then

19: Return final singular triplets to users
20: else if All desired singular triplets are found on C then

21: Return resulting singular triplets to augmented approach
22: else if Faster approach is on C then

23: Proceed with the two-stage approach
24: else if Faster approach is on B then

25: Continue only with the augmented approach
26: end if

strate that primme svds provides faster convergence with a good preconditioner com-
pared with JDSVD and SVDIFP. We also show that primme svds achieves better
performance than svds and SVDIFP using shift-and-invert. Finally, we present some
numerical results on a real-world problem.

All computations are carried out on a DELL dual socket with Intel Xeon proces-
sors at 2.93GHz for a total of 16 cores and 50 GB of memory running the SUSE Linux
operating system. We use MATLAB 2013a with machine precision ǫ = 2.2 × 10−16

and PRIMME is linked to the BLAS and LAPACK libraries available in MATLAB.
Our stopping criterion is for the left and right residuals to satisfy,

(5.1)
√

‖ru‖2 + ‖rv‖2 < ‖A‖δuser.

For JDSVD we use the refined projection method as it performed best in our
experiments, which is also consistent with [9]. We choose the default for all parameters
except for setting ’krylov = 0’ to avoid occasional convergence problems for smallest
singular values. SVDIFP is a recent method and its MATLAB implementation is still
under development. Its maximum number of inner iterations can be chosen as fixed or
adaptive. We run with both choices and report the best result. Also, we use singular
triplet residuals as the stopping criterion for SVDIFP instead of the default residual
of the normal equations. For IRLBA and IRRHLB, we choose all default parameters
as suggested in the code.

15

All methods start with the same initial guess, ones(min(m,n),1), except for
matrix lshp3025 for which a random guess is necessary. We set the maximum number
of restarts to 5000 for IRRHLB and IRLBA and to 10000 for JDSVD and primme svds.
Since SVDIFP can only set a maximum number of iterations for each targeted singular
triplet, we report that SVDIFP cannot converge to all desired singular values if its
overall number of matrix-vector operations is larger than (maxBasisSize−k)∗ 5000.
For primme svds, we set maxBasisSize=35, minRestartSize=21 and experiment with
two δ tolerances, 1e-8 and 1e-14. For δ =1e-8, primme svds does not need to enter
the second stage for any of our tests. Since the numbers of matrix-vector products
with A and AT are the same, the tables report as “MV” the number of products
with A only. “Sec” is the run time in seconds, and “–” means the method cannot
converge to all desired singular values or that the code breaks down. For the first stage
of primme svds we use the GD Olsen PlusK method. For the second stage, we run
experiments with both GD PlusK and JDQMR. Since our implementation is mainly
in C, we focus on comparing the number of matrix-vector operations as the primary
measurement of the performance. However, we also report execution times which is
relevant since matrix-vector, preconditioner, and all BLAS/LAPACK operations are
performed by the MATLAB libraries.

5.1. Primme svds for clustered tiny singular values. We illustrate first
how our two-stage method works in a seamless manner. We consider a diagonal matrix
A = diag([1:10,1000:100:1e6]) and the preconditioner M = A + rand(1,10000)*1e4.
In Figure 5.1, the green and black lines show the convergence behaviors of PRIMME
on B and C respectively. Indeed, the convergence on B is very slow due to a highly
indefinite problem while the accuracy on C is limited and stagnates when reaching
its limit. The two stage primme svds combines the benefits of the two methods, and
determines the smallest singular efficiently and accurately as the magenta line shows.

0 500 1000 1500 2000 2500 3000
10

−10

10
−5

10
0

10
5

Matvecs

||A
T
 u

 −
 σ

 v
||

A=diag([1:10 1000:100:1e6]), Prec=A+rand(1,10000)*1e4

GD+1 on B
GD+1 on C to limit
GD+1 on C to eps||A||2

switch to GD+1 on B

Fig. 5.1. An example to show how two stage of primme svds works seamlessly for seeking
smallest singular values accurately

Next we show how primme svds can determine several clustered tiny singular

16

values. Consider the matrix A = diag([1e-14 1e-12 1e-8:1e-8:4e-8, 1e-3:1e-3:1]) with
identity matrix as a preconditioner. Although locking may be able to determine
clustered or multiple singular values, we increase robustness by using a block size of
two in PRIMME, for the first stage only. We set the user tolerance δuser = 1e− 15 to
examine the ultimate accuracy of primme svds. As shown in Table 5.1, primme svds
is capable of computing all the desired clustered, tiny singular values accurately.

Table 5.1

Computation of 10 clustered smallest singular values by primme svds with block size 2

Singular values true value primme svds residuals

σ1 1e-14 9.952750930151887E-15 4.9E-16

σ2 1e-12 1.000014102726476E-12 8.9E-16

σ3 1e-8 1.000000003582006E-08 6.5E-16

σ4 2e-8 2.000000002073312E-08 9.2E-16

σ5 3e-8 3.000000000893043E-08 9.0E-16

σ6 4e-8 4.000000001929591E-08 9.2E-16

σ7 1e-3 1.000000000000025E-03 9.7E-16

σ8 2e-3 1.999999999999956E-03 8.1E-16

σ9 3e-3 2.999999999999997E-03 9.1E-16

σ10 4e-3 3.999999999999958E-03 9.8E-16

5.2. Without preconditioning. We compare two variants of primme svds with
four methods, JDSVD, SVDIFP, IRRHLB, and IRLBA on both square and rectan-
gular matrices without preconditioning. Since a good preconditioner is usually not
easy to obtain for SVD problems, it is important to examine the effectiveness of a
method in this case. We compute the k = 1, 3, 5, 10 smallest singular triplets. In
order to speed up convergence, k + 3 eigenvalues are computed when k desired eigen-
values are required in svds. A similar strategy is applied to IRRHLB and IRLBA.
For primme svds, we found this is not necessary.

We select six square and six rectangular matrices from other research papers
[18, 27] and the University of Florida Sparse Matrix Collections [45]. Table 5.2 lists
these matrices along with some of their basic properties. Among them, the matrices
pde2961, dw2048, well1850 and lp ganges have relative larger gap ratios and smaller
condition number, and thereby are easy ones. Matrices fidap4, jagmesh8, wang3,
deter4, and plddb are hard cases, and matrices lshp3025, ch, and lp bnl2 are very
hard ones. We expect all methods to perform well for solving easy problems. Harder
problems tend to magnify the difference between methods.

Tables 5.3, 5.4, 5.5 and 5.6 show that primme svds variants converge faster and
more robustly than all other methods on both square and rectangular matrices. Specif-
ically, table 5.3 shows that for moderate accuracy the normal equations solved with a
PRIMME method are significantly faster. For instance, primme svds is generally at
least two or three times faster than other methods when solving hard problems for any
number of smallest singular values. When solving easy problems, primme svds is still
several times faster than JDSVD, SVDIFP, and IRLBA. IRRHLB can be comparative
with our method only when seeking 10 singular values on easy cases. This is typical
behavior of the Lanczos method when looking for a large number eigenvalues [36].
The superiority of primme svds is achieved as a result of the near-optimal properties
of the eigenmethods in PRIMME [35]. We have noticed that even for moderate ac-
curacy, JDSVD, SVDIFP, IRRHLB and IRLBA are all challenged by hard problems,
where they are often inefficient or even fail to converge to all desired singular values.

17

Table 5.2

Properties of the test square and rectangular matrices, where γm(k) = mink
i=1

(gap(σi)), and
gap(σi) = minj 6=i|σi − σj |

Matrix pde2961 dw2048 fidap4 jagmesh8 wang3 lshp3025

order 2961 2048 1601 1141 26064 3025

nnz(A) 14585 10114 31837 7465 77168 120833

κ(A) 9.5e2 5.3e3 5.2e3 5.9e4 1.1e4 2.2e5

‖A‖2 1.0e1 1.0e0 1.6e0 6.8e0 2.7e-1 7.0e0

γm(1) 8.2e-3 2.6e-3 1.5e-3 1.7e-3 7.4e-5 1.8e-3

γm(3) 2.4e-3 2.9e-4 2.5e-4 1.6e-3 1.9e-5 9.1e-4

γm(5) 2.4e-3 2.9e-4 2.5e-4 4.8e-5 1.9e-5 1.8e-4

γm(10) 7.0e-4 1.6e-4 2.5e-4 4.8e-5 6.6e-6 2.2e-5

Matrix well1850 lp ganges deter4 plddb ch lp bnl2

rows m: 1850 1309 3235 3049 3700 2324
cols n: 712 1706 9133 5069 8291 4486

nnz(A) 8755 6937 19231 10839 24102 14996

κ(A) 1.1e2 2.1e4 3.7e2 1.2e4 2.8e3 7.8e3

‖A‖2 1.8e0 4.0 1.0e1 1.4e2 7.6e2 2.1e2

γm(1) 3.0e-3 1.1e-1 1.1e-1 4.2e-3 1.6e-3 7.1e-3

γm(3) 3.0e-3 4.5e-2 3.1e-4 5.1e-5 7.7e-4 4.8e-3

γm(5) 3.0e-3 2.4e-3 8.9e-5 5.1e-5 3.6e-4 1.1e-3

γm(10) 2.6e-3 8.0e-5 8.9e-5 2.0e-5 4.0e-5 1.1e-3

Table 5.4 shows smaller differences between methods, reflecting the slower con-
vergence of the augmented method in stage two. We see that the two variants of
primme svds have comparable number of matrix-vector operations, but the JDQMR
one typically requires less time if the matrix is sparse enough [35]. For computing 10
eigenpairs, IRRHLB shows a small edge in the number of iterations for two easy cases.
However, primme svds method never misses eigenvalues, is consistently much faster
than all other methods, and significantly faster than IRRHLB in the hard cases. Note
the slow convergence of JDSVD, since it relies on the augmented matrix to produce
all the required accuracy. SVDIFP is also not competitive, partly due to its ineffi-
cient restarting strategy. Clearly, demanding higher accuracy for the hard problems
does not help the rest of the methods. Note that because of PRIMME’s high quality
implementation, not only does primme svds enjoy better robustness but it is also ten
times faster than IRRHLB for the cases where IRRHLB takes fewer MVs.

Tables 5.5 and 5.6 show that the advantage of primme svds is even more significant
on rectangular matrices. For example, except for the two easy problems well1850 and
lp ganges, primme svds is often five or ten times faster than the other methods. The
reason is two-fold. First, primme svds works on C with dimension min(m, n), which
saves memory and computational costs. SVDIFP also shares this advantage. Second,
PRIMME’s advanced restarting techniques exploits the convergence optimality of
exterior eigenvalues of the matrix C. Interestingly, JDQMR converges much faster
than GD+k on some hard problems such as plddb, ch and lp bnl2 in table 5.6. The
reason is the availability of excellent shifts from the first stage. We conclude that
primme svds is the fastest method and sometimes the only method that converges for
hard problems without preconditioning.

5.3. With preconditioning. What is remarkable from the previous Tables 5.3
to 5.6 is the difficulty of solving for the smallest singular values, even for small matri-

18

ces. Preconditioning is a prerequisite for addressing larger, practical problems, which
limits our choice to primme svds, JDSVD and SVDIFP.

We first compare our two stage method and our dynamic two-stage method for
two different quality preconditioners. We choose M = LU , the factorization obtained
from MATLAB’s ILU function on a square matrix A with parameters ’type=ilutp’,
’thresh=1.0’, and varying ’droptol=1e-2’ or ’droptol=1e-3’. Given these two
M , we form the preconditioners for primme svds as M−1M−T and [0 M−1; M−T 0].
Without loss of generality, primme svds chooses GD+k eigenmethod for the underly-
ing eigensolver PRIMME. We seek ten smallest singular values with tolerance 1e-14.

As shown in Table 5.7, both variants of primme svds can solve the problems
effectively with a good preconditioner (’droptol=1e-3’). In this case, the static
two stage method is always better than the dynamic one because of the overhead
incurred by switching between the two methods. On the other hand, when using the
preconditioner with ’droptol=1e-2’, the two stage primme svds is slower than the
dynamic in some cases, and in the case of lshp3025, much slower. The reason is the
inefficiency of the preconditioner in the normal equations. Our dynamic primme svds
can detect the convergence rate difference and choose the faster method to accomplish
the remaining computations. Of course, if this issue is known beforehand, users can
bypass the dynamic heuristic and call directly the second stage.

Next, we compare the two stage primme svds with JDSVD and SVDIFP when
a good quality of preconditioner is available. Except for preconditioning, all other
parameters remain as before. For the first preconditioner we use MATLAB’s ILU
on a square matrix A. For the second preconditioner we use the RIF MEX function
provided in [27] on a rectangular matrix with ’droptol=1e-3’. The resulting RIF
factors LDLT ≈ AT A, where D is diagonal matrix with 0 and 1 elements, are used to
construct the pseudoinverses M−1 = L−T L−1AT and M−T = AL−T L−1 for precon-
ditioning the second stage of primme svds and JDSVD. In the SVDIFP code, there
is an input parameter ’COLAMD’ which computes approximate column minimum
degree permutation to obtain sparser LU factors. This technique can be applied to
other methods but some modifications are needed. Therefore, we disable this param-
eter in the SVDIFP code. For the JDSVD code, we try both enabling and disabling
the initial Krylov subspace and report the best result.

Tables 5.8 and 5.9 show that a good preconditioner makes the problems tractable,
with all three methods solving the problems effectively. Still, in most cases primme svds
provides much faster convergence and execution time on both square and rectangular
matrices. We see that when seeking one smallest singular value with high accuracy,
JDSVD takes less iterations for one square matrix (wang3), and SVDIFP is competi-
tive in two rectangular cases (plddb and lp bnl2). This is because these cases require
very few iterations, and the first stage of primme svds forces a Rayleigh-Ritz with 21
extra matrix-vector operations. This robust step is not necessary for this quality of
preconditioning. If we are allowed to tune some of its parameters (as we did with
JDSVD and SVDIFP) primme svds does require fewer iterations even in these cases.

5.4. With the shift and invert technique. Shift and invert is also applicable
to PRIMME and primme svds. Moreover, because it turns the eigenvalues closest
to the shift to a largest eigenvalue problem, there is no need for the second stage.
SVDIFP can utilize shift and invert operator as a preconditioner. Therefore, we report
results on primme svds, SVDIFP, and svds. svds, uses shift and invert operator
on the augmented matrix B. For primme svds and SVDIFP we use two different
factorizations, an LU and a QR factorization of the matrix A. Since svds uses a

19

basis size of 40 for seeking 10 smallest singular values, we give the same basis size
to primme svds and SVDIFP. Also, we disable the ’COLAMD’ option in SVDIFP.
For SVDIFP the shifts are all zeros, for svds we give a shift of 1e-8, and there is
no need of shifts for primme svds due to an extreme eigenvalue problem. We have
instrumented the MATLAB native svds code to return the number of iterations. To
facilitate comparisons, we include the LU and QR factorization times in the running
times of all methods, but also report them separately. The tolerance is δ = 1e-10, and
primme svds uses the DYNAMIC method that switches between GD+k and JDQMR
to optimize performance.

Table 5.10 shows that primme svds is faster than svds both in convergence and
execution time, partly because it works on C which is smaller in size and allows for
faster convergence. primme svds is much faster than SVDIFP due to its more efficient
restarting strategy, and also because an inverted operator may not be as effective when
used as a preconditioner. Note that svds does not work well on rectangular matrices
because B becomes singular and cannot be inverted, and if instead a small shift is
used, it finds the zero eigenvalues of B first.

5.5. With real-world problems. We use primme svds, SVDIFP, and JDSVD
to compute the smallest singular triplet of matrices of order larger than 1 million.
Some information on these matrices appears in Table 5.11. We apply the two-
stage primme svds(JDQMR) on all test matrices except thermal2, which is solved
by dynamic preconditioning primme svds. The preconditioners are applied similar
to our previous experiments with the exception that ILU uses ’thresh=0.1’, and
’udiag=1’. The tolerance is δ = 1e− 12. The symbol “*” means the method returns
results that either did not satisfy the desired accuracy or did not converge to the
smallest singular triplet.

Table 5.12 shows the results without or with various preconditioners. Debr is a
numerically singular square matrix. primme svds is capable of resolving this more
efficiently than JDSVD, while SVDIFP returns early when it detects that it is not
likely to converge to the desired accuracy for left singular vector [27]. All methods
easily solve problem cage14 with ILU(0), but primme svds is much faster. Thermal2
is an ill-conditioned matrix, whose preconditioner turns out to be less effective for C
than for B. Therefore, SVDIFP has much slower convergence than JDSVD. Thanks
to the dynamic scheme, primme svds recognizes this deficiency and converges without
too many additional iterations, and with the same execution time as JDSVD. However,
if we had prior knowledge about the preconditioner’s performance, running only at
the second stage gives almost exactly the same matrix-vectors as JDSVD and much
lower time. Reducing further the overhead of the dynamic heuristic is part of our
current research. JDSVD often fails to converge to the smallest singular value for
rectangular matrices since it has difficulty to distinguish them from zero eigenvalues
of B, as shown in the cases sls and Rucci1. For matrix sls, SVDIFP misconverges to
the wrong singular triplet while primme svds is successful in finding the correct one.
SVDIFP and primme svds have similar performance for solving problem Rucci1. In
summary, primme svds is far more robust and more efficient than either of the other
two methods for large problems.

6. Conclusion. Based on the state-of-the-art eigensolver PRIMME, we have
developed a full functionality, high quality SVD solver for a few smallest or largest
singular values of a large matrix. The key is a two stage meta-method, primme svds,
that in the first stage solves the normal equations as a fast way to get sufficiently
accurate approximations, and if further accuracy is needed, solves an interior eigen-

20

value problem from the augmented matrix. In addition, we have presented several
enhancements to the PRIMME eigensolver that allow for an efficient computation of
the interior eigenproblem. We have motivated the merit of this approach theoretically,
and confirmed its performance through an extensive set of experiments. primme svds
improves on convergence and robustness over other state-of-the-art singular value
methods, but most importantly it is based on a highly optimized production software
that allows its use, with or without preconditioning, in large real world problems. Cur-
rently, primme svds is available in MATLAB through the MEX interface, and we are
planning to release it in the near future. A native C implementation of primme svds
as part of PRIMME is planned next.

REFERENCES

[1] G. H. Golub, and C. F. Van Loan, Matrix Computations, 3rd ed., The John Hopkins University
Press, Baltimore, London, 1996.

[2] A. Bjorck, Numerical Method for Least Squares Problems, SIAM, Philadelphia, PA, 1996.
[3] L. N. Trefethen and David Bau III, Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.
[4] L. N. Trefethen, Computation of Pseudospectrum, SIAM, Philadelphia, PA, 2001.
[5] B. N. Parlett, The Symmetric Eigenvalue Problem, SIAM, Philadelphia, PA, 1998.
[6] G. Golub, and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, J.

Soc. Indust. Appl. Math. Ser.B Numer. Anal., 2 (1965), pp. 205-224.
[7] G. Golub, F. T. Luk and M. L. Overton, A block Lanczos method for computing the singular

values and corresponding singular vectors of a matrix, ACM Trans. Math. Software, 7
(1981), pp. 149-169.

[8] J. Cullum, R. A. Willoughby, and M. Lake, A Lanczos algorithm for computing singular values
and vectors of large matrices, SIAM J. Sci. Statist. Comput., 4 (1983), pp. 197-215.

[9] M. E. Hochstenbach, A Jacobi-Davidson type SVD method, SIAM J. Sci. Comput., 23 (2001),
pp. 606-628.

[10] M. E. Hochstenbach, Harmonic and refined extraction methods for the singular value problem,
with applications in least squares problems, BIT, 44 (2004), pp. 721-754.

[11] B. Philippe and M. Sadkane, Computation of the fundamental singular subspace of a large
matrix, Linear Algebra Appl., 257 (1997), pp. 77-104.

[12] J. J. Dongarra, Improving the accuracy of computed singular values, SIAM J. Sci. Statist.
Comput., 4 (1983), pp. 712-719.

[13] Michael W. Berry, Dani Mezher, B. Philippe and Ahmed Sameh, Parallel algorithms for the sin-
gular value decomposition (Chapter 4), in Erricos John Kontoghiorghes, editor, Handbook
on parallel computing and statistics, pages 117-164, Chapman and Hall/CRC, 2005.

[14] J. Baglama and L. Reichel, Augmented implicitly restarted Lanczos bidiagonalization methods,
SIAM J. Sci. Comput., 27 (2005), pp. 19-42.

[15] J. Baglama and L. Reichel, Restarted block Lanczos bidiagonalization methods, Numer. Algo-
rithms, 43 (2006), pp. 251-272.

[16] J. Baglama and L. Reichel, An implicitly restarted block Lanczos bidiagonalization method
using leja shifts, BIT, 53 (2013), pp. 285-310.

[17] Z. Jia and D. Niu, An implicitly restarted refined Lanczos bidiagonalization method for com-
puting a partial singular value decomposition, SIAM J. Matrix Anal. Appl., 25 (2003), pp.
246-265.

[18] Z. Jia and D. Niu, An refined harmonic Lanczos bidiagonalization method and implicitly
restarted algorithm for computing the smallest singular triplets of large matrices, SIAM J.
Sci. Comput., 32 (2010), pp. 714-744.

[19] E. Kokiopoulou, C. Bekas, and E. Gallopoulos, computing the smallest singular triplets with
implicitly restarted Lanczos bidiagonalization, Appl. Numer. Math., 49 (2004), pp. 39-61.

[20] M. Berry, Large Scale Singular Value Computations, International Journal of Supercomputer
Applications 6:1, (1992), pp. 13-49.

[21] R. M. Larsen, Lanczos bidiagonalization with partial reorthogonalization, technical report, De-
partment of Computer Science, University of Aarhus, Aarhus, Denmark, 1998. Available
online from http://soi.stanford.edu/ rmunk/PROPACK/

[22] R. M. Larsen, Combining implicit restarts and partial reorthogonalization in Lanczos bidiago-
nalization, available online from http://soi.stanford.edu/ rmunk/PROPACK/

[23] V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the

21

solution of eigenvalue problems. ACM Trans. Math. Software, 31(3):351-362, 2005.
[24] V. Hernndez, J. E. Romn and A. Toms. A robust and efficient parallel SVD solver based on

restarted Lanczos bidiagonalization. Electron. Trans. Numer. Anal., 31:68-85, 2008.
[25] D. Niu and X. Yuan, A harmonic Lanczos bidiagonalization method for computing interior

singular triplets of large matrices, Appl. Math. Comput., 218 (2012), pp. 7459-7467.
[26] Gene H. Golub and Qiang Ye, An Inverse Free Preconditioned Krylov Subspace Method for

Symmetric Generalized Eigenvalue Problems, SIAM J. Sci. Comput., 24 (2002), pp. 312-
334.

[27] Qiao Liang and Qiang Ye, Computing Singular Values of Large Matrices with Inverse Free
Preconditioned Krylov Subspace Method, submitted.

[28] M. Benzi and M. Tuma, A Robust Preconditioner with Low Memory Requirements for Large
Sparse Least Squares Problems, SIAM J. Sci. Comput., 25 (2003), pp. 499-512.

[29] R.B. Morgan, Computing interior eigenvalues for large matrices, Linear Algebra Appl. 154/156
(1991), pp. 289-309.

[30] R.B. Morgan, M. Zeng, Harmonic projection methods for large non-symmetric eigenvalue prob-
lems, Numer. Linear Algebra Appl.5(1) (1998), pp. 33-55.

[31] G.L.G. Sleijpen, H.A. van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue
problems, SIAM J. Matrix Anal. Appl, 17(2) (1996), pp. 401-425.

[32] C.C.Paige, B.N.Parlett, H.A. van der Vorst, Approximate solutions and eigenvalue bounds from
Krylov subspaces, Numer. Linear Algebra Appl. 2 (1995), pp. 115-134.

[33] Z.Jia, Refined iterative algorithms based on Arnoldi’s process for large unsymmetric eigenprob-
lems, Linear Algebra Appl, 259 (1997), pp. 1-23.

[34] G.W.Stewart, Matrix Algorithms; Vol. II Eigensystems, SIAM, Philadelphia, PA, 2001.
[35] A. Stathopoulos, Nearly optimal preconditioned methods for Hermitian eigenproblems under

limited memory. Part I: Seeking one eigenvalue, SIAM J. Sci. Comput., 29(2) (2007), pp.
481-514.

[36] A. Stathopoulos and J. R. McCombs, Nearly optimal preconditioned methods for Hermitian
eigenproblems under limited memory. Part II: Seeking Many eigenvalue, SIAM J. Sci.
Comput., 29(5) (2007), pp. 2162-2188.

[37] A. Stathopoulos and James R. McCombs, PRIMME: PReconditioned Iterative MultiMethod
Eigensolver: Methods and software description, ACM Trans. Math. Software, 37 (2010),
pp. 21:1-21.30.

[38] A. Stathopoulos, Y. Saad, and K. Wu, Dynamic Thick Restarting of the Davidson, and the
Implicitly Restarted Arnoldi Methods, SIAM J. Sci. Comput., 19, 1, (1998) 227-45.

[39] K. Wu and H. Simon, Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Prob-
lems, SIAM J. Matrix Analysis and Applications, 22, 2, (2000) 602-616.

[40] J. Shen, G. Strang, and A. J. Wathen, The Potential Theory of Several Intervals and Its
Applications, Applied Mathematics and Optimization, 44(1) (2001), pp. 67-85.

[41] L. Wu, and A. Stathopoulos, Enhancing the PRIMME Eigensolver for Computing Accurately
Singular Triplets of Large Matrices, Tech Report: WM-CS-2014-03, March, Department
of Computer Science, College of William and Mary, 2014.

[42] Y. Saad, and M. Sosonkina, Enhanced Preconditioners for Large Sparse Least Squares Prob-
lems, Tech Report: umsi-2001-1, Minnesota Supercomputer Institute, University of Min-
nesota, Minneapolis, MN, 2001.

[43] M. Arioli and J. Scott, Chebyshev acceleration of iterative refinement, Numerical Algorithm,
1017-1398, 2013, 1-18.

[44] H.A. van der Vorst, Computational Methods for Large Eigenvalue Problems, In P.G. Ciarlet
and J.L. Lions(eds), Handbook of Numerical Analysis, Volume VIII, North-Holand, 2002,
pp. 3-179.

[45] T. A. Davis, and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans.
Math. Software, 38 (2011), pp. 1:1-1:25.

[46] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK User’s Guide: Solution of Large-Scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998.

22

Table 5.3

Seeking 1, 3, 5, and 10 smallest singular triplets of square matrices with user tolerance 1e-
8. The primm svds method has two variants: primme svds(GD+k) uses GD+k eigenmethod while
primme svds(JDQMR) uses JDQMR eigenmethod respectively in the second stage

δ = 1e-8 Matrix: pde2961 dw2048 fidap4

k Method MV Sec MV Sec MV Sec

1 primme svds(1st stage only) 2165 1.8 1766 1.2 4750 3.2
1 JDSVD 4269 4.8 3840 3.1 4379 3.8
1 SVDIFP 3433 7.9 2520 2.7 11572 13.3
1 IRRHLB 3755 44.6 3228 35.1 8839 97.9
1 IRLBA 12292 8.7 7684 3.3 47332 20.3

3 primme svds(1st stage only) 2643 2.2 2135 1.5 5661 3.8
3 JDSVD 7195 8.3 5776 4.8 14334 12.7
3 SVDIFP 11466 29.6 12123 14.7 26285 28.7
3 IRRHLB 3718 44.6 3225 36.1 14303 156.2
3 IRLBA 14676 9.9 7656 4.1 69456 38.5

5 primme svds(1st stage only) 3118 2.6 2431 1.7 6890 5.4
5 JDSVD 9076 12.2 7514 8.1 16270 16.3
5 SVDIFP 17272 46.4 17564 21.8 45560 51.8
5 IRRHLB 4301 53.8 2978 34.6 13184 152.5
5 IRLBA 10759 7.7 6083 3.4 60207 34.3

10 primme svds(1st stage only) 4894 4.2 3912 2.8 10087 6.8
10 JDSVD 14906 20.8 11683 10.4 20934 19.7
10 SVDIFP 39143 110.6 28996 36.6 97653 115.7
10 IRRHLB 4809 63.5 3445 43.8 12025 147.6
10 IRLBA 8786 6.8 5482 3.3 38946 18.4

δ = 1e-8 Matrix: jagmesh8 wang3 lshp3025

k Method MV Sec MV Sec MV Sec

1 primme svds(1st stage only) 5472 2.9 6579 40.1 11312 10.4
1 JDSVD 12343 8.2 11353 83.8 37225 40.9
1 SVDIFP 20223 16.3 14063 228.1 27413 73.0
1 IRRHLB 30105 317.7 19689 632.1 46845 565.8
1 IRLBA – – – – – –

3 primme svds(1st stage only) 5915 3.2 7589 58.3 12250 10.9
3 JDSVD 13861 8.7 17865 127.3 50282 57.5
3 SVDIFP 146224 123 48696 1090 153524 518.0
3 IRRHLB 25497 271 19001 619.5 42201 518.4
3 IRLBA 139266 48.6 129876 577.2 – –

5 primme svds(1st stage only) 6679 3.7 8673 68.7 14126 12.5
5 JDSVD 18173 12.8 22441 157.3 66034 80.9
5 SVDIFP – – 68774 1671 146336 569.2
5 IRRHLB 18314 197.8 17963 570 93239 1186.6
5 IRLBA 85043 29.9 82551 359.1 – –

10 primme svds(1st stage only) 8861 4.8 19445 154.2 19755 18.7
10 JDSVD 21209 14.7 – – 86780 115.6
10 SVDIFP – – – – – –
10 IRRHLB 52043 608.1 16975 537 – –
10 IRLBA 43798 15.1 52490 250.7 – –

23

Table 5.4

Seeking 1, 3, 5, and 10 smallest singular triplets of square matrices with user tolerance 1e-
14. The primm svds method has two variants: primme svds(GD+k) uses GD+k eigenmethod while
primme svds(JDQMR) uses JDQMR eigenmethod respectively in the second stage.

δ = 1e-14 Matrix: pde2961 dw2048 fidap4

k Method MV Sec MV Sec MV Sec

1 primme svds(GD+k) 2986 2.7 2421 1.9 6018 5.4
1 primme svds(JDQMR) 2925 3.0 2374 1.6 5942 3.9
1 JDSVD 6106 7.6 5061 4.5 6436 5.9
1 SVDIFP 5992 14.0 5241 5.6 21325 24.8
1 IRRHLB 6328 75.5 4561 50.9 14078 155.4
1 IRLBA 21700 15.3 7684 3.3 96868 51.4

3 primme svds(GD+k) 4243 6.1 3679 3.7 8846 8.8
3 primme svds(JDQMR) 4226 3.7 3602 2.5 8775 5.8
3 JDSVD 10517 11.6 8911 7.1 10781 9.0
3 SVDIFP 20613 49.6 23290 27.6 48603 56.3
3 IRRHLB 6241 77.0 4443 50.0 19059 215.4
3 IRLBA 24096 21.4 7684 3.3 111756 60.8

5 primme svds(GD+k) 5579 7.1 4776 3.7 11976 9.1
5 primme svds(JDQMR) 5569 5.0 4753 3.3 11910 7.8
5 JDSVD 14554 19.1 12266 11.7 14906 14.6
5 SVDIFP 31506 77.0 33117 39.9 83622 94.7
5 IRRHLB 6218 79.2 4193 49.1 18098 211.2
5 IRLBA 16629 13.7 9763 5.5 84847 47.2

10 primme svds(GD+k) 9337 12.1 8069 7.9 19805 16.2
10 primme svds(JDQMR) 9333 8.6 8014 6.0 19433 13.2
10 JDSVD 24498 29.6 20351 20.5 25125 24.5
10 SVDIFP 73847 192.5 53315 63.4 – –
10 IRRHLB 6371 86.8 4589 58.6 17393 214.2
10 IRLBA 12497 12 7796 4.8 56026 34.7

δ = 1e-14 Matrix: jagmesh8 wang3 lshp3025

k Method MV Sec MV Sec MV Sec

1 primme svds(GD+k) 7080 5.0 9160 74.8 15674 19.3
1 primme svds(JDQMR) 7043 3.6 8957 65.5 15922 13.9
1 JDSVD 13608 9.6 16457 105.4 42835 53.1
1 SVDIFP – – 36675 916.6 – –
1 IRRHLB 43869 466.5 27470 1003 57912 693
1 IRLBA – – – – – –

3 primme svds(GD+k) 8859 5.7 14184 179.7 18910 20.8
3 primme svds(JDQMR) 8836 4.4 13360 91.1 18788 15.2
3 JDSVD 17029 11.0 41900 387 48731 59.4
3 SVDIFP – – 122469 3080 – –
3 IRRHLB 31210 330.1 29035 1094 63806 799.5
3 IRLBA – – – – – –

5 primme svds(GD+k) 11569 7.5 21396 302.7 24743 27.5
5 primme svds(JDQMR) 11344 5.9 18668 119.6 24398 20.8
5 JDSVD 22573 15.2 57454 441.4 62646 75.9
5 SVDIFP – – – – – –
5 IRRHLB 23498 331.4 22985 730.1 99395 1258.9
5 IRLBA 124411 53.6 – – – –

10 primme svds(GD+k) 17344 10.8 37898 480.7 39852 42.4
10 primme svds(JDQMR) 17233 8.8 33995 245.1 39591 32.7
10 JDSVD 29613 21.0 91290 871.9 – –
10 SVDIFP – – – – – –
10 IRRHLB 55673 879.4 43309 1679.4 – –
10 IRLBA 59595 27.4 – – – –

24

Table 5.5

Seeking 1, 3, 5, and 10 smallest singular triplets of rectangular matrices with user tolerance 1e-
8. The primm svds method has two variants: primme svds(GD+k) uses GD+k eigenmethod while
primme svds(JDQMR) uses JDQMR eigenmethod respectively in the second stage.

δ = 1e-8 Matrix: well1850 lp ganges deter4

k Method MV Sec MV Sec MV Sec

1 primme svds(1st stage only) 519 0.4 233 0.2 235 0.2
1 JDSVD 1563 3.3 771 0.7 760 1.5
1 SVDIFP 1352 1.4 403 0.5 330 1.4
1 IRRHLB 872 8.7 345 3.4 500 6.6
1 IRLBA 1060 0.5 260 0.2 292 0.4

3 primme svds(1st stage only) 584 0.4 242 0.3 1943 2.0
3 JDSVD 2773 2.4 7052 7.1 – –
3 SVDIFP 2779 2.7 990 1.1 6794 29.2
3 IRRHLB 847 8.5 325 3.3 11896 170.1
3 IRLBA 816 0.4 246 0.2 17616 17.7

5 primme svds(1st stage only) 668 0.5 536 0.7 2853 3.1
5 JDSVD 4203 3.5 15533 16.1 – –
5 SVDIFP 4169 4.1 1979 2.2 21725 99.1
5 IRRHLB 872 9.3 926 10.3 12644 187
5 IRLBA 931 0.5 802 0.5 25515 26.3

10 primme svds(1st stage only) 956 0.7 1036 0.9 4240 4.3
10 JDSVD 85053 73.3 – – – –
10 SVDIFP 7279 7.2 9213 10.1 28303 132.3
10 IRRHLB 827 10.0 2851 34.7 – –
10 IRLBA 788 0.4 890 0.5 42038 44.3

δ = 1e-8 Matrix: plddb ch lp bnl2

k Method MV Sec MV Sec MV Sec

1 primme svds(1st stage only) 2513 2.4 10408 19.3 16581 12.2
1 JDSVD 11100 16.2 74592 139.1 69576 94.2
1 SVDIFP 6097 18.2 15843 60.9 18653 34.9
1 IRRHLB 23161 290.4 – – – –
1 IRLBA 31684 21.1 21700 22.4 – –

3 primme svds(1st stage only) 2457 3.3 21071 31.8 20023 15.0
3 JDSVD 13531 20.0 – – 101696 135.9
3 SVDIFP 19934 60.7 31431 127.4 55302 119
3 IRRHLB 23032 293.3 – – – –
3 IRLBA 16836 11.1 – – – –

5 primme svds(1st stage only) 2607 2.7 27342 34.6 25387 19.0
5 JDSVD 17832 27.3 – – – –
5 SVDIFP 22565 68.7 49137 215.3 96769 197.2
5 IRRHLB 20015 261.5 – – – –
5 IRLBA 13755 10.4 – – – –

10 primme svds(1st stage only) 3355 3.3 36820 43.0 36420 26.9
10 JDSVD 55100 100.4 – – – –
10 SVDIFP 40019 125.8 – – – –
10 IRRHLB 14907 210.2 – – – –
10 IRLBA 8617 7.4 – – – –

25

Table 5.6

Seeking 1, 3, 5, and 10 smallest singular triplets of rectangular matrices with user tolerance
1e-14. The primm svds method has two variants: primme svds(GD+k) uses GD+k eigenmethod
while primme svds(JDQMR) uses JDQMR eigenmethod respectively in the second stage.

δ = 1e-14 Matrix: well1850 lp ganges deter4

k Method MV Sec MV Sec MV Sec

1 primme svds(GD+k) 637 0.4 546 0.5 455 0.6
1 primme svds(JDQMR) 638 0.4 512 0.3 448 0.4
1 JDSVD 1838 1.9 1002 0.9 9351 18.3
1 SVDIFP 2306 2.3 697 0.8 514 2.4
1 IRRHLB 1368 13.8 500 5.1 1213 17.0
1 IRLBA 1700 0.7 356 0.2 548 0.5

3 primme svds(GD+k) 894 0.5 506 0.4 3356 3.4
3 primme svds(JDQMR) 883 0.5 505 0.3 3319 2.9
3 JDSVD 71259 57.3 4357 3.9 – –
3 SVDIFP 5016 5.0 1540 1.7 13383 58.8
3 IRRHLB 1137 12.3 528 5.5 – –
3 IRLBA 1206 0.6 396 0.2 33426 27.2

5 primme svds(GD+k) 1158 0.7 1065 0.8 5097 5.0
5 primme svds(JDQMR) 1147 0.6 1039 0.7 5064 4.5
5 JDSVD – – 15302 13.5 – –
5 SVDIFP 7250 7.0 3442 3.7 41197 184
5 IRRHLB 1196 12.9 1493 16.4 17342 257.5
5 IRLBA 1378 0.5 1268 0.5 45445 38.9

10 primme svds(GD+k) 1846 1.0 2044 1.4 9644 9.7
10 primme svds(JDQMR) 1839 1.0 1976 1.1 9437 8.3
10 JDSVD – – – – – –
10 SVDIFP 13327 12.6 17584 20.0 74899 330.4
10 IRRHLB 1069 12.3 4435 53.5 – –
10 IRLBA 1014 0.4 1372 0.6 66861 57.5

δ = 1e-14 Matrix: plddb ch lp bnl2

k Method MV Sec MV Sec MV Sec

1 primme svds(GD+k) 3594 3.8 24937 42.5 25549 25.0
1 primme svds(JDQMR) 3355 2.6 16606 15.0 20564 14.5
1 JDSVD 72964 99.9 – – 89420 113.7
1 SVDIFP 12995 38.7 20993 80 34769 68.2
1 IRRHLB 32957 418.8 – – – –
1 IRLBA 63236 39.3 52484 43.1 – –

3 primme svds(GD+k) 8213 12.9 81205 184.5 92755 138.1
3 primme svds(JDQMR) 4119 3.1 32604 30.0 30688 21.8
3 JDSVD – – – – – –
3 SVDIFP 47169 134.8 58073 240 – –
3 IRRHLB 27556 356.1 – – – –
3 IRLBA 26016 17.0 – – – –

5 primme svds(GD+k) 13145 22.5 115175 266 84784 113.9
5 primme svds(JDQMR) 5216 3.8 44269 41.1 40641 28.8
5 JDSVD – – – – – –
5 SVDIFP 57706 176.5 – – – –
5 IRRHLB 27332 360.2 – – – –
5 IRLBA 23891 16.3 – – – –

10 primme svds(GD+k) 14591 23.3 – – – –
10 primme svds(JDQMR) 7633 5.6 74120 67.5 68111 47.8
10 JDSVD – – – – – –
10 SVDIFP 92668 288.2 – – – –
10 IRRHLB 17811 248.8 – – – –
10 IRLBA 11913 8.7 – – – –

26

Table 5.7

Comparing two preconditioning methods for seeking ten smallest singular triplets.
Primme svds(two stage) is the two stage primme svds we proposed before while
primme svds(dynamic) is the dynamic switching approach between the normal equations ap-
proach and the augmented approach.

δ = 1e-14 Matrix: pde2961 dw2048 fidap4

droptol primme svds MV Sec MV Sec MV Sec

1e-3 two stage 166 0.4 211 0.7 210 1.3
1e-3 dynamic 242 0.4 283 0.7 286 1.4

1e-2 two stage 258 0.5 673 1.6 813 3.2
1e-2 dynamic 307 0.5 668 1.5 1043 3.7

δ = 1e-14 Matrix: jagmesh8 wang3 lshp3025

droptol primme svds MV Sec MV Sec MV Sec

1e-3 two stage 163 0.5 306 5.5 209 3.0
1e-3 dynamic 223 0.6 396 5.5 273 3.6

1e-2 two stage 990 3.1 736 8.9 7631 132.4
1e-2 dynamic 547 1.6 1038 9.6 696 10.1

Table 5.8

Seeking smallest singular triplet with ILU, droptol = 1e-3. The primm svds method has two
variants: primme svds(GD+k) uses GD+k eigenmethod while primme svds(JDQMR) uses JDQMR
eigenmethod respectively in the second stage. We report the time for generating the preconditioner
and running each method separately.

δ = 1e-8 Matrix: fidap4 jagmesh8 wang3 lshp3025

ILU Time: 0.1 0.1 2.8 0.1

k Method MV Sec MV Sec MV Sec MV Sec

1 primme svds(1st stage only) 15 0.1 13 0.1 46 2.5 19 0.3
1 JDSVD 67 0.7 34 0.3 45 2.0 56 1.5
1 SVDIFP 58 0.4 51 0.2 132 5.7 82 1.7

10 primme svds(1st stage only) 117 0.6 91 0.2 185 2.5 122 1.7
10 JDSVD 342 3.1 287 1.4 320 15.7 364 10.5
10 SVDIFP 691 3.0 561 1.2 1179 29.1 1187 21.9

δ = 1e-14 Matrix: fidap4 jagmesh8 wang3 lshp3025

ILU Time: 0.1 0.1 2.8 0.1

1 primme svds(GD+k) 62 0.6 52 0.1 102 1.8 66 0.5
1 primme svds(JDQMR) 64 0.3 55 0.1 106 1.1 68 0.5
1 JDSVD 78 1.5 45 0.3 67 3.0 79 1.2
1 SVDIFP 98 0.6 100 0.3 235 8.3 159 2.3

10 primme svds(GD+k) 210 1.3 163 0.5 306 5.5 209 3.0
10 primme svds(JDQMR) 251 1.2 215 0.5 402 5.0 265 3.5
10 JDSVD 573 5.5 408 1.9 518 14.6 606 26.9
10 SVDIFP 1152 5.4 981 1.9 1991 51.4 1897 29.1

27

Table 5.9

Seeking smallest singular triplet with RIF, droptol = 1e-3. The primm svds method
has two variants: primme svds(GD+k), denoted as p(GD+k), uses GD+k eigenmethod while
primme svds(JDQMR), denoted as p(JDQMR), uses JDQMR eigenmethod respectively in the second
stage. We report the time for generating the preconditioner and running each method separately.

δ = 1e-8 Matrix: fidap4 jagmesh8 lshp3025 deter4 plddb lp bnl2

RIF Time: 1.5 0.5 4.9 11.0 0.4 1.6

k Method MV Sec MV Sec MV Sec MV Sec MV Sec MV Sec

1 primme svds 291 0.4 119 0.1 295 0.6 27 0.2 10 0.1 15 0.1
1 JDSVD 1729 8.9 1311 3.6 2674 21.7 122 3.8 67 0.3 89 0.5
1 SVDIFP 513 1.4 622 0.9 732 5.3 142 2.1 29 0.1 49 0.1

10 primme svds 1224 1.8 307 0.5 784 2.8 405 2.4 52 0.1 74 0.1
10 JDSVD 8131 39.5 2356 5.7 – – – – – – – –
10 SVDIFP 4359 10.3 3118 4.2 5308 40.8 2278 45.4 390 1.0 453 1.0

δ = 1e-14 Matrix: fidap4 jagmesh8 lshp3025 deter4 plddb lp bnl2

RIF Time: 1.5 0.5 4.9 11.0 0.4 1.6

k Method MV Sec MV Sec MV Sec MV Sec MV Sec MV Sec

1 p(GD+k) 521 1.0 207 0.3 466 1.5 82 0.5 45 0.1 66 0.1
1 p(JDQMR) 544 1.0 229 0.2 514 1.5 87 0.4 45 0.1 69 0.1
1 JDSVD 2037 10.5 1410 3.6 3004 24.5 188 5.5 122 0.5 134 0.6
1 SVDIFP 843 2.1 990 1.3 1394 8.5 221 4.3 48 0.1 63 0.1

10 p(GD+k) 2074 3.2 562 0.8 1364 4.8 769 2.5 152 0.5 192 0.5
10 p(JDQMR) 2604 4.9 641 0.9 1616 7.0 877 5.3 247 0.5 242 0.5
10 JDSVD – – 12057 28.2 – – – – – – – –
10 SVDIFP 7470 15.1 5024 6.1 9999 83 3705 64.5 748 1.0 862 1.0

Table 5.10

Seeking 10 smallest singular triplets using shift and invert technique. LU(A) and QR(A) are
the time for LU factorization and QR factorization on the matrix A respectively. We report the
time of each method including their running time and associated factorization time.

δ = 1e-10 fidap4 jagmesh8 lshp3025 deter4 plddb lp bnl2

Method MV Sec MV Sec MV Sec MV Sec MV Sec MV Sec

LU(A) time – 0.02 – 0.01 – 0.06 – 0.01 – 0.01 – 0.01
primme svds 31 0.10 26 0.07 35 0.22 167 14.4 47 0.28 35 1.01
SVDIFP 380 0.90 316 0.31 400 1.22 1177 168.4 418 1.92 432 9.3

QR(A) time – 0.02 – 0.01 – 0.04 – 0.53 – 0.01 – 0.10
primme svds 31 0.29 26 0.08 29 0.53 166 9.1 27 0.08 36 0.48
SVDIFP 383 2.24 316 0.37 422 3.59 1177 55.4 418 0.55 432 3.13

svds 73 0.33 61 0.23 65 0.36 – – – – – –

Table 5.11

Basic information of some real-world test matrices

Matrix debr cage14 thermal2 sls Rucci1

rows m: 1048576 1505785 1228045 1748122 1977885
cols n: 1048576 1505785 1228045 62729 109900

nnz(A) 4194298 27130349 8580313 6804304 7791168

σ1 1.11E-20 9.52E-02 1.61E-06 9.99E-1 1.04E-03

κ(A) 3.6E+20 1.01E+1 7.48E+6 1.30E+3 6.74E+3

Application undirected directed thermal Least Least
graph graph Squares Squares

Preconditioner No ILU(0) ILU(1e-3) RIF(1e-3) RIF(1e-3)

28

Table 5.12

Seeking the smallest singular triplet for real world problems. We report the time of each method
including their running time and associated factorization time (PRtime) separately.

δ = 1e-12 primme svds SVDIFP JDSVD

Matrix PRtime MV Sec RES MV Sec RES MV Sec RES

debr — 539 84.3 3e-12 403* 245.7* 2.0e-01 1971 474.6 2e-12

cage14 2e0 19 11 4e-13 33 28 5.9e-13 111 185 7e-14

thermal2 3.69e+03 419 506 7e-12 – – 4.4e-09 309 535 4e-12

sls 3.29e3 1779 170 1e-09 408* 328* 1.1e-09 – – 2

Rucci1 6.92e4 4728 1087 7e-12 4649 6464 5.8e-12 – – 4.8e-03

29

