Robust Preconditioning of Large, Sparse,
Symmetric Eigenvalue Problems

Andreas Stathopoulos * Yousef Saad | Charlotte. F. Fischer *

September 5, 1994

Abstract

Iterative methods for solving large, sparse, symmetric eigenvalue problems of-
ten encounter convergence difficulties because of ill-conditioning. The Generalized
Davidson method is a well known technique which uses eigenvalue preconditioning
to surmount these difficulties. Preconditioning the eigenvalue problem entails more
subtleties than for linear systems. In addition, the use of an accurate conventional
preconditioner (i.e., as used in linear systems) may cause deterioration of convergence
or convergence to the wrong eigenvalue. The purpose of this paper is to assess the
quality of eigenvalue preconditioning and to propose strategies to improve robustness.
Numerical experiments for some ill-conditioned cases confirm the robustness of the
approach.
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1 Introduction

The solution of the eigenvalue problem, Az = Az, is central to many scientific applications.
In these applications it is common for A to be real, symmetric, and frequently very large
and sparse [17, 7]. Advances in technology allow scientists to continuously tackle larger
problems for which only a few lowest or highest eigenpairs are required.

Standard eigenvalue methods that transform the matrix and find the whole spectrum
[9, 6], are inadequate for these applications because of the size of the problem. As a result,
numerous iterative methods have been developed that are based only on small, low level
kernels such as matrix-vector multiplication, inner products and vector updates, that do
not modify the matrix, and that find only the required extreme eigenpairs. The simplicity
and efficiency of these methods accounts for their extensive use.
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Preconditioning has been recognized as a powerful technique for improving the conver-
gence of iterative methods for solving linear systems of equations [11, 22]. The original
matrix A is multiplied by the inverse of a preconditioning matrix M which is close to A
in some sense. This has the effect of bringing the condition number of the preconditioned
matrix closer to 1, thereby increasing the convergence rate [9, 14]. Applying precondition-
ing to the eigenvalue problem is not as obvious for two reasons: the separation gap of a
specific eigenvalue is important rather than the condition number, and when the equation
Az = Az is multiplied with a matrix M, it becomes a generalized eigenvalue problem.
Preconditioning can be applied indirectly to the eigenvalue problem by using the Precondi-
tioned Conjugate Gradient(PCQ) or similar iterative methods to solve the linear systems
appearing in each step of inverse iteration, Rayleigh quotient iteration [18, 27] or shift-and-
invert Lanczos [24].

The Davidson and Generalized Davidson (GD) methods [2, 12], provide a more direct
approach to eigenvalue preconditioning. The original method is a subcase of GD and was
introduced for electronic structure computations. Lately, GD has gained popularity as a
general iterative eigenvalue solver [1, 25]. The method is similar to the Lanczos method
in that it builds the basis of an orthogonal subspace from which the required eigenvectors
are approximated through a Rayleigh-Ritz procedure. However, the GD method solves
the Rayleigh-Ritz procedure in each step and the residual of the current approximation is
preconditioned ((M — AI)~™*(A — A )x) before it enters the basis. Therefore, the subspace
built deviates from the Krylov subspace, K(A,g,m) = span{g, Ag,...,A™g}, which is
obtained from the traditional Lanczos iteration. There has been some effort in the literature
to take advantage of the fact that A (the Rayleigh Quotient) is nearly constant in later
iterations [18, 19], by using the Lanczos procedure to build the Krylov space of the the
matrix (M — AI)~'(A — AI) [13]. This approach uses an inner-outer iteration and reduces
the higher computational costs of the GD step. However, the number of matrix-vector
multiplications is not reduced in general.

The use of an accurate preconditioner for the eigenvalue problem does not necessarily
ensure fast and accurate convergence. In the following, the quality of eigenvalue pre-
conditioning is assessed and a more robust approach is proposed. In section 2, a general
implementation of the GD method is outlined, which allows for user-provided matrix vector
multiplication and for flexible use of preconditioners between iterations. In section 3, the
effectiveness of various preconditioning approaches to the eigenvalue problem is discussed.
Convergence problems specific to eigenvalue calculations are identified, and a modification
to GD that improves robustness for preconditioning is proposed. In section 4, results are
presented from several preconditioners applied on matrices from Harwell-Boeing collection
[5], and from atomic physics calculations and comparisons of GD with the modified version
are performed. The paper concludes with some final remarks.

2 The Generalized Davidson Method

Davidson proposed a way of using the diagonal of A to precondition the Lanczos process
[2]. In electronic structure calculations where the eigenvectors have only a few dominant
components this choice is sufficient to provide extremely rapid convergence. In the general



case, clustering of eigenvalues may cause the eigenvector problem to be ill-conditioned
[29], requiring the use of very good preconditioners to even achieve convergence. The GD
method extends the above choice to a matrix M which can approximate A better. In the
iterative procedure, the next basis vector is chosen as the correction vector ¢ to the current
approximate eigenvector x, as given by § = (M — AI)"'Res(z), where X is very close to
the eigenvalue and Res(x) is the residual of . The computational costs of the GD step
are much larger than with the Lanczos algorithm but the iterations can be dramatically
reduced [1, 12, 10, 25].

Let the K lowest eigenpairs (\;,z;),t = 1,..., K, be required. If (5\2,.%2) denote the
current approximate eigenpairs, a brief description of the algorithm follows:

The Algorithm

Step 0: Set m = K. Compute Basis B = {by,...,b,} € RV*™ from initial guesses, also
D =AB={d,,...,d,}, and the projection of size m x m, S = BYAB = BT D.

Repeat until converged steps 1 through 8:
1. Solve SC = CA, with CTC = I, and A = diag(\;).

2. Target one of the K sought eigenpairs, say (A, ¢).

3. If the basis size is maximum truncate:

D—DC, B—BC, C=1Ig, S=A, m=K.
4. Compute 6 = (M — X])_I(Dc — S\Bc).
5. Orthogonalize: b,.,, = 6§ — 3 b;b1'6, normalize: by, — bpew /|| bnew||-
6. Matrix-vector multiply: d,c., = Abjew
7. Compute the new column of S: S; 41 = b;fpdmw, v=1,....,m+ 1.
8. Increase m.

There are many extensions that improve the functionality and the run-time behavior of the
above algorithm, most of which are implemented in the routine DVDSON described in [25].
The matrix vector multiplication is provided by the user as an external routine. However,
DVDSON in [25] has the following “limitations”: It requires at least K initial estimates,
the diagonal of the matrix has to be given, the matrix needs to be in a COMMON block to
be accessed by the matrix-vector multiplication, and the preconditioner chosen is simply
the diagonal of the matrix. While these limitations are transparent to electronic structure
calculations applied on serial computers, they can be a drawback in more difficult problems
where better preconditioners are needed that may vary between successive steps and where
complicated data structures may be used on parallel computers. To improve the flexibility

of the DVDSON code the following changes have been made:



L. Ifonly (21,...,%k,), K1 < K, initial estimates are available, the algorithm builds the
starting basis by computing the first (K — K;) orthogonal Krylov subspace vectors
of the #;, : = 1,..., K;. This is especially useful when no good initial estimates are
known.

2. In electronic structure calculations initial estimates can be obtained from the diagonal
of the matrix [3]. An optional preprocessing routine is provided for this reason. In
this way functionality and generality of the code are both maintained.

3. To avoid the use of COMMON blocks and the adherence on one preconditioner the
reverse communication mechanism is adopted [22]. Whenever a matrix-vector multi-
plication or a preconditioning operation is required, the DVDSON routine is exited
and the calling routine performs the appropriate operation. After the operation has
concluded the result is placed in one of the DVDSON’s arguments and DVDSON is
called again. Some information parameter is used for the calling routine to be able
to distinguish between the different required operations. This information parameter
may be an index array carrying additional information about the procedure’s status.
A typical use of this mechanism with the DVDSON routine is as follows:

irev(l) = 0
100 continue
call dvdson(irev,n,work,...)
inp = irev(2)
outp = irev(3)
ieval= irev(4)
ires = irev(5)
if (irev(1).eq.1) then
eigval = work( ieval )

residual = work( ires ) <-- To determine preconditioner
call precond(n,eigval,residual,
work( inp ),work( outp ),...) <-- User provided

goto 100

else if (irev(1l).eq.2) then
call matvec(n,work( inp ),work( outp ),...) <-- User provided
goto 100

endif

In the current implementation, the array IREV holds information about how many
vectors are to be multiplied or preconditioned in the block version of DVDSON,
the location of the input and output vectors in the work array, the corresponding
eigenvalue approximations to be used by the preconditioning and the residual norm
estimates for choosing an appropriate preconditioner. More information can also be
provided in IREV to meet the users’ needs.

The above modifications have significantly enhanced the flexibility of the procedure. The
resulting code can be used unchanged with any matrix format, multiplication and precon-
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ditioning routine or in a parallel environment. Moreover, the user is able to control the
initial estimates and embed intelligence in the choice of preconditioner.

3 Preconditioning the Eigenvalue Problem

As mentioned earlier the obvious way to precondition the eigenvalue problem is to use
PCG to solve the linear systems arising in inverse or Rayleigh quotient iteration. This
scheme is less likely to be as efficient and robust as the GD method mainly because of the
subspace character of the latter one [13]. Sophisticated PCG implementations however may
bridge that gap. When the matrix A is multiplied by a matrix M the problem becomes
a generalized one: MAx = AMz. However, when M has the same eigenvectors as A
and eigenvalues p;, the matrix M A has also the same eigenvectors and eigenvalues A; ;.
Theoretically one could pick a M that yields a desired arrangement of eigenvalues but
this assumes the knowledge of the eigenvectors. As in linear systems the search for M is
restricted to approximate inverses of A.

The main goal of preconditioning in eigenvalue problems is the compression of the
spectrum away from the required eigenvalue rather than away from the origin as in linear
systems. The convergence of eigenvalue iterative methods depends on the gap ratios, i.e.,
relative ratios of eigenvalues that indicate how well separated the required eigenvalue is
from the rest of the spectrum [18, 29]. If for example M ~ A~' is used all the eigenvalues
tend to be compressed around 1 and the convergence of iterative methods deteriorates. In
the extreme case where M = A~! and A~! exists, the system becomes [z = z and all
information about A is lost.

To isolate a specific eigenvalue of A, e.g., i, the operator

(M — M)"YA=XI) (1)

may be used, where A is any close approximation to Ax. The advantage of this over M A is
that (A — )\]) approaches singularity as XA — A, and if M ~ A the rest of the eigenvalues
are compressed much more than A is. Also the eigenvectors approximate those of A [12].
There are a few points that need closer attention.

. In the extreme case where M = A, the operator (1) becomes the identity operator
and the information is lost. However, the preconditioner (M — )\]) ! depends on two
variables, M and X. To avoid the above cancellation, the A may be fixed to some
value s < A which is close to the desired eigenvalue but farther from the current
approximation. The new operator (A — sI)™!(A — 5\]) still carries the eigensystem
information and has eigenvalues (\; — 5\)/()\Z — s) which are very close to one except

(Ae — 5\)/()\;C — s) which is close to zero.

ii. When the current approximation A & \;, 3 # k, the preconditioner is likely to give a
good separation to the wrong eigenpair (similar to inverse iteration). The convergence
of the new operator to A\, may be slow or even not guaranteed.

iii. The matrix (1) is nonsymmetric in general, and it may have complex eigenvalues if
(M — AI)~" is not positive definite [14]. This disables the direct use of the Lanczos



method on matrix (1). It also impairs the selective convergence to interior eigenpairs
inherited by the inverse-iteration-like behavior, when X is chosen below the spectrum.

As was already mentioned, some inner-outer iterative schemes have been developed for the
lowest /highest eigenpair. The matrix (1) is updated after a few Lanczos steps with the
latest Rayleigh quotient as X. In early iterations A may be far from \j, and the total
number of matrix-vector multiplications is usually increased with this scheme.

3.1 The Generalized Davidson approach

The GD method does not use the fixed operator (1), but it varies it between iterations as the
approximation \ varies. The resulting algorithm can be derived either from perturbation
theory or the Newton’s method [3, 4, 15]. If £ is a matrix such that A = M + E, and 6 and
e are the corrections to the approximate eigenvector & and eigenvalue A correspondingly,
then:

(M + E)(&+68) =\ +e)(i+9) (2)
& (M—=X)b6—eb+Eé=ci—(A—\)i. (3)

If the quadratic correction terms are omitted,
(M — M6 = e — (A — ). (4)

Since |e| = O(]|Res(x)||?) near convergence [18], the following familiar equation is used to
derive ¢:

(M — \)é = Res(z) = (A — \)i. (5)

The sign is dropped because only the direction is of interest.

GD circumvents the requirement for positive definiteness of (M — 5\])_1 since it does not
iterate with matrix (1) but with A. Preconditioning for interior eigenvalues is thus possible,
and selective convergence can be achieved without any compromise on how close A can be to
Ar. Moreover, the minimization of the Rayleigh quotient and the approximate eigenvectors
are computed based on the exact eigensystem of A, rather than an approximate one, and
the total number of matrix-vector multiplications is usually reduced. The problems in point
iii are thus removed but problems can still arise from points i and ii. Expressed for the GD
method, the problems may stem from the following:

P1. (M — M) is very close to (A — AI) and the resulting § is almost identical to &. If X is
a good approximation to Ag, the inverse iteration behavior may provide § with some
new information but this is usually limited.

P2. (M — 5\]) is very close to (A — 5\]), and A & \;, 7 # k. In this situation convergence
can be extremely slow or erroneous, i.e., towards an undesired eigenvalue.

Both of these problems are related to preconditioners that approximate (A — 5\])_1 accu-
rately. This is in contrast to the linear systems experience, where accurate preconditioners
yield good convergence. Moreover, in case of P2 the inverse iteration amplification of the



components of the wrong eigenvector may cause erroneous convergence. These problems
are clearly demonstrated in the results appearing in section 4. A poor preconditioner as
the diagonal must be applied for several iterations before the change to an accurate one
occurs. This is necessary until the approximation A escapes from all \;, i # k. However,
the decision on the quality of the poor preconditioner is arbitrary, and an optimum choice
may require sophisticated heuristics. Evidently, problems P1 and P2 must also be solved
along with finding accurate conventional preconditioners.

3.2 Modifying GD for Robustness

Problem P1 can be handled by solving equation (5) with a right hand side different from
Res(#). Olsen at al. [15] proposed the use of equation (4) instead of (5), where the right
hand side is augmented by the term ez. Recall that € is the correction to the eigenvalue. If
the eigenvector correction ¢ is forced to be orthogonal to #, € can determined as (denoted

€):
FT(M = M)A =)
iT(M —\D)-':

¢© = (6)
In the extreme case when (M — 5\]) =(A- 5\]), equation (4) yields 6 = ¢,(A — 5\])_1:7: — 1.
Since ¢ is made orthogonal to z, this method performs one step of inverse iteration, having
the potential to provide new information. More precisely, A is the current Rayleigh quotient
in GD, and the above iteration becomes equivalent to the Rayleigh quotient iteration with
the favorable asymptotical cubic convergence rate [18].

Problem P2 focuses precisely on what constitutes a “good” eigenvalue preconditioner.
Unlike in linear systems, a “good” preconditioner should not yield (M — 5\]) very close to
(A— 5\]), but to (A — Axl) instead. In this way, when ) is accurate the desired spectrum
compression is achieved and when it is far from )., the scheme acts as inverse iteration.
In the numerical experiments of the first part of section 4, the preconditioners try to
approximate (A — 5\]) causing the expected convergence problems.

Solving problem P2 is more difficult since the best known approximation to Ay is A.
To achieve convergence in the test cases of section 4, flexible preconditioning is employed.
There are two disadvantages with this approach: it relaxes the power of the preconditioner
rather than adjusting it, and it requires external information for tuning the parameters for
the proper timing of preconditioner switch.

Adjusting the preconditioner involves finding e, the correction to A, and using it in the
shift: (M — (5\ +¢)I). The method becomes obvious if instead of solving equation (4) as in
Olsen’s method, equation (3) is solved, by letting the term £Eé = 0. The latter is further
justified by the assumption of an accurate preconditioner. Thus, the preconditioning step
in GD consists of solving approximately the equation:

(M —(A+e))§ = e&—(A— )i (7)

If € can be estimated accurately and a good conventional preconditioner is used, the above
modification solves both problems P1 and P2, providing a “good” eigenvalue precondi-
tioner.



Another explanation of this result is as follows. From the minimization of the Rayleigh
quotient in the Rayleigh Ritz procedure, and from the Courant-Fischer theorem [29, 18], the
approximations A decrease monotonically in each step. When an accurate preconditioner
is used near the wrong eigenvalue \;, the decrease in \ is diminished because successive
subspaces improve slightly and only in the direction of z;. What equation (7) attempts to
do is shift the eigenvalue to a lower value to prevent this halt. Notice that in this sense
it is not vital that the exact correction is known. A large enough e is needed to “pull”
the eigenvalue below the halting level. When X is close to A, it has been shown that the
algorithm does not require a particularly accurate e [12].

The explanation suggests that it is not necessary to know A; to obtain a “good” precon-
ditioner. A robust preconditioner that approaches the convergence properties of the exact
(M — A1) can be derived by using either of the following estimations of e:

E1l. ¢, as obtained from equation (6).

E2. A) = AN = )\0) — S\(j_l), where j is the current iteration. Because of the mono-
tonic eigenvalue convergence, AX < €=V, so A) is an underestimation of the exact
correction of the previous iteration. Experiments have shown that this is very similar
to €,, but it is cheaper to compute.

E3.

, where v is the gap ratio of the eigenvalue ;.

{ [Bes(@)l[, —if [|Res(2)]| >~y
[Res(2))1/7, if |[Res(2)]| <~
This is suggested by the a posteriori bounds for eigenvalues [18]: |e| < ||Res(2)||, ¥z,
and near convergence |¢| < |Res(Z)||*/v. This is an overestimation of the exact
correction of the current iteration. «y is easily approximated from the Ritz values.

Combinations of the above choices may also be considered. For example, when X is far from
Ar E3 may be chosen for the left hand side € of equation (7), while either of E1 or E2 for
the right hand side e. Experiments in section 4, illustrate the robustness of the modified
approach, for some difficult problems. It is interesting to note that when a subspace method
is adopted in RQI (to ensure monotonic eigenvalue convergence), the above results are also
applicable to the choice of PCG preconditioner by choosing a better shift than the Rayleigh
quotient.

Several options exist for the conventional preconditioner. Taking M = Diag(A) has
been extensively used in the literature. In [12, 1] the three main diagonals of the matrix
are used as M. In [13] Incomplete LU factorization is used while other possibilities are
mentioned. The study of linear systems in the last two decades has made available a big
variety of preconditioners. Jacobi, SOR, SSOR and their block counterparts, ILU, ILUT,
multigrid are only a few examples [22]. Next, the performance of Jacobi, SOR, band
diagonal LU, and ILUT is examined as well as in combination with some accelerator [21].
Through these preconditioners the two problems are identified and the improvements from
the above modification are demonstrated.



4 Numerical Experiments

4.1 Test cases

The diagonal scaling (Jacobi preconditioning) is the simplest way to precondition a matrix.
It is also the least effective one, unless the matrix has large diagonal-dominance ratio —
the term is used to refer to the ratio d = min; ;|(A; — A;;)/Aij| — i.e., very small off-
diagonal elements compared with the changes in magnitude between diagonal elements
[10, 12, 26]. Matrices for ground state systems in electronic structure calculations share
this property|7, 3].

A natural extension to the Jacobi preconditioner is the LU decomposition of a few main
diagonals of the matrix. This is expected to be effective when the important elements of
the matrix are clustered around the main diagonal. Such matrices are encountered when
an operator is approximated by minimal support basis functions (such as B-Splines [8]).
The cost of band LU factorization is considerably higher than diagonal scaling but it still
increases linearly with the size of the matrix.

Successive Overrelaxation (SOR) is the most popular relaxation scheme and it is exten-
sively used as a preconditioner in solving linear systems. Because of its use as a precondi-
tioner the choice of an optimal parameter w is not as important and it is common to let
w =1 (Gauss Seidel scheme). Also the requirement that the matrix be positive definite is
not as restrictive since relaxation is used only to improve the residual towards the required
eigenvector. With SOR(k), k SOR iterations may be performed in each preconditioning
step. Each iteration consists of the solution of two triangular systems of equations, which
is as expensive as a matrix-vector multiplication in serial computers.

ILUT(p,7) is an extension of the Incomplete LU factorization [11] that uses a two
parameter strategy for dropping elements [20]. The first parameter controls the allowable
fill-in in the sparse matrix. The second parameter controls the magnitude of the remaining
elements in the factorization. When constructing the current row of L and U, elements that
are smaller than some relative tolerance are dropped. In this way, the algorithm allows for
selection of the important matrix elements in the factorization and it usually improves the
efficiency of ILU.

An extension to the above preconditioners is to combine them with some iterative
accelerator, as PCG, GMRES, etc [16, 21]. Since the matrices are symmetric either of
the above is expected to work equally well. PCG iterations are much faster than those of
GMRES because of the simple three-term recurrence of PCG. Using GMRES, however, may
provide better robustness since it is not affected by near indefiniteness when A is shifted for
interior eigenvalues [23]. Some early experiments have also verified this assumption. Since
robustness is the subject of this study, the GMRES accelerator is adopted in the tests. It
should be mentioned that since the preconditioning step involves the matrix (M — 5\]),
band LU and ILUT factorization must be performed in every step. When the number
of nonzero elements in the matrix is large, factorization especially in ILUT becomes very
expensive and it may constitute the bottleneck of the iteration. In these cases, (M — 5\])
should be factored only when the change in A s significant, usually in early iterations. This
methodology is not adopted in the following experiments.

Three test cases are used; two from the Harwell-Boeing collection and one from an



application in atomic structure calculations. The first case, BCSSTKO07, describes a stiffness
matrix as a medium test problem. It is a relatively small matrix of dimension 420 and it has
7860 non zero elements. The three lowest eigenvalues are 460.65466, 1349.9746, 1594.5963,
and the maximum is 1.915E+49. The separation gap for the lowest eigenvalue is 4.6E-07
and poor convergence characteristics are expected with simple preconditioners. The second
case, SHERMANI from oil reservoir simulation is of dimension 1000 and it is very sparse
with 3750 nonzero elements. The four smallest eigenvalues are 0.32348E-3, 0.10178E-2,
0.11131E-2, 0.15108E-2 and the maximum is 5.0448. The relative separation gap of the
first eigenvalue is 1.4E-4 and convergence problems are still expected. The third case,
called LITHIUM in this paper, is derived from the MCHF program for Li, 2S [28]. It is
of dimension 862 and it is a dense problem with 240608 nonzero elements. This matrix
has a fairly good eigenvalue separation with a gap of 6.2E-3 for the lowest eigenvalue, and
diagonal preconditioning is expected to perform well. These three cases are representative
of a variety of matrix spectrums. In the first convergence is slow even after the required
eigenvalue has been closely approached. The second case converges faster but there are
many close eigenvalues that can trap convergence. The third is an easy case for verification
of robustness.

The experiments are performed on a SUN Sparcstation 2. The lowest eigenpair is sought
in all test cases. In the first part, results from the GD method are given and cases where
GD does not perform well are identified. In the second part, the robustness of the proposed
modification is illustrated through the convergence improvement of the above cases.

4.2 Results from GD

Tables 1, 2 and 3 show the results for the three respective cases. Fach table has several
subtables where results from each preconditioner are given. The bottom subtable gives a
summary of the best performing choices. Time and number of matrix-vector multiplications
(Matvec) are reported for various parameter settings. SOR iterations are counted as matrix-
vector multiplications. The parameter TRH appearing in the tables denotes the number
of diagonal preconditioning iterations that are performed before the switch to the current
preconditioner occurs. If less than TRH iterations are performed the method does not
converge or if it does it is either slow or to the wrong eigenpair.

The results show that preconditioning can significantly reduce both the number of
iterations and the total execution time. Like in linear systems, ILUT yields the best
results followed by the cheaper but slower SOR. The straightforward band and diagonal
preconditioners are the slowest except for cases predicted in the previous section. On the
other hand the results verify that the choice of a preconditioner is not as obvious as in
solving linear systems. More accurate preconditioners may perform much more poorly
than simpler ones because of problem P2.

In BCSSTKO07, diagonal and band preconditioning is extremely slow since a few diago-
nals do not capture the characteristics of this matrix. SOR(k) is more global and it drasti-
cally reduces time and iterations. After some k value (5-7) the increase of the matrix-vector
multiplications outweighes the reduction in the number of iterations and time increases.
This behavior is typical in linear systems as well. The reduction in time and iterations is
more evident with ILUT. In the best measured case, ILUT(6,107%) improves the time of
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SOR(k)
k | TRH || Time | Matvec
DIAG Time | Matvec 1 10 94.70 2068
362.62 4484 2 | 10 50.15 1378
3 50 37.01 1146
Band LU( diags ) 4 50 33.6:9 1140
- - 5 50 27.63 974
# diags | TRH | Time | Matvec - -
5T oY ; 6 50 26.86 1002
3-diag 0 339.11 3970 ——
= ; ; 7 50 28.20 1106
5-diag 0 304.02 3334 —
. - . - 8 50 25.21 995
7-diag 20 538.87 5304 -
9-diag 20 > 748 | > 7000 J o0 25.88 1060
12 50 27.49 1207
15 50 29.11 1330
ILUT(fill,tol) Cont... ILUT(fill,tol)
fill | tol | TRH || Time | Matvec fill | tol | TRH || Time | Matvec
0 0. 80 36.99 114 3 11072 50 22.60 106
1 0. R0 39.10 114 5 11072 50 18.90 91
2 0. 80 42.50 115 6 | 1072 50 17.43 85
0 |10°° 50 44.94 155 7 11072 50 23.00 100
1 [1073 50 32.75 116 8 | 1072 50 21.40 93
4 11073 50 29.52 98 0 | 107! 50 47.34 343
6 | 10732 50 28.83 91 1 | 107t 50 40.8 298
8 | 1072 50 34.86 96 2 | 107! 50 35.79 260
0 | 1072 50 41.20 182 3 | 107! 50 37.10 267
1 | 1072 50 27.41 129 0 10. 10 504.0 4484
SUMMARY
Method Time | Matvec
ILUT(6,1O_2) 17.43 85
ILUT(5,1O_2) 18.90 91
ILUT(3,10_2) 22.60 106
ILUT(l,lO_Q) 2741 129
SOR(5) 27.63 974
SOR(6) 26.86 1002

Table 1: BCSSTKO7. Results from DIAG, SOR, Band LU and ILUT preconditioning for
various parameter settings. TRH diagonal preconditioning iterations are performed before
the switch to the preconditioner occurs.
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SOR(k)
DIAG || Time | Matvec k | TRH || Time | Matvec
102.04 799 1 0 51.34 737
2 0 32.10 637
3 15 26.05 583
Band LU( diags ) 1] 15 [ 2155 550
# diags | TRH | Time | Matvec 5 15 19.07 555
3-diag | 200 45.52 327 6 20 19.27 594
5-diag | 200 46.84 327 7 20 18.18 530
7-diag | 200 48.11 327 ] 20 18.43 605
21-diag | 200 46.14 272 101 20 19.26 691
12 | 20 19.67 761
ILUT(fill,tol)
fill | tol | TRH || Time | Matvec
0 0. 200 38.76 233
0 | 107* | 200 35.84 236 Cont... ILUT(fill,tol)
0 | 107° | 200 35.63 236 fill | tol | TRH || Time | Matvec
0 | 1072 0 17.67 84 0 (107! 0 25.00 120
0 | 1072 | 16 15.64 80 0 [107* | 16 19.69 112
1 |1072 0 17.52 73 1|10t 0 26.72 142
L |107%| 16 9.82 51 L | 107t | 16 18.23 104
2 1107 | 16 8.26 42 2 11071 | 16 18.04 103
3 11072 | 16 8.11 40 3 11071 16 18.04 104
SUMMARY
Method Time | Matvec
ILUT(3,107%) 8.11 40
ILUT(2,107%) 8.26 42
ILUT(1,107%) 9.82 51
ILUT(0,107%) | 15.64 80
SOR(5) 19.07 555
SOR(7) 18.18 580

Table 2: SHERMANI1. Results from DIAG, SOR, Band LU and ILUT preconditioning for
various parameter settings. TRH diagonal preconditioning iterations are performed before
the switch to the preconditioner occurs.
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DIAG || Time | Matvec

23.98 47
SOR(k)
Band LU( diags ) k | TRH | Time | Matvec
# diags | TRH || Time | Matvec 1 0 23.98 49
3-diag 0 24.19 45 2 0 22.28 49
5-diag 0 21.38 39 3 2 21.76 50
9-diag 0 20.24 36 4 3 22.75 53
13-diag 0 20.69 35 5 2 24.21 56
ILUT(fill,tol)

fill | tol | TRH || Time | Matvec

0 0. 0 - -

0 | 100. 0 62.89 47

0 | 10. 0 41.88 31

1 | 10. 0 42.38 31

0 1. 0 26.93 16

1 1. 0 25.83 15

2 1. 0 24.95 14

3 1. 0 24.02 13

0 |10t 5 29.89 15

2 [ 107! 5 29.28 14

SUMMARY

Method Time | Matvec

Band LU(9-diag) 20.24 36

Band LU(13-diag) | 20.69 35

Band LU(5-diag) 21.38 39

DIAG 23.98 47

SOR(3) 21.76 50

SOR(2) 22.28 49

Table 3: LITHIUM. Results from DIAG, SOR, Band LU and ILUT preconditioning for
various parameter settings. TRH diagonal preconditioning iterations are performed before
the switch to the preconditioner occurs.
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the simple diagonal scaling case 20 times. However, the better preconditioner ILUT(2,0.)
does not perform better in reducing the number of iterations. Notice, that TRH is between
50 and 80 even for simple preconditioners. Evidently, the ill-conditioning of the matrix
makes it difficult for preconditioners to surpass higher eigenpairs in early iterations.

In SHERMANI, band LU performs better than in the previous example because of the
diagonal structure of the matrix. However, large bandwidth is required and the method is
not competitive. Similar results with BCSSTKO7 hold for the SOR(k). The turning point
for the value k is a little higher because of the sparsity of the matrix and the low cost
of matrix-vector multiplications. ILUT also yields similar results, outperforming all other
methods. TRH is not necessarily large for all preconditioners and sometimes it can be zero.
However, in cases as ILUT(1,107?) and ILUT(1,107") increasing TRH speeds the method
up. Again, these preconditioners would spend many early iterations trying to converge to
a higher eigenpair. An extreme demonstration of this behavior is the ILUT(0,0.) which
does not converge for any TRH<200.

In LITHIUM, the diagonal dominance of the matrix accounts for the very good per-
formance of the band and diagonal preconditioners. The density of the matrix prevents
SOR(k) and ILUT from reducing the total execution time although the number of iterations
is reduced. Apart from a few cases TRH is always zero. The good separation of the re-
quired eigenvalue Ay allows the preconditioners to “view” clearly A\; from the approximation
X even in the early steps.

Only Prc Pre-GMRES(5)

Matrix Precond Prc Time | Matvec | Time | Matvec
BCSSTKO07 | ILUT(6,1072) 17.43 85| 15.8 204
SOR(5) 27.63 974 | 39.63 2061

SHERMANT | ILUT(1,107%) 9.82 51 | 8.78 145
SOR(5) 19.07 555 | 15.83 706

LITHIUM Band LU(9-diag) | 20.69 36 | 86.78 179
SOR(2) 22.28 49 | 98.2 229

Table 4: Results from using (Prc) as a preconditioner to DVDSON, versus using GMRES(5)

with preconditioner (Prc)

In Table 4 results from combining some of the previously tested preconditioners with
GMRES(5) are presented. GMRES is allowed to run for 5 iterations. The total number
of iterations decreases in general and the method demonstrates the robustness predicted
earlier. Note especially that for the difficult cases even the time is reduced. However,
the matrix-vector multiplications increase and for the easier LITHIUM case this method
is much slower. Therefore, this method cannot be beneficial to all cases, because of the
potential cost penalty.

4.3 Results from the modified GD

The improvement in the robustness with the modified GD is verified in both difficult and
easier test cases. The two modifications on equation (5) are also tested separately. First,
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only the right hand side of equation (5) is changed and E1 is used as a choice for € (Olsen’s
method). Second, only the left hand side of equation (5) is changed and E2 is used as a
choice for shifting the preconditioning matrix (M — (A 4 ¢)I). Third, both of the above
changes are combined yielding the modified method of equation (7). Finally, the exact
correction to the eigenvalue is given as € to both sides of equation (7), which provides the
best eigenvalue preconditioner for a specified conventional preconditioner.

Figures 1, 2 and 3 depict the results from the above comparisons. The first two figures
illustrate the effectiveness of the modification for ill-conditioned matrices, where a very
accurate preconditioner is supplied. Figure 3 shows that the effectiveness of the modifi-
cation is not relaxed when applied to a well-conditioned matrix or with a less accurate
preconditioner.

Results from BCSSTKO7, using ILUT(6,0.), appear in Figure 1. GD and Olsen’s method
converge extremely slowly. After 230 iterations they both terminate but GD terminates
with the wrong eigenpair. On the contrary, shifting alone solves the problems encountered
by the two methods and gives a convergence in 37 steps. When Olsen’s method is used in
addition, the modified method ameliorates the convergence and brings it much closer to
the best possible convergence by ILUT(6,0.) than any other method. The difference of 10
iterations between the best possible and the modified GD is due to the ill-conditioning of
the matrix, which makes it hard for the algorithm to pick an appropriate shift.

Results from SHERMANI, using ILUT(0,0.), are similar and appear in Figure 2. The
figure gives a clear pictorial explanation of the failure of GD. After some steps GD locks
on some eigenvalue and reduces the residual. Only after the residual is below 10™® does
the method realize that it has the wrong eigenvalue and continues iterating. Soon, it locks
on a new value but this time GD does not recognize the wrong eigenvalue. Olsen’s method
overcomes the first problem but it gets trapped in the second as well. The shifted and
modified versions have no problems converging to the required eigenpair with convergence
very close to the best possible obtainable by ILUT(0,0.).

Figure 3 shows that in well-conditioned cases or when a less accurate preconditioner is
used, the differences between the methods diminish. However, in figure 3 the modified GD
is still the best performing method. This attests the robustness of the modified GD, which
can be effective in both easy and difficult problems.

It should be mentioned that in all methods the asymptotic convergence rate is the same.
However, in GD and Olsen’s methods the assumption of this rate is deferred until all the
higher eigenvalues are “cleared”. The modified method tries to expedite the “clearance”,
by shifting the preconditioning matrix.

5 Conclusions

The Generalized Davidson method is a well known variant of the Lanczos algorithm which
exploits the important ideas of preconditioning. Some modifications to a previously devel-
oped code are proposed so that it can handle arbitrary matrix-vector multiplication routines
and flexible preconditioning, thus improving ease of implementation and experimentation.

Preconditioning the eigenvalue problem is intrinsically more difficult than precondi-
tioning linear systems. The spectrum needs to be compressed away from the required
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Figure 1: BCSSTKO07 with ILUT(6,0.) preconditioner. Residual and eigenvalue conver-
gence comparisons for GD and modified methods. (¢): Original GD, (+): Olsen’s mod-
ification only, (O): Choice E2 as a shift only, (x): Olsen’s method with choice E1 and
choice E2 as a shift, (A): Exact e for both choices.
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Figure 2. SHERMANI with ILUT(0,0.) preconditioner. Residual and eigenvalue con-
vergence comparisons for GD and modified methods. (¢): Original GD, (+): Olsen’s
modification only, (O): Choice E2 as a shift only, (x): Olsen’s method with choice E1 and
choice E2 as a shift, (A): Exact e for both choices.
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Figure 3: (Top) LITHIUM with ILUT(3,1.), (Bottom) SHERMANI1 with SOR(12). Resid-
ual convergence comparisons for GD and modified methods for an easy case (Top) and a
less accurate preconditioner (Bottom). (¢): GD, (+): Olsen’s only, (O): Shift only, (x):
Modified GD, (A): Modified GD with exact e.
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eigenvalue \g, as opposed to the origin. Therefore, a “good” preconditioner (M — 5\])
should approximate (A — Ai/), and thus it depends on the required eigenvalue which is
unknown.

Two problems are identified with preconditioning in GD. If M is a very good approx-
imation to A, the preconditioner may yield no improvement. In addition, if A is far from
Ak, slow or erroneous convergence may occur. Experiments show that the second problem
can plague convergence in ill-conditioned matrices. Flexible preconditioning may alleviate
some problems but prior knowledge about the system is usually required. Olsen’s method
is beneficial for the first problem but it provides no improvement for the ill-conditioned
case.

The solution proposed for the second problem is to shift the approximation A by an
estimated correction, and thus obtain a “better” preconditioner for A\;. With (M — (S\—I—e)])
as a preconditioner, the iteration has the potential of avoiding wrong eigenvalues and leads
to a more rapid convergence to the required one. Several easily obtainable choices exist
for the estimation of the correction. From perturbation theory, this modification can be
naturally combined with Olsen’s result. This modified GD method improves the robustness
and convergence of the original GD. Experiments verify the improvement in robustness,
and show that even for very ill-conditioned cases the modified GD gives results very close
to the best possible preconditioner (M — Ag1).

Further research should also focus on the choice of conventional preconditioner. It would
be interesting to see if the large variety of preconditioners developed for linear systems can
be used as effectively for eigenvalue problems.
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