Reducing Synchronization on the Parallel Davidson method for the
Large, Sparse, Eigenvalue Problem

Andreas Stathopoulos and Charlotte F. Fischer
Computer Science Department
Vanderbilt University
Nashville, TN 37235

Abstract

The Davidson method is extensively used in quan-
tum chemistry and atomic physics for finding a few
ertreme eigenpairs of a large, sparse, symmetric ma-
triz. It can be viewed as a preconditioned version of
the Lanczos method which reduces the number of it-
erations at the expense of a more complicated step.
Frequently, the problem sizes involved demand the use
of large multicomputers with hundreds or thousands
of processors. The difficulties occurring in paralleliz-
ing the Davidson step are dealt with and results on a
smaller scale machine are reported. The new version
improves the parallel characteristics of the Davidson
algorithm and holds promise for a large number of pro-
cessors. Its stability and reliability is similar to that
of the original method.

1 Introduction

The eigenvalue problem, Az = Az, is central to
many scientific applications. In these applications it
is common for A to be real, symmetric, and frequently
very large and sparse. Examples abound both in en-
gineering and in science [15, 7, 8, 4]. Following the re-
cent advances in High Performance Computing tech-
nology, the demands for even higher order matrices
have increased. Numerous large matrix methods have
been developed that solve only for a few extreme eigen-
pairs, and do not modify the matrix since usually it
cannot be stored in memory or on disk in full.

The Lanczos [16] and the Davidson [3] methods
are amongst the most widely used methods. The
Lanczos iteration builds an orthogonal basis for the
Krylov subspace, K(4, g, m) = span{yg, Ag, ..., A™g},
from which the required eigenvectors are approxi-
mated through a Rayleigh-Ritz procedure. The at-
traction of the Lanczos method is that the orthogonal
basis is built through an easy-to-compute three-term

172

recurrence and the projection of A onto K(A4, g, m)is a
tridiagonal matrix of order m. The Davidson method
builds a subspace that deviates from the Krylov sub-
space. In each iteration the Rayleigh-Ritz procedure is
solved and the residual of the current approximation is
preconditioned ((M —AI)~1(A—AI)z) before it enters
the basis. Therefore, the new vector should be explic-
itly orthogonalized to all previous basis vectors. The
Davidson method can be considered a preconditioned
version of the Lanczos method [12, 13, 18]. The con-
vergence is much faster but the work per iteration is
increased. In quantum chemistry and atomic physics
calculations the size and structure of the matrix justi-
fies the extra work per step, even with a preconditioner
as M = Diag, where Diag is the diagonal of A.

In the last ten years, considerable effort has been
put into transporting the Lanczos method to parallel
computers. This effort has been fruitful in machines
that offer vectorization and coarse grain parallelism.
For medium and fine grain parallelism more difficulties
had to be faced because of the iterative nature of the
method. However, due to the simplicity of the recur-
rence, good performance was achieved on these archi-
tectures by reducing the synchronization overheads.
The Davidson method has been optimized for vector
and coarse grain machines [1, 18, 21, 22], but there
are no previous attempts to transport the Davidson
to a medium grain machine (tens or a few hundreds of
processors). A reason for this is the more complicated
nature of the algorithm and the increased synchroniza-
tion requirements.

In this paper the original algorithm is restructured
so that it requires only one synchronization per itera-
tion. In some cases the numerical stability of the re-
structured algorithm is relaxed but in quantum chem-
istry and atomic physics applications shifting the ma-
trix with the extreme diagonal element restores most
of the lost numerical accuracy. Moreover, when used
with frequent restarting, the two algorithms are prac-

tically equivalent. The gain in time and speedup is
significant when the number of processors is large.

In Section 2 the original Davidson algorithm is out-
lined. In Section 3, the distribution issues and the
synchronization needs of a parallel Davidson are ad-
dressed. The restructured algorithm is presented in
Section 4. Sections 5 and 6 cope respectively with
time and numerical behavior of the new algorithm.
Concluding remarks and future directions are given in
Section 7.

2 The Original Davidson Method

The Davidson method is similar to the Lanczos
method. If no preconditioning is used, the space cre-
ated by Davidson is identical with the Lanczos space.
In this case the Davidson method becomes an expen-
sive way of implementing the Lanczos procedure; ex-
plicit orthogonalization is used, the Rayleigh-Ritz is
applied in each step, and the projection matrix is full
[2, 18, 12, 10, 22].

If preconditioning is used instead of the residual as
the next basis vector, a better estimate can be chosen
from perturbation theory: b = (M — AI)~!Res(z),
where M is a good approximation to matrix A, A very
close to the eigenvalue and Res(z) the residual of the
current approximation z [5]. Davidson proposed the
diagonal of A as the preconditioner M. In appli-
cations where the eigenvectors have only one domi-
nant component this choice is sufficient to provide ex-
tremely rapid convergence. Applications in quantum
chemistry and atomic physics demonstrate the ben-
efits [5, 22]. The same preconditioner is considered
hereafter because of its excellent parallel properties.

Assuming that the K lowest eigenpairs are re-
quired, a brief description of the original algorithm
follows:

The Original Algorithm

Step 0: Set m = K. Compute initial Basis B =
{b1,..., by} € RVX™ also D = AB = {dy,...,dn},
and the projection of size mxm, S = BT AB = BT D.

Repeat until converged steps 1 through 8:
1. Solve SC = CA, with CTC =1, and A diagonal.
2. Target one of the K sought eigenpairs, say (X, ¢).

3. If the basis size 1s maximum truncate:

D—DC, B—BC, C=1Ix, S=A, m=K.

173

4. Compute R = (Diag — M)~*(Dc — ABc).
5. Orthogonalize: b,ey = R — EbibiTR, normalize:

bpew — bnew/||bnew||~
6. Matrix vector multiply: djew = Abnew

7. Compute the new column of S:
Sim41 = bZ»Tdnew, 1=1,...,m+ 1.

8. Increase m.

The above algorithm can be extended in several useful
ways that improve its functionality and its run-time

behavior [22, 5].

3 Transporting to a Parallel Computer

Previous results have shown that the Davidson al-
gorithm can be implemented efficiently on parallel-
vector computers (both shared and distributed mem-
ory) when the number of processors is small [18, 21].
The necessity of using more processors is evident,
not because of the intolerably long execution of the
algorithm but because of the increasing storage de-
mands. Large applications can easily saturate the
memory of hundreds of processors with the auxiliary
vectors, without even storing the matrix. Care should
be taken when this transition is made, so that the
algorithm does scale up with the processors. Specifi-
cally, considerations about the distribution of the work
arrays and the matrix, and about the synchronization-
communication bottlenecks of the algorithm are in or-

der.

3.1 Distribution Issues

The distribution of the matrix A onto the proces-
sors is the most compelling need. The matrix A affects
the algorithm only through the user provided matrix-
vector multiply. The distribution of A can be also left
to the user so as to suit the specific multiplication rou-
tine. In many applications the matrix is large enough
to be stored only on disc or recomputed each time it
is needed [14]. The only assumption used in this pa-
per about the matrix vector multiply is that it accepts
and returns vectors in the following specified format.

The arrays D and B are the only “long” arrays
needed in the algorithm, and their distribution can
be performed in either of their two dimensions. The
Davidson method was designed to cope with problems
of large order. Thus, the number of columns in D
and B is small, because of resource limitations. In

parallel computers with several tens or hundreds of
processors the number of vectors is not large enough
to allow every vector to reside on one processor, hence
distribution along the long dimension is considered.
Distribution can be performed in a wrap-around
row fashion, or in terms of blocks of contiguous rows.
The second option is followed in this implementation.
If nodes is the number of processors, each processor
stores LMNWJ rows, except the first mod(N, nodes)
ones that store L%J + 1 rows. The same distri-
bution is also assumed for the elements of the diag-
onal of the matrix, Diag, used in the precondition-

ing step. The load imbalancing ratio is then limited
¢ min(mod(N nodes),1)
0 N/nodes

large matrices. The two arrays S and C are very small

(size m x m) and they are duplicated in all processors.

< "OJ‘\i,“, which is negligible for

3.2 Synchronization Needs

The above choice of distribution facilitates the par-
allel execution of vector updates like addition and scal-
ing (daxpy and dscal operations). Each processor sim-
ply updates the local piece of the vector. Reduction
operations (ddot) require two steps. First, a parallel
computation of the local dot-products and second, a
global addition of the partial results (log nodes step).
Besides the communication costs, the second step in-
troduces a synchronization point that serializes the
processors preventing them from exploiting later par-
allelism.

The Lanczos algorithm can be given in a form where
only one synchronization point is necessary per iter-
ation. The same can not be easily achieved with the
Davidson algorithm. Synchronization stemming from
dot products appears in the following points in the
Davidson algorithm:

1. The inner products b7 R, i = 1,..., m in orthog-
onalization.

2. The computation of the norm [[byew||? =
bgewbnew

3. The computation of the new column: S; 41 =
bZ-Tdnew, i=1,...,m+ 1

Data dependencies prohibit any postponement of
global addition of inner products to some common
synchronization point: Point (3) depends on Point (2)
which depends on Point (1). The existence of three
well separated synchronization points in one iteration,
places strict limits on the efficient parallelization of the
algorithm.

The solution of the Rayleigh-Ritz small system
(step 1) could introduce additional synchronization if
a parallel algorithm was used. Because of the small
size of this system, the benefits from a parallel ex-
ecution do not account for the additional overheads.
Consequently, step 1 of the algorithm is executed iden-
tically by all processors.

4 The Restructured Davidson Method

In each iteration a new basis vector is computed
from the current information. Since the information
is distributed through the processors, the need of at
least one synchronization point is obvious if the new
vector is to contain the new Davidson direction. An al-
ternative way of proceeding is the s-step methodology
which is not considered in this paper [11]. To achieve
only one synchronization point in each iteration, the
above dependencies must be removed.

4.1 Removing the dependencies

The objective is to carry out all necessary inner
products independently. After a single global addi-
tion, their values can be used to compute the new
basis vector, the new column of S, and d,¢. Since
bnew 1s not available before the synchronization, the
computation of [|bpeyl||, S and D without an addi-
tional synchronization requires the use of the equiva-
lent form:

bnew =R- Z bzszR (1)
i=1

By substituting (1) for bpey whenever by, is needed,
the dependencies disappear. The following formulae
present this approach.

If V = AR, (2)
and rar = RTV (3)
rr = R'R (4)

t; = bR (5)

g = bV, i=1...m (6)

then the new vectors are given by:

lbneull =

Si,m+1

rar — 3 ti(gi 4 Simyn Hbmw”gi))

Sm+1,m+1 = ||bnewl|2
bnew = (R_ sztz)/nbnewn (10)
i=1
dnew = (V - E dztz)/anewH (11)
i=1

Since the four inner products (3-6) are indepen-
dent, one synchronization point is enough to compute
their values. These values can be used later for the
updates (7-11). The “long” updates (10-11) can be
computed in parallel.

4.2 The Restructured Algorithm

The following algorithm is a restructured version of
the Davidson algorithm that uses the above formulae
to compute the elements of the next iteration. It re-
quires only one synchronization point per iteration.

Step 0: Set m K. Compute initial Basis
B € RV*™ also D = AB, and the projection of size
mxm,S=BTAB=BTD.

Repeat until converged steps 1 through 14:
1. Solve SC = CA, with CTC = I, and A diagonal.
2. Target one of the K sought eigenpairs, say (X, ¢).

3. If the basis size 1s maximum truncate:

D—DC, B—BC, C=1Ig, S=A, m=K.
4. Compute R = (Diag — M)~'(Dc — ABc).

5. Matrix vector multiply: V = AR.

6. Locally compute t; = bI'R, g¢; brv, i

1,...,mand rar = RTV, rr = RTR.

7. Synchronize:
ti, g;,rar, rr.

Globally sum the corresponding

8. Set [[bpew|| = \/rr — > e, t7.

9. Set Si m41 = (gi — E;’n:1 Sijtj)-

10. Set Spg1,m+1 = rar — Y e ti(gi + Simt1).-
11. Scale Sz'7m+1 — Sz',m+1/||bnew||; 1=1,...,m+ 1.
12. Set bpew = (R— > 1e biti)/||brewl)-

13. Set dpew = (V — > _iey diti)/||bnew]|-

Increase m.

14.

175

The original and the restructured algorithm have
the same first four steps. The matrix-vector multipli-
cation is also common although it appears in different
steps. Table 1 gives a comparison of the arithmetic
involved in each iteration for the non-common steps.
The amount of work per iteration is slightly increased
compared to the work of the original algorithm. The
restructured algorithm requires two less dot products
but m more daxpy operations. Since the daxpy is an
update operation, it can be performed fully in parallel
and for a large number of processors the extra work is
insignificant.

Original | Restructured
dot 2m + 4 2m + 2
daxpy m 2m
other (flops) - 0(2m?)

Table 1: Comparison of the iteration work for the non-
common steps of the two algorithms.

5 Timing Results

The two versions of the algorithm have been im-
plemented on a iPSC/860 hypercube, with 8Mb of
memory per node. The large network latency and low
computation-to-communication ratio of the iPSC/860
suggest the use of coarse grain parallelism [6]. How-
ever, the high processor speed is achievable in optimal
situations, thus medium grain applications may per-
form equally well on the iPSC/860. The major advan-
tage of using a hypercube architecture for the above
iterative methods is the node topology which permits
the global addition-synchronization in lognodes steps
without channel contention.

The matrix used in the timing experiments is a sin-
gle diagonal matrix with elements A;; = ¢, except the
initial block A;; = —1, ¢,7 < 30 and ¢ # j. This form
facilitates a fully parallel execution of the matrix vec-
tor multiply and it is economical to compute. It re-
quires a vector update operation and a small matrix-
vector multiply, operations that consist a small per-
centage of the iteration-work of the algorithm. In this
way the algorithm timings are affected neither by ex-
tra communication on the multiplication routine nor
by the dominating parallelizing properties of a large
matrix. The sizes of matrices tested are varied from
small cases;, N = 5000, up to a moderately large case
N = 10°. In the latter case, the memory requirements

impose the use of at least 16 processors. For all the
experiments the lowest eigenpair is required, the algo-
rithm is restarted every 7 iterations, and it is run from
twenty to forty iterations depending on the size of the
matrix. Results are reported in node configurations
from 1 to 64 nodes.

The objective is to reduce synchronization on the
Davidson algorithm and hence improve the speedup
for a large number of processors. This is important
when a bigger number of processors is needed to com-
pensate for the increased memory needs of large appli-
cations. Figures 1 and 2 illustrate the speedup curves
for both versions applied on seven different sizes of the
above test matrix and for all node configurations.

48
40
32 A
S
P
€
€
g 241
u
P
16 4
8 -
4 -
Number of Processors
Figure 1: Speedup curves for the test matrix and
sizes:(x) : N = 5000, (o) : N = 10000, (¢) : N =

20000, (<) : N = 50000. The original version is de-
picted by dotted lines.

In both figures the speedup increases with the size
of the cube and the size of the matrix. For some small
cases in Figure 1 the speedup levels off but does not
decline, at least for the cube-sizes used, and for the
large cases in Figure 2 it is close to linear. In addi-
tion, most of the small cases demonstrate an ascending
speedup character which is promising for execution in
multiprocessors with hundreds of nodes. On the other
hand, the “leveling oft” is justified by the fact that
all of the small cases in Figure 1 have execution times
close or much lower than 1 sec.

The comparison of the restructured with the orig-
inal method verifies what is theoretically expected.
There is a consistent improvement over the older ver-

176

64

S
p
€
€
d
u 32+
P
16 4
8 T T

32 64

Number of Processors

Figure 2: Speedup curves for the test matrix and
sizes:(o) : N = 60000, (x) : N = 200000, and
(d) : N = 10° The original version is depicted by
dotted lines.

sion that increases with the number of processors.
This is the consequence of the reduction on synchro-
nization. In the original algorithm the more processors
there are, the more time is wasted in synchronization
and communication. The new version allows the pro-
cessors to run independently until the following itera-
tion, exploiting more of the available parallelism. The
speedup increase over the older version varies from
5% to 18%. Projecting the experience from 64 nodes
onto hundreds of nodes, the restructured algorithm
should present significant improvements on the David-
son method. As the size of the matrix grows, there is
an slight decrease in the difference between the two
versions because each processor is assigned more work
and this diminishes the effect of the synchronization
overheads. However, the superiority of the restruc-
tured algorithm is obvious even for the case N = 10°.

In view of the increased arithmetic on the restruc-
tured algorithm, execution timings are also important
to show the actual benefits. The restructured algo-
rithm is slower on one node by 0.7% to 2.6%. This
is due to the additional vector updates and the extra
operations for calculating S; ,,41. The better parallel
properties offset the overhead after 8 or 16 processors
and the new version steadily reduces the time. With
64 nodes the new algorithm is faster by 2.6% to 9%

and execution times show descendent tendencies while
the original ones level off. For large cases, the break
even point can increase to 16 or 32 processors, but this
is only a small percentage of the processors required
by these sizes. Figure 3 shows the differences in these
execution times for some of the test cases.

0.05 +

-

—0.1 +

secs

—0.2

16 32 64

Number of Processors

Figure 3: Time differecnce between the restructured
and the original algorithm (Topiy — Tress) for various
node configurations and for the sizes: (o): N=10000,
(x): N=50000, («): N=60000.

Finally, it should be mentioned that since commu-
nication consists a lognodes step, synchronization is
the bigger bottleneck for a large number of proces-
sors. When more complicated matrix vector multiplies
are introduced, the larger load imbalances and delays
favor the version with fewer synchronization points.
In addition, the restructured version is also favored if
smaller dimension topologies (as the mesh) are used.

6 Numerical Behavior

The restructured algorithm makes extensive use of
values computed in previous steps to remove the de-
pendencies from the same step. The results of this
methodology have generally been regarded as numeri-
cally unstable [19]. Numerical instabilities are also ob-
served for the restructured method when run without
restarting, i.e., without step 3. However, these insta-
bilities are not severe and the algorithm converges to
a low residual threshold (see Figure 4) for the atomic
physics test problems appearing on Table 2, [17, 7].
The original method improves the residual about two

177

orders of magnitude. For the same test problems, the
accuracy can be improved significantly if the matrix is
shifted by the extreme diagonal element correspond-
ing to the extreme required eigenvalue (see Figure 5).
When restarting is used (usually every 15-20 itera-
tions), the original and the restructured methods per-
form in a similar way (Figure 6). A brief explanation
of the observed behavior appears below.

1

5
10510
of
|[Res| (c)

10

(b)
(a)
_15 T T T T
1 10 30 40 70 80

Number of Iterations

Figure 4: Convergence of the residuals of the restruc-
tured (R) and original (O) versions for the three cases
in Table 2 with no restarting.

The numerical errors introduced from the use of old
entries of S and D for computing the new columns in
equations (8) and (11) are first considered. For com-
parison purposes and without loss of generality it is
assumed that g; and t; are accurate since they are
computed in the current step by simple dot products
and matrix vector multiplies. These operations ap-
pear in the original Davidson as well. Assume that
for every (i,j) S-element, the computed value, Sj ;,
and the theoretically correct value S{Eal, satisfy:

Spet = Sij 465, (12)
j—1

St = g =) S (13)
k=1
ji—1

Sij = gi_zsi,ktk (14)
k=1

Case | Program | Description Size | Nonzero |
(a) (MCDF) | Lithium-like Uranium. 410 31087
(b) (MCDF) | A complete active space calculation with | 2149 | 335416

n up to 4 for Beryllium-like Xenon.
(c) (MCHF) | Li, 2S; by n method; n=6. 862 120735

Table 2: Description of the atomic physics test cases.

Substituting (13) and (14) to (12) yields:

ji—1
652'7]' = —Zési,ktk (15)
k=1
j—1
= |5Sm’| < Zl‘ssi,k||tk| (16)
k=1

Under the initial assumptions a similar formula for the
error of the D vectors can be found:

ji—1
18D5]1 <Y 118 Dxll[t] (17)
k=1

Formulae (16) and (17) suggest the intuitive result
that the errors from previous steps are accumulated to
create unstable later steps. If the crude upper bound
[tx] < ||R|] < 1 is assumed, the error on both S and D
is bound by the exponential form O(u2’), where u is
the error in the first step. Since t; are the overlaps of
the new vector with the old basis vectors, t; are usu-
ally several orders of magnitude less than one in early
iterations. Without the preconditioning, ¢; would be
exactly zero. As the algorithm proceeds, the basis fills
up with meaningful vectors. When preconditioning is
applied to the new residual, the improvement in the di-
rection causes unavoidable larger overlaps with exist-
ing vectors. If the ¢; are bounded by some very small
number 7', |T'| < 1, the error grows like O(u(1+7).
The bound is still exponential but it requires hundreds
of steps to become large.

When the basis is truncated after a number of steps,
the restarting vectors for D and B as well as the new
projection S, are computed from the step 3 in both
algorithms. As a result, the errors introduced in the
previous iterations in calculating S, C' and D are now
propagated to the new restarting vectors and matrices.
If the restarting takes place before the errors in for-
mulae (16) and (17) become large, the two versions of
the algorithm become effectively equivalent and this
explains the convergence behavior in Figures 4 and
6. In Figure 6 the test case (a) is not included be-
cause it converges before restarting occurs. In some

178

ill-conditioned problems the restructured algorithm
could demonstrate numerical instability. Fortunately,
encountering such an instability would also imply a
good basis and signify a quite close convergence.

Ideally, to avoid error propagation from restarting,
step 3 of both algorithms should be performed explic-
itly, by the alternative steps:

(3.1) B~ BC

(3.2) reorthonormalize B
(3.3) D=AB

(3.4) S=BTD

(3.5) solve SC = CA for C.

This is an expensive procedure that introduces extra
synchronization and additional matrix-vector multi-
plies. Practically, this procedure should be performed
only near convergence or when the monitored error
reaches a specified threshold [22].

Shifting the spectrum of the matrix is a widely
used technique to improve numerical stability. Ap-
plications that benefit from the Davidson algorithm
have large diagonal-dominance ratio !, i.e., very small
off-diagonal elements compared with the changes in
magnitude between diagonal elements [10, 12, 22]. Tt
is expected that some digits will be lost if arithmetic
involves both the large and the small elements. The
purpose of shifting is to reduce the norm of A which
is an important factor in error bounds. For example,
the matrices S and D are not normalized and their
norm is bounded by ||4||. Reducing |[|S]| and || D] can
substantially improve the method’s numerical stabil-
ity. The appropriate shift for optimally reducing || A||2
is (Diagmin + Diagmasz)/2. However, this choice is not
necessarily beneficial for the Davidson algorithm.

The shift to be chosen is one that brings the
required eigenvalue very close to zero. In atomic

1The term is used to refer to the ratio d = min; ;|(A4i —

Ajj)/Aij |

—14
—5 4
10:‘%10
of
[Res| (c)
—10 - 508 RS
S
S
(b) 0S
(a)
_15 T T T T T
1 10 30 40 70 80

Number of Iterations

Figure 5: Convergence of the residuals of the restruc-
tured (R), the restructured with shift (RS), and the
original with shift (OS) versions with no restarting.

physics and quantum chemistry applications the ma-
trices have large diagonal-dominance ratio and there-
fore the eigenvectors have one dominant component.
From the Gershgorin Circles theorem [9] it falls that
the required eigenvalue is very close to the diagonal
element corresponding to the dominant eigenvector
component. This diagonal element is thus a good shift.
Such a shift does not reduce [|A4|| in general. Since
the goal in iterative algorithms is to find one eigen-
pair rather than the whole eigensystem, it is desirable
to make the problem most stable near the solution.
Therefore, the magnitude of the required eigenvalue
and the eigenvalues close to it should be minimized.
This is satisfied by the choice of the corresponding
diagonal element as a shift. Figure 5 illustrates the
gains of this strategy, by comparing it with the un-
shifted restructured and the shifted original version.
The shifted version is better than the unshifted origi-
nal method and similar to the shifted original version.
The improvements are obvious even for the test case
(c), which has the lowest diagonal dominance ratio of
the three cases in Table 2.

In most of the current applications, the Davidson
method is used with frequent restarting. If shifting
is applied in addition, the numerical stability of the
restructured algorithm is enchanced and it is proved
as reliable as the original method. Results from the
two test cases in Figure 6 demonstrate the similarity
of the two versions.

179

log
[|Res||

10

30 40

Number of Iterations

Figure 6: Convergence of the residuals of the restruc-
tured (R), the original (O), restructured with shift
(RS), and original with shift (OS) with restarting.

7 Conclusions

The Davidson method is a useful tool for finding
a few extreme eigenpairs of large symmetric matrices
appearing in quantum chemistry and atomic physics.
The large diagonal-dominance ratio and the very large
size of these matrices advocate the use of the David-
son instead of the Lanczos method and the large sizes
necessitate the use of hundreds of processors in todays
multicomputers.

The three distinct synchronization points arising
from dot products in the original Davidson algorithm
are reduced to one by restructuring the algorithm.
The new version demonstrates better speedups and
faster execution times even on a fairly low number of
The experiments show that the benefits
are expected to increase with the number of proces-

processors.

sors.

In some ill-conditioned problems the new version
can exhibit numerical instability. However, the nature
of the matrices where the Davidson is used, as well as
the employment of simple and necessary techniques as
restarting and shifting, alleviate the problem. Conver-
gence close to working accuracy is observed for several
atomic structure matrices.

The above results are encouraging, and further ex-
periments have to be carried out in multicomputers
with more processors and faster interconnects. Can-
didates include the CM-5 and the Intel Paragon. It is

interesting to see if and how the absence of the hyper-
cube topology can be counterbalanced by a fast net-
work. Parallel implementation of the many extensions
of the algorithm needs to be considered as well.

Acknowledgements

This work has been supported by a National Sci-
ence Foundation grant No. ASC-9005687. The au-
thors would like to thank the Joint Institute for Com-
putational Science that make the 128-node iPSC/860
in Oak Ridge available for scientific experiments.

References

[1] G. Cisneros, M. Berrondo and C.F. Bunge, DVD-
SON: A Subroutine to Fvaluate Selected Sets of
FEigenvalues and FEigenvectors of Large Symmet-
ric Matrices, Compu. Chem. 10 (1986) 281.

[2] M. Crouzeix, B. Philippe and M. Sadkane,

The Davidson Method, Tech. Rep., Report

TR/PA/90/45, CERFACS, Toulouse, 1990.

E.R. Davidson, The Iterative Calculation of a
Few of the lowest Eigenvalues and Corresponding
FEigenvectors of Large Real-Symmetric Matrices,
J. Comput. Phys. 17 (1975) 87.

[4] E.R. Davidson, in: Methods in Computational
Molecular Physics, eds. G.H.F. Diercksen and S.
Wilson (Reidel, Dordrecht, 1983) p. 95.

[5] E.R. Davidson, Super-Matriz Methods, Comput.
Phys. Commun. 53 (1989) 49.

[6] T.H. Dunigan, Performance of the Intel
iPSC/860 and NCUBE 6400 Hypercubes, Report
ORNL/TM-11790, Oak Ridge National Labora-
tory, 1991.

[7] C.F. Fischer, The MCHF atomic-structure pack-

age, Comput. Phys. Commun. 64 (1991) 369.

[8] C.F. Fischer, The Hartree-Fock Method for

Atoms: A Numerical approach, (J. Wiley, New

York, 1977).

G.H. Golub and C.F. Van Loan, Matrix Com-
putations, 2nd ed. (Johns Hopkins Univ. Press,
Baltimore, 1989).

180

[10] T.Z. Kalamboukis, Davidson’s algorithm with and
without perturbation corrections, J. Phys. A 13
(1980) 57.

S.K. Kim and A.T. Chronopoulos, A class of
Lanczos-like algorithms implemented on parallel
computers, Parallel Computing 17 (1991) 763.

R.B. Morgan and D.S. Scott, Generalizations of
Dawvidson’s Method for Computing Eigenvalues of
Sparse Symmetric Matrices, STAM J. Sci. Stat.
Comput. 7 (1986) 817.

[13] R.B. Morgan and D.S. Scott, Preconditioning the
Lanczos Algorithm for Sparse Symmetric Eigen-
value Problems, STAM J. Sci. Stat. Comput. Vol.

14, No. 3 (1993).

J. Olsen, P. Jorgensen and J. Simons, Pass-
ing the One-Billion Limit in Full Configuration-
Interaction (FCI) Calculations, Chem. Phys.
Lett. 169 (1990) 463.

B.N. Parlett, The Software Scene in the Ertrac-
tion of Figenvalues from Sparse Matrices, STAM
J. Sci. Stat. Comput. 5 (1984) 590.

B.N. Parlett, The Symmetric Eigenvalue Prob-
lem (Prentice-Hall, Englewood Cliffs, New Jersey,
1980).

[17] F.A. Parpia, I.P. Grant and C.F. Fischer,
GRASP2, 1990.
[18] B. Philippe and Y. Saad, in: Proceedings of In-

ternational Workshop on Parallel Algorithms and
Architectures, eds. M. Cosnard at al. (North-
Holland, Amsterdam, 1989) p. 33.

[19] Y. Saad, Krylov Subspace methods on Supercom-
puters, SIAM J. Sci. Stat. Comput. 10 (89) 1200.

[20] D.S. Scott, Implementing Lanczos-like Algo-
rithms on Hypercube Architectures, Comput.

Phys. Commun., 53 (1989) 271.

A. Stathopoulos and C. F. Fischer, A Hypercube
Implementation of Davidson’s Algorithm for the
Large, Sparse, Symmetric Eigenvalue Problem,
Intel Supercomputer Users’ Group, 1991 Annual
Users’ Conference, (1991) 343.

A. Stathopoulos and C. F. Fischer, A Davidson
program for finding a few selected extreme eigen-
pairs of a large, sparse, real, symmetric matriz,
Comput. Phys. Commun., submitted.

