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Abstract. First, we consider the problem of orthonormalizing skinny (long) matrices. We pro-
pose an alternative orthonormalization method that computes the orthonormal basis from the right
singular vectors of a matrix. Its advantage are: a) all operations are matrix-matrix multiplications
and thus cache-efficient, b) only one synchronization point is required in parallel implementations,
¢) it is typically more stable than classical Gram-Schmidt. Second, we consider the problem of or-
thonormalizing a block of vectors against a previously orthonormal set of vectors and among itself.
We solve this problem by alternating iteratively between a phase of Gram-Schmidt and a phase of
the new method. We provide error analysis and use it to derive bounds on how accurately the two
successive orthonormalization phases should be performed to minimize total work performed. Our
experiments confirm the favorable numerical behavior of the new method and its effectiveness on
modern parallel computers.
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1. Introduction. Computing an orthonormal basis from a given set of vectors
is a basic computation, common to most scientific applications. Often, it is also one
of the most computationally demanding procedures because the vectors are of large
dimension, and because the computation scales as the square of the number of vectors
involved. Further, among several orthonormalization techniques the ones that ensure
high accuracy are the more expensive ones.

Skinny (or long) matrices, whose row dimension far exceeds their column di-
mension, arise naturally in various scientific contexts. Examples include statistical
analysis where there are much more observations than variables, and iterative meth-
ods that use a small subspace of vectors to span the required solutions. For a variety
of reasons, an orthonormal basis of these vectors must be computed. Traditionally,
this is obtained through the QR factorization, even though quite often, the matrix
R is not of primary interest, but rather the orthonormal basis (). The QR factor-
ization is computed through Householder transformations (QR algorithm) or through
classical Gram-Schmidt (GS) or its modified version (MGS). Although less stable
numerically, GS with reorthogonalization is usually preferred to the QR algorithm
because of better computational properties.

Yet, all of these methods have performance limitations on modern, cache based
processors and parallel computers. Their implementations are based on level 1 or
level 2 BLAS operations [8, 9, 15], which have low cache reuse. Level 3 BLAS im-
plementations are possible but they are not suitable for skinny matrices. On parallel
platforms, such as the increasingly popular clusters of workstations, reduction in com-
munication and synchronization overheads has not kept up with the explosive growth
of network bandwidth and processor speed [21]. As a result, the global synchroniza-
tion required by frequent inner products does not scale with the number of processors.
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A method is still needed that operates only on blocks of vectors and requires a number
of synchronizations that is independent of the size of the matrix.

In many applications, orthonormalization occurs in an incremental fashion, where
a new set of vectors (we call this internal set) is orthogonalized against a previously
orthonormal set of vectors (we call this external), and then among themselves. This
computation is typical in block Krylov methods, where the Krylov basis is expanded by
a block of vectors [11, 12]. It is also typical when certain external orthogonalization
constraints have to be applied to the vectors of an iterative method. Locking of
converged eigenvectors in eigenvalue iterative methods is such an example [19, 22].
The nature of these applications suggests that usually the internal set is a skinny
matrix with fewer vectors than the external set.

Conceptually, this problem can be viewed as an update of a QR factorization
that has already produced the orthonormal set of external vectors which should not
be modified. Computationally, however, the problem is usually tackled as a two phase
process; first orthogonalizing the internal vectors against the external ones (external
phase), and second the internal vectors among themselves (internal phase). For the
external phase, block GS and MGS are the most competitive choices, while for the
internal phase an efficient orthonormalization procedure for skinny matrices is needed.

Most of the previous efforts to address the above two problems considered blocks of
vectors, and used hybrids of the more scalable GS across blocks, and the more accurate
MGS within blocks [2, 14]. Performance improves but the number of synchronization
points is still linear to the number of vectors, and BLAS level 2 kernels are still
dominant despite blocking. Interestingly, such efforts have focused on a full QR
factorization of a set of vectors, rather than the two phase problem.

In this paper, we introduce a method based on the singular value decomposition
(SVD) that uses the right singular vectors to produce an orthonormal basis for a
given skinny matrix. The idea itself is not new, dating back at least to Poincaré,
and it is sometimes encountered in chemistry and wavelet literature [5, 6, 16, 17, 20].
However, it has not received any attention as a computationally viable orthogonal-
ization method, and to our knowledge there is no analysis of its numerical properties.
The method, which we call SVQB, uses exclusively level 3 BLAS kernels, and it has a
constant number of synchronization points. We show that it is not as accurate numer-
ically as MGS, but it is better than GS in the absence of special sparsity structure.
More interestingly, we show that more stable alternatives, such as MGS or House-
holder, are an overkill for our two phase problem. Coupling the SVQB method for
the internal phase with a block GS with reorthogonalization for the external phase
results in a method also with constant synchronization requirements.

The paper is organized as follows. First we describe the SVQB method for skinny
matrices, we analyze its numerical stability, and we confirm our theory through nu-
merical experiments and comparisons with other methods. Second, we couple SVQB
with a block GS for the two phase problem. We analyze the numerical interaction
between the two methods, and based on this theory we tune the two phases to avoid
unnecessary reorthogonalizations. Following, we present timings from a series of ex-
periments on the Cray T3E, IBM SP-2, and on a cluster of SUN workstations. These
verify that the block computations and the small number of synchronizations help the
new method achieve accurate orthogonality, faster than other competitive methods.

2. The problem(s). Let V € R"** be a set of orthonormal vectors, and
W € R™ ™ be a set of vectors, where k + m < n. In practice, we expect m < k
and m € n. When m < n, W is often referred to as a skinny matrix. The first
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problem we consider is that of obtaining an orthonormal set of vectors ), such that
span(@Q)=span(W). The second problem is again to obtain an orthonormal @), such
that span([V W])=span([V @]) and @ L V. In both problems @ can be any orthonor-
mal basis, not necessarily from a QR factorization. In finite precision, the equality of
the spans can be relaxed, but the orthonormality requirement must remain.

The distinction between the two problems is made for computational reasons.
First, orthonormalizing skinny matrices is a problem important in itself, which allows
for efficient solutions without a QR factorization. In the presence of an external
matrix V', methods like the classical GS would orthogonalize each vector of W against
all previous orthogonal vectors in both W and V. In that case, the difference between
the two phases is blurred. However, such algorithms allow only for level 2 BLAS
computational kernels, and introduce at least O(m) number of synchronization points
on parallel computers. To improve computational performance we need to consider
W as a block (or subblocks within W). A block GS method would orthogonalize the
block against V' (and other previous subblocks in W). In this case, the orthogonality
among the vectors within the block must be resolved at a different time, in a distinct
internal phase. Finally, because V cannot be modified, distinguishing between the
problems allows non-QR factorization methods to be used for the internal phase.

For the internal phase, GS and MGS are popular QR factorization methods which
both incur the same number of arithmetic operations, they are based on level 2 BLAS
kernels, and can be implemented in parallel with a modest number of m + 1 synchro-
nization points [11, 24]. MGS is more numerically stable with the error in the orthog-
onality of @ bounded by ex(W), where k(W) is the condition number of W [1, 3].
Householder reflections yield a matrix @ which is orthogonal to machine precision (),
but require twice the arithmetic of (M)GS. In practice, for most matrices, a second
orthogonalization with GS is typically enough for producing orthogonality to machine
precision [7], and thus GS is often preferred over other methods.

In the context of the two phase problem, producing an internal set of vectors @
with orthogonality close to machine precision is unnecessary, because of the interde-
pendence of the phases. For example, external orthogonalization against V' may spoil
the internal orthogonality of W, and vice versa. Therefore, this two phase problem
obviates the use of expensive but stable methods such as Householder.

3. The SVQB method. An especially interesting orthonormal basis of the
span(W) is the one derived from the right singular vectors of W. Assume that the
vectors in W are normalized. The singular values of W are the square roots of
the eigenvalues of S = WTW, and the right singular vectors are the corresponding
eigenvectors of S. Let SU = UA be the eigendecomposition of S, and define @@ =
WUA~Y2. Obviously, span(Q) = span(W) and QTQ = I. If the W vectors are
not normalized, the diagonal of S, D = diag(S), contains the squares of their norms
(Sii = WIW;). Therefore, we can implicitly work with the normalized WD~1/2 by
scaling the columns and rows of S. This is inexpensive, and as numerically stable
as explicit normalization. The resulting factorization is not a QR but rather a ‘QB’
factorization where @ is orthonormal and B a full matrix. In exact arithmetic, the
algorithm for this singular vector QB factorization (which we call SVQB) follows:

ALGORITHM 3.1. Q = SVQB(W)

1. S'=wTw

2. Scale S = D'/28'D~1/2 with D = diag(S")
3. Solve SU = UA, for all eigenpairs



4. Compute Q = WD~1/2UA~1/2

When some of the vectors in W are linearly dependent, one or more of the eigenvalues
and their corresponding vectors in ) are zero. In finite precision, a similar effect is
caused by almost linearly dependent vectors and eigenvalues close to zero. Because
of numerical noise, such eigenvalues cannot be bounded away from zero. To prevent
normalization overflows, and to avoid an explicit computation of the norm of the
vectors (), we set a minimum threshold for eigenvalues. If € is the machine precision,
we insert the following two steps:

31 7=c¢ max,-(Ai,-)

3.2 If Ay <, set Ay =7, for all 4.
Other strategies for dealing with linear dependencies are also possible. For example,
we could consider only those eigenvectors with eigenvalues greater than some “safe”
threshold. The resulting basis is then smaller, but it is guaranteed to be orthonormal
and to numerically span a subspace of the original vectors. Finally, because of finite
precision arithmetic, the algorithm may have to be applied iteratively (Q(i“) =
SVQB(Q(?)), until an orthonormal set Q is obtained.

The solution of the eigenvalue problem and the implicit normalization involve only
m X m matrices (S and U), and thus they are inexpensive. On parallel computers
these can be duplicated on each processor. The matrix-matrix multiplication for
computing S and the multiplication of W with U, each contribute 2nm? floating
point operations, which makes the algorithm twice as expensive as GS. However, these
operations are level 3 BLAS kernels and can be performed efficiently on cache based
computers. Alternatively, the matrix multiplication for computing the symmetric S
can be performed with half the operations, but level 2 BLAS will have to be used.
Moreover, a parallel implementation of the SVQB method method requires only one
synchronization point, when computing the matrix S.

3.1. The Cholesky QR method. Similarly to the SVQB method, we can
derive a block QR factorization based on the Cholesky factorization. Note, that if
S = WTW = RTR, where R is the Cholesky factor, Q = WR™! defines the QR
factorization for W [11]. Although this method (denoted as CholQR) is rarely used
computationally, it has some attractive characteristics; it is a QR factorization, it is
based on a level 3 BLAS kernel and a triangular system solution, it involves only 50%
more arithmetic than GS, and it also requires one synchronization point in parallel
implementations. Researchers have noticed that it is not as stable as MGS, but it
is often more stable than GS [2, 10]. One of the problematic issues with CholQR is
that the more ill-conditioning S is, the less stable the Cholesky factorization becomes.
Regularizing it effectively is not as straightforward as in the case of SVQB, where the
smallest singular pairs can be simply left out of the computation. Finally, the cache
performance of CholQR is usually inferior to that of SVQB, because of the triangular
solve.

4. Stability analysis of SVQB. For many applications, such as block Krylov
iterative methods, the orthonormality of the resulting vectors @ is of importance, and
not the upper triangular R of the QR factorization. For example, Krylov methods
will still make progress, albeit a slower one, if provided with a slightly different or-
thonormal set ). Thus, as it is common in the literature, we measure stability as
the departure of the resulting () from orthonormality rather than the backward error.
Because of its block, non sequential nature, we expect the SVQB procedure to be less
stable than MGS. But as we show below, it is often more stable than GS.
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_ THEOREM 4.1. Let W be a set of m linearly independent vectors of R". Let
Q be the floating point representation of the matriz computed by applying the SVQB
procedure on W. If k(W) is the condition number of W, then

I1-QTQ) < co min (e k(W2 1),

where ||.| denotes the 2-norm, € is the machine round off, and co is a constant de-
pending on n and m. ~
Proof. Let S = WTW, and let S be the floating point representation of S. Then

(4.1) S =8+465, with [|65] <ecy €S-

We can further write this as ||65]|] < ¢; € ||[W]|?. The effect of performing scaling on
the matrix S, corresponds to each vector in W having norm 1 implicitly, and in that
case [|6S]| < ¢1 € m.

Let U, with UTU = I, and A be the computed eigenvectors and eigenvalues of
the small m x m symmetric matrix S. From standard backward error analysis, these

can be considered an exact eigendecomposition of a nearby matrix S = UAUT. Using
relation (4.1) we can express the error in S as:

(4.2) S =28+6S, with ||6S] < ca € ||S||+ O(e?).
From the above, and by letting c3 = ¢; + ¢2, the matrices S and S are related by:
(4.3) 18 = S|l = [165 + 85| < e5 € [|S]-

Let Apmin = min; Aj;, and A\pnee = max; Aj;, and consider a similar notation for
eigenvalues of other matrices. Because our algorithm sets eigenvalues \; that are
smaller than €\p,q; equal to this threshold, we define a diagonal matrix A such that:

A /_\ii, if /_\“ > GXmaz
(44) A = { €Amaz, if /_\zz < exma,z

Let Q = Q + 6Q = WUA=/2 + 5Q be the floating point representation of the
matrix returned by the SVQB procedure. Then, ||6Q|| < ¢4 € |[|[W] [|U]| |A="/2]].

If we denote by \; the exact gige_nvalues of S, wit_h Amaz the largest one, then
W]l = VAmaz- Note also that UTU = I, and thus ||U|| = 1. From (4.4) we have:

N 1 1
45 A7 < min [ ——, 2.
( ) ” ” = ()\mzn 6Amaw>

Because for symmetric eigenproblems the error in the eigenvalue is bounded by the
error in the matrix, for any A; we have |)\i - )\z-| < |IS=S|| € c3€ellS]| = c3 € Amaz-
Then, there are constants ¢5 and c¢g, such that

(46) j\min = Ain +C5 € Apge  and 5\ma.av = Amaz + C6 € Amaz-

We note that k(W) = \/k(S) = /Amaz/Amin, and because € + cg €2 = O(e), a
substitution of (4.6) into (4.5) yields:

A 1/ Ami 1
] —1 < . min )
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The first term is chosen as the minimum if none of the A;; is in the order of
€Amae OF smaller. This means that all the singular values of W, v/);, must be larger
than +/€, because they can be represented by eigenvalues of S, despite the squaring.
Therefore, k(S) < O(1/¢), and 1 + ¢5 €x(S) = O(1). Thus, the bound (4.7) becomes:

. 1 1
(4.8) IA7|| < ¢; min ( ) .

)
/\min eAmaz

By setting cg = cqcr, we can give a bound for ||6Q)||, as well as for ||Q|| = ||[WUA1/2||:

(4.9) 16QI| < es min ( e (W), Ve )
(4.10) 1QIl < es min ( £(W), 1/Ve ).

We emphasize that the above is not the backward error for the exact result of
SVQB, but for the product of computed matrices that yields Q. The exact backward
error is not relevant because the orthogonality of @ is of interest.

Let us consider the departure of the computed @ = @ + dQ from orthonormality:

11— QTQl = |II - A 2TTWTWUA Y2 +5Q7Q + QTsQ|| + 0(3Q?)
(4.11) < || = AT2OTSTATY2|| + 2/16Q]1|Q]-

From relations (4.1-4.4) and the orthonormality of U, this becomes:

11 = QTQI < | = A P0"STATY2 + AP0 (65 + 65)UA2|| + 2(1Q1QI|
(4.12) <= AVERATY2) 4+ IATH116S + 6511 + 2115QNIQI.

From definition (4.4), the first term is zero if kK(S) < O(1/e). Otherwise it is equal
to max(1 — \; / €Amaz> Tor Ai < €Anaz). However, this is less than one, and in that
case the other terms are also O(1). From bounds (4.3) and (4.8-4.10), and by setting
co > c3cr + 2¢2, we obtain:

IT — QT Q| < cser min (ex(W)?, 1) + 2¢3 min ( ex(W)?, 1)
(4.13) < co min (€ k(W)?, 1).

a
Next, we bound |k(Q) — 1|, thus showing that when applying SVQB iteratively, Q
converges fast to an orthonormal basis. We first state the following lemma (see [13]).
LEMMA 4.2.
L I IT=QTQ|| < a, then [QTQI < IQI <1+ a.
2 - QTQl < a'<1, then I — (QTQ) || < 1.
PROPOSITION 4.3. If ||I — QTQ|| < a < 1, then for the condition number k(Q):

W@ <122

Proof. By definition, x(Q) = /[|QTQ||[(RTQ)~1]|. The proof follows from
lemma 4.2, since [QTQ|| < |QI° < 1+ a, and [[(QTQ) || = | - T+ (QTQ) || <
14+ 17— (QTQ) 1 < .

THEOREM 4.4. Let W be a set of m linearly independent vectors of R™, with
condition number k(W). Let Q be the floating point representation of the matriz

computed by applying the SVQB procedure on W. If € is the machine round off, then:

if Ve k(W)<e<l, &(Q)<1+0(ek(W)?)).
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Proof. If we let a = O(e k(W)?) < ¢ < ¢ < 1, according to theorem 4.1,
IT-QTQ|| < a, and by using proposition 4.3, we have: k(Q) < \/}”_L—g < \/1 + 22 <

1+ 2. This proves the bound, because, in this case, a is bounded away from 1. 00

The case where k(W) > % cannot be bounded in the general case because

numerical error dominates. However, some intuition can be gained by considering the
structure of QT Q as obtained from (4.12), and the bounds (4.9-4.10) and (4.3):

QTQ=A"PAATY2+ ATVPASATI2 1 AQ,

where AS = O(edmaz) and AQ = O(1) element-wise. Note that after scaling,
A=12ASA=1/2 also becomes element-wise O(1). From the definition of A, the en-
tries of the diagonal matrix A=1/2AA~1/2 are 1 for all eigenvalues above the €Apqz
threshold, and A;/(eAmaz) = 1/(ex(S)) for the rest. Thus, the eigenvalues of QTQ
are O(1) perturbations of the these diagonal values, so the smallest eigenvalue cannot
be bounded away from zero. If we assume that the only finite precision errors occur
from the inability to represent eigenvalues of S smaller than €4z, ie., AS = 0
and AQ = 0, then obviously, k(QTQ) = ex(S) < ex(S), and thus k(Q) < /ex(W).
Note that in this case the vectors of @ are exactly orthogonal to each other, yet their
condition number is far from 1.

Although k(Q) < v/ex(W) can not be proved in general, we have observed it in all
our numerical experiments. A plausible explanation is that O(1) perturbations after
vector scaling introduce random noise which we expect to be in linearly independent
and relatively well conditioned directions.

4.1. Convergence comparisons. The above theorems suggest that in most
situations, applying SVQB once or twice should produce orthogonal vectors. In the
case of extremely ill-conditioned vectors, a third application of the procedure might
be necessary. This is akin to the behavior of GS with reorthogonalization [13, 18, 7],
but it is expected to be better than iterative GS without internal reorthogonalization.

If an accurate Cholesky decomposition can be computed, the CholQR procedure
should be identical to SVQB. In fact, it might be possible to prove bounds for CholQR
similar to the ones in the previous section. However, even with an accurate decom-
position, for very large condition numbers we expect CholQR to be less stable than
the eigenvalue-based SVQB method.

To demonstrate the relative effectiveness of these methods, we apply them on
three sets of vectors, and report the improvements on their condition numbers. The
first set is the 30 Krylov vectors generated from a vector of all ones and the 2-
D Laplacean on a regular, finite difference, square mesh with Neumann conditions.
The dimension of the matrix is 1089, and the initial vector is not considered among
the set of 30. The second set consists of the columns of the Hilbert matrix of size
100. The third set is rather artificial, and it has been used to show the benefits
of MGS over GS [2, 13, 14]. We use the following variation, shown in MATLAB
notation: W = [ ones(1,30); diag( rand(30,1)*eps*eps*eps ) 1; Alltests are
run in MATLAB, on a SUN Ultra-2 workstation with ¢ = 2.2e—16. The condition
numbers are computed by the Matlab function cond and therefore could be inaccurate
whenever they exceed 10'®. The results for these three cases are shown in tables 4.1,
4.2, and 4.3 respectively.

We compare SVQB against CholQR, GS, and MGS, by printing the condition

number £(Q) of the vectors that these methods produce after each iteration. Since
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SVQB CholQR GS | MGS

Iteration k(Q,) k(Q) &(Q) K(Q) k(@) | K(Q)
1 6e+16 1le+09 4e+08 1le+09 2e+16 | 2e+01

2 4e4+08 1le+01 4e+00 6e+01 le+14 | 3e-14
3 4e+00 1+€ 1+e | 147e-12 8e+10 1+e€
4 - - - 1+e€ 3e+06 -
5 - - - — | 1+1e—03 -
6 - - - - 1+e€ -

TABLE 4.1
W = Krylov(A,30), where A is a 2-D Laplacean of size 1089x 1089, and an initial vector of all
ones. k(W) = 3e+20. However, after scaling because of numerical error k(W) becomes: 6e+16.

SVQB CholQR GS MGS

Iteration  A(Qu) Q) k(@) 5(Q) | K(Q) £(Q)
1 2e+19 3de+11 9e+10 2e+12 | 2e+19 7e+02
2 9e+10 2e+03 Te+02 6e+04 | 4de+16 | 14+2e-13
3 8e¢+02 1+45e-11 1+42e-11 | 14+2e-07 | 2e+14 1+4€
4 1+2e-11 1+e€ 1+e€ 1+€ | 4e+12 -
) - - - — | 4e+10 -
6 - - - — | 4e+08 -
7 - - - — | 2e+00 -
8 - - - - 1+e€ -

TABLE 4.2

W = Hilbert matriz of size(100). k(W) = 2e+19.

the implicit normalization in SVQB does not guarantee normality for ill-conditioned
problems, we print also the condition number of the unscaled vectors Q., k(Q.),
and the condition number of the same vectors after explicitly scaling them by their
norms, £(Q.,). Note that after each iteration x(Q,) is equal to the condition number
of the vectors before the application of SVQB. For example, after the first iteration
£(Qu) = k(W).

The results in all tables confirm developed theory. When the condition number
is smaller than 1/4/e, the reduction obeys closely the bound in theorem 4.4. The
application of one step of SVQB reduces the condition number of a set of vectors at
least by /€. This reduction is sharp for the examples in tables 4.1 and 4.2, but if the
vectors are explicitly normalized the reduction could be larger (see table 4.3).

As expected, the CholQR method behaves similarly to SVQB (table 4.3). In some
cases, the orthogonality of CholQR is inferior to that of SVQB (see table 4.2), and
thus, it is possible that it takes more iterations to produce a fully orthonormal set (see
table 4.1). This is in spite of the fact that in our implementation, we first compute the
lowest eigenvalue of WTW and shift it so that the Cholesky decomposition is applied
on a numerically positive definite matrix.

As discussed earlier, GS without reorthogonalization for each vector is not effec-
tive for large condition numbers. In such cases, GS may offer no improvement between
successive iterations (see first GS iteration in table 4.2), or it may require many iter-
ations to produce a set with relatively small conditioner number (see tables 4.1 and
4.2). Once this is achieved, however, one or two further iterations provide a fully
orthonormal set. An exception, is the example in table 4.3 for which GS requires
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SVQB CholQR GS | MGS

Iteration K(Qy) K(Q) k(QL,) K(Q) k(Q) | K(Q)
1 2e+49 3e+41 4e+-34 4e+34 | 2e+01 1+e€

2 4e+34 Te+25 4e+19 4e+19 1+4€ -

3 4e+19 3e+11 2e+07 4e+06 - -

4 2e+07 1+1e—03 1+4+1e—04 | 1+4e—03 - -

5 1+1e—04 1+e¢ 1+e¢ 1+e¢ - -
TABLE 4.3

W = [ ones(1,30), diag(rand(30,1)*eps*eps*eps) ]

only one reorthogonalization. The reason is that GS takes advantage of the sparse
structure of the matrix, performing computations only among very small elements,
thus achieving low relative error.

MGS is clearly more stable than the rest of the methods. However, because the
departure from orthogonality for MGS is bounded by ex(W) [1], even for relatively
small xK(W), a second MGS is often needed (see tables 4.1 and 4.2). Note that the
€ k(W)? bound for SVQB is virtually identical to that of MGS, if x(W) is close to 1,
thus diminishing any advantages over SVQB.

5. The two phase problem. The above theory and examples establish that
SVQB is a competitive choice for the internal orthonormalization of the two phase
problem. If we denote as Q = Ortho(V, W) any orthonormalization procedure for the
external phase, Q = (I — VVT)WD~ /2, where D'/? is a diagonal matrix with the
normalizing norms of the vectors, the two phase algorithm can be described as:

ALGORITHM 5.1. @ = Ortho-SVQB(V, W)
1. W' = Ortho(V, W)
2. Q =SVQB(W')

The most common choices for Ortho() are GS and MGS. Because efficiency is
important, especially when the number of vectors in V, k, is large, block GS with
some form of reorthogonalization is usually employed. As we show below, accuracy
close to machine precision is less critical because the orthogonality achieved in one
phase may not be preserved in the other.

In finite precision, the above algorithm does not always compute an accurately
orthonormal set (), and thus it has to be applied in an iterative fashion. To develop
an efficient iterative version of Ortho-SVQB, we must first examine the numerical
interaction between the two phases.

5.1. Numerical interplay of the phases. The reason that full orthogonality
is not always necessary in each phase is that SVQB procedure may destroy previous
orthogonality against V', and Ortho(V, W) may destroy the orthogonality in W.

LEMMA 5.1. Let W be a set of vectors with ||[VIW| < p ||[W]. Let Q =
SVQB(W) be the result of the internal step of the Ortho-SVQB algorithm. Then,

177l =0 (e + o) min (x(7), 7.} ).



Proof. Following the notation of theorem 4.1, let Q = WUA~'/2 + 6Q. Using
bounds (4.8) and (4.9) we have: ||[VIQ| = [|[VIWUA~Y24VT5Q|| < p||W||[|A~1/2]|+
O(l16QlI) = O (1 + €) min(k(W),1/+/€)) . O

The lemma states that even when W is exactly orthogonal to V, i.e., u = 0, the
SVQB procedure at the next step may destroy that orthogonality up to a maximum
of y/e. For example, consider the following matrices:

0.17164335073404 1 1
V= 0.00000000003278 |, and W= | 1 1+107°
—0.17164335076682 1 1

A Matlab computation shows that ||[VIW|| = 3.2e-17, and k(W) = 4.2e+6. After the
step Q@ = SVQB(W), we observe that ||[V7' Q|| = 4e-11, which agrees with our lemma.
Therefore, it is not important to chose one of the more accurate Ortho() methods,
such as MGS, to obtain good orthogonality against V', as this may be lost later.

The Ortho() procedure in the first step of the Ortho-SVQB algorithm, has an
even worse effect on the orthogonality of the W vectors.

LEMMA 5.2. Let VTV = I, and W a set of normal vectors with |[WTW —1I|| = v,
and |[VTW|| =8 < 1. Let Q = Ortho(V,W) = (W —VVIW)D~'/2 be the normalized
result of the external orthogonalization. Assume that there is no floating point error
in computing Q. Then,

v+ 262

T —_— S
lQTQ -1 < 2=

Proof. If we let S = VIW, we have D;; = wlw; — wl'VVTw; =1 — el ST Se;.
Note that for all diagonal elements of ST S, it holds el ST Se; < ||STS|| = 62 < 1. As
a result, for all diagonal elements of D, we have : D; > 1 — 2. This holds for the
the min(D;;) too, and therefore ||[D~!|| < 1/(1 — §2). In addition, we see that for all

i: 1/Dj; — 1 < 62/(1 — §?). From the above we can compute:

1QTQ — I|| = |ID™'2(WTW — I)D~*/? + D' — [ - D2(WTV)(VTW)D~'/?
<v|[D7H+ |D7F = I|| + [|[D7H||IST S]]
<v/(1-6%)+6%/(1-6%) +6%/(1 - 6%) = (v +26%) /(1 — 6%).

a

The lemma states that even when the vectors W are orthonormal, i.e., v = 0,
they will lose their mutual orthogonality after the Ortho() step, if W is not sufficiently
orthogonal against V (i.e., ||[VIW|| > v/€). In finite precision, additional orthogonality
loss is expected. The bound above is sharp within a constant. For example, consider

a 1 0
V= a ,and W=1] 0 1
V1 — 2a2 00

Initially WTW = I, but after Q@ = Ortho(V, W), we can verify that |QTQ — I|| =
a?/(1—a?). The lemma gives a bound of 4a/(1 — 2a?), which for small a it is 4 times
larger than the actual loss of orthogonality.
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6. The iterative GS-SVQB algorithm. Section 5.1 suggests that GS is suf-
ficient for the external phase, so the rest of the paper focuses on the GS-SVQB algo-
rithm. Figure 6.1 shows four possible GS-SVQB implementations, based on which of
the two steps (GS or SVQB) is carried out iteratively. We choose the most appropriate
algorithm based on computational considerations and on the developed theory.

Algorithm 1: Algorithm 2:
repeat repeat
QW = GS(V, wii—1) repeat Q) = GS(V, W(i—1)
W@ = SVQB(Q™) repeat () = SVQB(Q)
until (WOTWO =T and WO L V) || until (WOTWE =T and W L V)
Algorithm 3: Algorithm 4:
repeat repeat
repeat Q) = GS(V, W(i—1) QW = GS(V, wi-1)
W = SVQB(Q®) repeat W) = SVQB(Q®)
until ( WOTW® =T and WO L V) || until (WOTWE =T and WO L V)

F1G. 6.1. Four possible iterative implementations of the GS-SVQ@B algorithm. The outer loop
is repeated until W becomes numerically orthonormal and orthogonal to V. The inner loops could
be repeated until full orthogonalization is achieved or for a specified number of steps. Our theory
suggests that Algorithm 4 is the most preferable.

First, we note that GS is expensive because the size of V' is usually much larger
than that of W, so we try to minimize the number of times it is repeated. Second,
two or three applications of GS are usually sufficient to produce full orthogonality
against V. However, according to lemma 5.1, such an orthogonality could be wasted
by as much as ex(WW) in the SVQB step. Thus, Algorithms 2 and 3 that apply GS
repeatedly are inappropriate. Algorithm 1 also may result in wasted work, when
SVQB and GS do not reach synergistic levels of accuracy.

Algorithm 4 seems the most appropriate choice. Note that iterating SVQB to
produce good orthogonality within W is justified, since at the following outer step
GS can destroy it only by O(||[VTW||?) (lemma 5.2). Especially if [|[VIW|| < O(y/€)
is obtained at the current step, orthogonality within W will be maintained fully.

6.1. Tuning the algorithm. The next step is to identify efficient and practical
conditions for terminating the outer and inner repeat loops of Algorithm 4. To avoid
unnecessary work, Lemmas 5.1 and 5.2 suggest that the two steps, GS and SVQB,
must be balanced by keeping both x(W) and ||[VTW|| comparably small.

First, we seek the conditions under which the final outer iteration i does not
require SVQB applications. Because Q¥ must be orthonormal, i > 1, and Q¥ =
GS(V, W1 must not have destroyed the internal orthogonality of W(¢=1). Thus,
lemma 5.2 implies test (6.1), which can be checked inexpensively as a GS by-product:

(6.1) IVTWED|| < (L.

We also need to test whether W(~1) was orthonormal before the GS step. Since
k(W =1) is not known yet, we use the singular values of Qi) obtained in the last
SVQB. Theorem 4.1 implies that if SVQB produced an orthonormal W (=1, then
£(QU~1) = O(1). Therefore, this condition must be tested along with (6.1):

(6.2) if |[VIWE Y| < e and &(QU Y)=0(1) then exit
11



The outer loop should repeat if the GS procedure has not managed to orthogo-
nalize W(~1) against V. We perform reorthogonalization according to a popular test
due to Daniel et al. [7], whenever the norm of Q) becomes less than 0.7 times the
norm of W1, However, SVQB also can cause loss of orthogonality against V.

Assume that the inner loop of SVQB produces W) with £(W®) > O(1). Obvi-
ously, GS at the next outer iteration will not reduce the condition number of Q(i+1
= GS(V,W®). However, the next application of SVQB, W(it1) = SVQB(Qt1),
will destroy orthogonality versus V' by as much as ex(Q{t1)) (lemma 5.1). making a
third (i 4+ 2) outer iteration necessary. To avoid this, the SVQB inner loop should be
iterated to produce at least x(W#) = O(1). The inner loop executes at least once,
to guarantee full orthonormality of W(®, when no second outer iteration is needed.

We summarize the above analysis into the following algorithm. The condition
number K is computed from the eigenvalues of the matrix S = QU~-VTQU-1  and
thus corresponds to the matrix before the application of the last SVQB. A bound on
the resulting x(TW () can be inferred through theorem 4.4, and this is what the until
condition checks. Finally, note that ||[VTW#=1)|| can be computed during GS.

ALGORITHM 6.1. Q =iGS-SVQB(V,W) (iterative GS-SVQB method)
wo =w
Klast = large number

1=1
repeat
6 = |[VIW )|

W@ = GS(V, wi-1)
if (5 < \/E) and (l‘ilast = 0(1))
break (skip final SVQB)

QO = W
1=1

Reortho = ( (Daniel’s test) or (k(W®) > 0(1)) )
repeat

Klast = K(Q(j_l))
QY =8SVQB(QU-Y)
j=Jj+1
until (kiast < O(1/1/€))
W) = QU-1)
1=1+1
until (Reortho = false)

7. Further optimizations. The above is a block algorithm that targets perfor-
mance. However, the tests it performs are pessimistic as they apply on the block W as
a whole. This may be wasteful since individual vectors in W may become orthogonal
to V' and to other vectors in W. Further reorthogonalizations should exempt these
vectors, performing computations on a smaller block. Fortunately, we can perform
tests on individual vectors and adjust the block dynamically, without affecting the
block structure or the number of synchronizations of the algorithm. Interestingly,
large bounds in lemmas 5.1 and 5.2 can be the result of only a couple of ill condi-
tioned vectors. By grouping vectors based on individual tests, the bounds still apply,
only for smaller blocks, and thus provide better direction to the algorithm.

Specifically, after the GS phase and without additional computation, we can sepa-

12
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rate those vectors that do not need reorthogonalization (good vectors) and those that
need it (bad vectors), W = [W,W;]. However, some of the good vectors may be very
close to other vectors in W. Moreover, because the SVQB phase mixes all vectors,
the identity of the good ones will disappear.

We can solx;e this problem inexpensively. As in the regular SVQB, we compute
S = [ ig i’,’: ] = W, W, T[W,W,] = WTW. First we perform an eigenvalue

g

decomposition of S;. This, will subdivide the good group into Wy, = [Q,Q4s]. The
group @4y consists of all the singular vectors corresponding to large singular values
of S;. These ()44 vectors are orthogonal both to V' and to each other and can be
appended to V' in future iterations. Note that ()44 has at least one vector. The group
Qgp consists of all the singular vectors with small singular values, and so they may
have lost their orthogonality against V' as well. Therefore, we should combine the
Qgp with the W, vectors, and apply Qs = SVQB([Q4W3])- Finally, the resulting @,
needs to be orthogonalized versus ()4,. The many implementation details fall beyond
the scope of this paper. Figure 7.1 shows the conceptual steps of this algorithm.

Notice that all of the above eigenvalue decompositions, orthogonalizations, vector
groupings, and tests are performed not on the W vectors, but on m x m matrices and
their eigenvectors, with negligible computational cost. The main operation is still
S = WTW, which is BLAS 3 and incurs only one synchronization.

7.1. Variable block algorithm. When the number of vectors in W is large,
applying the SVQB method on the full block may not always be cache efficient or
numerically stable. Typically, there is an optimal block size beyond which cache
performance decreases. In addition, the conditioning of W is bound to deteriorate
with block size. For these reasons, we want a variable block size that can be tuned
according to the machine and the problem.

Let b be the desirable block size. We partition W into p = m/b sets of vectors,
W = [Wi,...,W,], and apply the iGS-SVQB on each one individually. After a W;
subblock is made orthonormal and orthogonal to V' and to previous W;, j < i, it is
locked with V' and the next W;y; is targeted. The algorithm follows:

13



ALGORITHM 7.1. Q = bGS-SVQB(V,W,b) (variable block iGS-SVQB method)
p=m/b
Partition W = [W1,..., Wp]
Q=I[],Z=V
fori=1,p
Q¢ =1GS-SVQB(Z,W;)
Z = [Z7 Qt]
Q = [Q7 Qt]

The number of synchronization points in the bGS-SVQB algorithm is O(p), and
a larger percentage of the computation is spent on the GS procedure. For b = 1, the
algorithm reduces to the classical GS method, while for b = m the algorithm is the
iGS-SVQB method. We expect to identify a range of block sizes for which the cache
performance is optimal, while the synchronization requirements are not excessive.

8. Timing experiments. We have tested our implementation of bGS-SVQB
against a variety of orthogonalization alternatives. To provide a common comparison
framework for all methods, we use a “bGS-Method” algorithm that is identical to our
bGS-SVQB, except that a different method is used to orthogonalize the block.

The first method is the classical GS algorithm with reorthogonalization. This is
the only method whose structure differs slightly from the “bGS-Method”. For GS, it
is more efficient to orthogonalize each vector in the block at once against all V' vectors
and all previously orthogonalized vectors in . Thus, block size does not affect the
behavior of GS, and in the figures we simply refer to it as GS.

We also compare against the QR factorization with Householder reflections. The
method is denoted as bGS-QR, and uses the QR implementation from the ScaLA-
PACK library [4] for both single and multiprocessor platforms. Finally, we compare
with the computationally similar CholQR method. The method, denoted as bGS-
CholQR, uses the (sequential) Cholesky decomposition in the ScaLAPACK library.

All algorithms have been implemented in Fortran 90 using the MPI interface, and
run on the Cray T3E 900 and the IBM SP2 parallel computers at NERSC National
Lab, and on a 64-node cluster of SUN Ultra 5s at the College of William and Mary.
256 MB of memory are available on each node of all machines, while on the SP2 the
nodes are two-processor SMP nodes, but they are assigned individual MPI processes.
The T3E network is considerably faster than the SP2 and the COW networks (Power
Switch and Fast Ethernet respectively). On the NERSC platforms we link with the
MPICH libraries and we use the machine optimized libraries for ScaLAPACK and
BLAS. On the SUN cluster, we use LAM MPI, and BLAS 3/2 kernels automatically
optimized with ATLAS from University of Tennessee [23].

Our first numerical example is an easily reproducible set of thirty Krylov vec-
tors of the diagonal matrix A = diag([1:n]) (in Matlab notation), and the initial
vector x = [ 1 log([2:n]) 1’, with n = 500000. We let V = ), and build W as
the set of normalized vectors: W = [z, Az, A%z,..., A*z]. The condition number
of the resulting set W, as computed by the Matlab cond function, is 1.3892E+20.
The goal is to orthonormalize the set W as accurately as possible, through various
orthogonalization methods and block sizes: bGS-Method(V, W, b). Initially, most of
the computation is spent on the “Method”, while as more blocks get orthonormalized
GS takes over, reducing the computational differences between methods.

Figure 8.1 illustrates the single-node floating point performance (MFLOP rate)
achieved for each of the four algorithms as a function of block size, on the T3E (left
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FiG. 8.1. Single node MFLOPS as a function of block size for the four methods. The clear
performance advantage of block methods is expected to counter balance the increase in the number of
FLOPs. The methods orthonormalize thirty vectors of dimension 500000. Left graph depicts Cray
T3E results. Right graph depicts IBM SP2 results.

graph), and on the SP2 (right graph). As expected, the GS rate is constant regardless
of block size. The single-node performance of the bGS-QR does not improve with block
size on either machine, which points both to the ScaLAPACK implementation and to
the inherent block limitations of the QR. On the other hand, the block structure of
SVQB and CholQR allows them to outperform GS significantly, even for small blocks
of 8-10 vectors. The Cholesky back-solve implementation seems to exploit better the
architecture of the SP2 than of the T3E. However, on both platforms, bGS-SVQB
improves GS performance by at least 70-80% for these small block sizes. We should
mention that the block MGS method in [14] is expected to have worse single-node
performance than GS because only one of the two phases involves BLAS 3 kernels.

Good node performance is important only if it leads to accurate and faster or-
thogonalization. All of the algorithms tested produced a final orthonormal set @,
with [|QTQ — I|| = 10713, Figure 8.2 shows that execution times of block methods
are superior to the GS method. The graphs plot execution time as a function of block
size, for three methods, and for various numbers of processors. The left graph corre-
sponds to the Cray T3E and the right one to the IBM SP2. The bGS-CholQR and
bGS-SVQB are consistently faster than GS, for any block size on the SP2, and for
block sizes of 4 or above on the T3E. It is also clear, because of the logarithmic time
scale, that the relative improvement over the GS timings persists on large number of
processors, despite smaller local problem sizes. bGS-SVQB is 20% faster than GS on
the T3E, and more than 25% faster on the SP2. Note that the good performance of
bGS-CholQR on the SP2 (35% faster than GS) does not carry over to the T3E.

Our next experiment measures the effects of synchronization as the number of
nodes increases, by fixing the problem size on each processor and using a constant
block size of 6. For this test, the set W has 30 Krylov vectors generated by the
matrix of the discretized Laplacean on a 3 dimensional cube. Every processor holds a
32 x 32 x 32 uniform grid locally (so the matrix size is proportional to the number of
nodes), and uses it to create the Krylov space. The W vectors are generated in chunks
of 6 successive Krylov vectors, and each chunk is orthonormalized by a call to bGS-
Method(V, W, 6). Figure 8.3 plots the execution times of the four methods over a wide
range of processor numbers. The T3E has been used for this experiment because of the
large number of available nodes. In the absence of communication/synchronization
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FiG. 8.3. Scalability of four methods on the T3SE, under constant problem size (32768=323
vector rows) per processor and block size of 6. Ideal scalability would show as a flat horizontal line.

costs, the times should be equal for all processors. The time increase observed in the
figure is relatively small for all methods because of the extremely fast T3E network.
However, the effects are more apparent on GS and bGS-QR, as their curves increase
faster than the respective ones for bGS-CholQR and bGS-SVQB. Finally, on this
problem the bGS-SVQB is more than 30% faster than GS (an improvement over the
previous numerical problem).

Because of superscalar processors and a higher-latency network, we expect the
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block algorithms to perform better on the SUN cluster. We use the same test case
of 30 Krylov vectors from the uniform-grid Laplacean, with each processor storing
a 32 x 32 x 32 subgrid. The left graph in figure 8.4 shows the effect of blocking
on the single-node execution time of the algorithms. The effects are much more
dramatic than on the other machines as execution time is reduced by about half.
This is attributed to the ATLAS fine tuning of the BLAS kernels. Note that CholQR
improves single node performance on this architecture. The time variability is typical
of caching effects. The right graph of the figure, shows the scalability of the algorithms
under constant computational load per processor. A block size of 12 is used, i.e.,
bGS-Method(V, W, 12). Our proposed methods clearly outperform GS, and their time
is not only substantially smaller than GS but also seems to increase slower with the
number of processors.

9. Conclusions. We have introduced and analyzed a new method, called SVQB,
that computes an orthonormal basis of a skinny matrix W from its right singular vec-
tors. The method is attractive computationally because it involves only BLAS 3
kernels and it requires only one synchronization point in parallel implementations.
We have proved that the departure from orthonormality of the resulting vector set is
bounded by O(ex(W)?), if k(W) < O(1/+/€). We have also considered the problem of
two phase orthonormalization where a block of vectors is orthonormalized against a
previously orthonormal set of vectors with GS, and among itself with SVQB. Compu-
tational efficiency suggests the independent, block application of each of the methods.
However, each phase impairs the orthogonality produced during the other phase. We
have provided bounds that describe this numerical interdependence and have used
them to balance the work performed by each of the two orthogonalization phases
within an iterative scheme. Our Matlab examples have demonstrated that our the-
oretical bounds are in accordance with practice, and our parallel implementations
on the Cray T3E, the IBM SP2, and on a SUN COW have shown that our method
improves the performance of other orthonormalization alternatives.
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