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1.1 Introduction

e Multi-part lecture:

. Markov chains.

. Statistical physics and the Boltzmann distribution.
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3. Annealing in metallurgy.

4. Combinatorial problems and local search.
5)

. Simulated annealing.



1.2 Markov Chains

e Markov chains via an example: consider the following process:

1. Draw a bunch of “states” (e.g., 5 states):
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o ®©
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2. Draw directed arcs between some of the states:

self-arcs allowed

arcfromDto C

3. For each state, use a probability distribution over the outgoing arcs:



4. Do this for all states:

5. Pick a start state, e.g. start = A.



6. Execute this algorithm:

1 = 1;

s = start;

repeat
jump to neighbor of s using arc probabilities of s;
1 = 1+ 1;

until ¢ > n;

Note: jump probabilities are independent of past history
e Questions of interest:

— Suppose X,, = state you are in after n-th jump.

— Q: what is P[X,, = A]?

— If I start in A, after how long do I get back to A?
(first passage time to A).

e Markov chain theory:

If these conditions hold:

1. All states are reachable;

2. set of states is finite;

then
lim P[X, = A]

n=¥00
exists and is easy to compute.

lim,,_,« P[X, = A] = long term probability of being in A.
Note: limit theorems hold under other conditions as well.

e Simulation:

— For above example, which state is likely to have the least probabil-
ity?



e Why Markov chains are useful:

— Many systems can be modeled as a process evolving on a state space

— If the “Markov” property holds, these systems can be analyzed quite
easily.

— Many powerful results exist in the theory of Markov chains.
e Why Markov chains are called Markov chains:

— A.Markov: Russian mathematician who first worked out the math-
ematics of Markov chains.

— His examples usually looked like chains:
1.0 0.4 0.4 0.4 0.4
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0.6 0.6 0.6 0.6 0.6
e Summary:

— A Markov chain is a process that jumps around from state to state,
in a collection of states.
— The long term probability of being in a state can be computed.

— First passage time is the average time to return to a start state (hard
to compute).



1.3 The Boltzmann Distribution

e Ludwig Boltzmann (Austria, 1844-1906):

— Prior to Boltzmann, macroscopic laws of gases were discovered and
empirically verified, e.g.,
PV

7 = constant (Boyle’s law)

— Boltzmann was interested in explaining macroscopic properties us-
ing microscopic properties.

e Example of a problem Boltzmann was interested in:

Suppose all molecules are initially in Box A:

gas

valve
o
o 00 '
5] 0) vacuum
) (@)
Box A Box B

Then, the valve is opened and after a while the system is examined:

0“v o ©

Box A Box B

The molecules appear to be evenly distributed (identitical pressure).

The system is continuously observed for a long time, yet the initial con-
figuration is never observed again - why?



e Markov chain analogy:

Let
n = total # molecules
ng = + moleculesin A
ng = # molecules in B

State of the system = (n4,np).
Initial state = (n,0).
Observation: first passage time from (n,0) to (n,0) is very long.
(average time is longer than the life of the universe, for a large system).
e A simple model:
— Suppose at every step, each molecule selects a Box at random (with
equal probability).
— Then, Plall molecules in A] = 0.5".

n

— In fact, P[k molecules in A] = ( k

) 0.5"0.5" %,

— Most probable state: (3, 5).
— E.g., n=20:
* P[5 molecules in A] = P[10 in A] ~ 0.176.
* P[n molecules in A] = P[20 in A] ~ 1075,
e Boltzmann’s analysis: key assumptions

— We cannot account for the behavior of each individual molecule.

— All configurations with the same energy are equally probable.
e Boltzmann’s analysis:

— System:



Box A Box B

o..v o ©

n molecules

— Notation:
x Fach configuration of molecules is a state.
* S = set of states = {s1,52,...,5m}
* E(s) = energy of state s.
x F, Es, ..., By, = possible energies.
— Desired: what is P|[a state has energy F;]?
— Analysis:
Note that
Plenergy is E4 + Ep] = Plenergy in A is E4]x Plenergy in B is Ep].
Thus, the probability distribution has the form

fz+y) = f(z)f(y).

Note that
e Blaty) _ =Bz ,—Py

and thus f(z) = e is a candidate function.

Fact: f is necessarily of the form f(z) = e %%.
Thus,
Pla state has energy E] = (const)e "%,

Recall: we have a finite number of energies. Hence,
Pla state has energy E;] = Ze 5

where
1

This is called the Boltzmann distribution.

Z



e The probability of finding the system in energy E.
— Let P[E]
— Note: P|
— Let Q(F) = # states with energy E.

= Pla state has energy E] = Ze "%,

E] is a decreasing function of F.

— Note: Q(F) is an increasing function of E.

— Let Pyys[E] = P[system has energy E].
Then,
Py s[E]l = Q(E)P[E].

Example: a plot of Q(E), P[E] and Pyys[E]

— Q: why does Q(FE) increase?
e A simple simulation experiment:

— System (1-dimensional example):
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energy of this molecule energy of this molecule
is two is zero

\ molecule
N
@ 0ole o |@
<— kslots ——— = <— kslots ——=
Box A Box B

— n molecules.
— Each molecule selects a slot randomly in either Box.
— The energy of a molecule = # neighbors.

— Energy of a configuration = sum of energies of molecules.
e The effect of temperature:

— Recall Boltzmann distribution: P[E] = Ze PE.

— By computing macro properties (e.g., pressure), it turns out:

1
This is usually written as
1
0=

where k is Boltzmann’s constant. Thus,
P[E) = Ze B/*T

— Next, consider two states s; and s with energies E(s2) > E(s1).
Then,

o P[E(Sl)] _ Ze—E(s1)/T B e[E(Sz)_E(sl)]/mT_

P[E(s3)] Ze E(s2)/sT -

— Q: What happens to r as T' — oo?
— Q: What happens to r as T'— 07

— Thus, low energy states are more probable at low temperatures.
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— Simulation example:

e Summary:

— Pl[a state has energy E] oc e” /T

— Low energy states are favored at low temperatures.
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1.4 Annealing

e Annealing is a process discovered centuries ago as a technique for im-
proving the strength of metals.

e Key idea: cool metal slowly during the forging process.
e Example: making bar magnets

— Wrong way to make a magnet:

1. Heat metal bar to high temperature in a magnetic field:

2. Cool rapidly (quench):

Cool
¢y oy 9
7

— Right way: cool slowly.
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e Why slow-cooling works:

— At high heat, magnetic dipoles are agitated and move around:

NS sy T

— The magnetic field tries to force alignment:

— If cooled rapidly, alignments tend to be less than optimal (local

alignments):

—_—
—= —
- —
—_—

= W £

— With slow cooling, alignments are closer to optimal (global align-

ment):
—
— — -
—
—_
—
—— = 3

e Summary: slow cooling helps because it gives molecules more time to
“settle” into an optimal configuration.
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1.5 Combinatorial Optimization Problems

e A combinatorial optimization problem is:

— S = set of states (potential solutions).

— (C, a cost function over the states:
C(s) = cost of state s.

— Goal: find state with least cost.

— Usually S is too large for exhaustive search.
e Example: the Traveling Salesman problem

— Informal description:
We are given a bunch of cities:

B
D
o C .
o

A E

and the distance between each pair of cities (matrix D):

A B C D E
A 0 27 31 36 29

B 0 18 21 34
C 0 0.8 1.2
D 0 1.1
E 0

We wish to find a tour through the cities (each city occurs only once
in a tour) of minimal total length.
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— Why is this a combinatorial optimization problem?

* Does it have a set of states?

S = { all possible tours}
— {ABCDE,ABCED,ABECD,...,EDCAB} +/
x Does it have a cost function on the states?
C(ABCDFE)=D(A,B)+D(B,C)+D(C,D)+D(D, E). Vi
* Is the goal to find the minimal cost state?
Goal: find an ordering of cities oy asazayas such that C(oyasazayas)
is minimal. vV

e Example: the Bin Packing problem

— Informal description:

Given a collection of items of sizes sq,..., s,
! A
s2 A s5
s1h 33| S4A
y y y y V
and an unlimited supply of bins each of size B:
A
B
v

pack the items into as few bins as possible.
— Formal description:

x Item sizes: sq1,S9,..., Sp-

* Assignment function:

P 1, if item ¢ is put into bin j
Y10, otherwise

* B = bin size.
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x Goal: minimize k, the number of bins such that

— Why is this a combinatorial optimization problem?

* Set of states: all possible assigments of 0-1 values to the matrix

J.

x Cost function: number of bins used.
e Example: the Satisfiability problem
— U is a collection of Boolean variables {z1, x2, ..., 2, }.

— O is a collection of Boolean operators: A (and), V (or) and / (not).

— B is a Boolean expression using variables in U and operators in O,
e.g.,
B = (z1V 32) A (2] V T3 A T2)

— Is there an assignment of T and F values to the z;’s such that B is
true?

e Summary: a combinatorial optimization problem is:

— S = set of states = {s1,59,...,5n}

— A cost function C : S =+ R
C'(s;) = cost of state s;.

— Goal: find least-cost state.

e Note:
— Let S* = {s: C(s) < C(s') for every s’ € S}.
— Need to find any element in S*.
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— Usually size of problem is n (number of cities).

— Size of state space is large (all possible tours).

e Fact: A large class of problems (NP-complete problems) are polynomi-
ally equivalent to each other.
(If you can solve one efficiently, you can solve every one of them).
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1.6 Local Search

e Local search is a general-purpose algorithm to solve any combinatorial
optimization problem.

e Algorithm:

Algorithm: GREEDY-LOCAL-SEARCH

s := initial state; // e.g., initial tour
repeat
s’ := GENERATE-NEW-STATE(s); // new tour
if C(s') < C(s) // new tour has less cost
s = g
changed := true;
else
changed := false;
endif;
until not changed;
return s, C(s);

© 00N ot W

—_ =
— O

e How to generate new states?
e.g., Traveling Salesman problem:

— Suppose current tour is s = ajasazayas.

— Pick two cities at random, e.g.

Q1 Qo Q3 Q4 QOp

T T

— Swap the two cities: s’ = ajayazanas.
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e How well does GREEDY-LOCAL-SEARCH work?
Ans: not very well on most problems.

Why?
Ans: The local structure of the cost landscape reveals little about the
global structure.

local
minimum

global minimum

sl s2 s3 s4 s5 s6 s6 s7 s8 s9 s9 sl10

e Observation: perhaps we should allow an algorithm to “climb” out of
local minima?
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1.7 Summary So Far

e Markov chains:

— A process that jumps from state to state.

— Long-term probabilities can be computed.
e Boltzmann distribution:

— Consider a system that can be in one of many states, and where
each state has an energy level.

— Suppose energy values are: FEy, Fs, ..., E,,.

— The Boltzmann distribution:
Pla state has energy E;] = Ze P

where
1

=
— Small 7" = low-energy states have higher probability.

e Annealing:
— Slow cooling (after heating) helps improve properties of materials.

e Combinatorial optimization problem:

— Set of states and a cost function over the states.

— Goal: find minimum cost state.
e Local search:

— Start in any state.
— Jump to a neighboring state if it’s cheaper.

— Stop when you can’t go anywhere.
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1.8 Simulated Annealing

e Key ideas:

— Simulated annealing = local search with modifications.
— Allow jumps to higher cost states.

— Use a coin flip to determine whether you should jump to a higher

cost state
(with probability e[¢(s)-CG)/xT )

— Decrease the probability as time goes on.
(By decreasing the temperature).

— The hope is:

* Initially, higher-cost jumps occur with high probability
= allows exploration of state space.

x Later, higher-cost jumps occur with low probability
= decrease the chances of jumping out of low cost states.
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e Algorithm:

Algorithm: SIMULATED-ANNEALING
1. s := initial_state;
2. ming = s;
3. T := initial_temperature;
4. repeat
5. s’ := GENERATE-NEW-STATE(s);
6. if C(s') < C(s)
7. s = g
8. else if uniform random() < e~[¢()=CE)/xT
9. s := §'; // even though C(s') > C(s)
10. else
11. stay in same state;
12. endif;
13.  if C(s) < C(min,)
14. ming = S;
15. endif;
16. T := NEW-TEMPERATURE(T);
17. until tired;
18. output ming, C(min,);
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e Note: probability of jump depends on cost difference.

jump probability = e ~IC(E)-CEN /KT

C(s)-C(s)
C(s")-C(s)
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1.9 Mathematics of Simulated Annealing

e Example: Traveling Salesman over 5 cities.

e Consider the state ABCDE: where can we jump to from here?

ABCDE

15 possible
next states
from ABCDE

What are the jump probabilities?

lower cost than
ABCDE

1/15 -
higher cost

. than ABCDE
1/15 x exp(-[C(CBADE)-C(ABCDE)] / kT)

Next, let X,, = state after n-th jump.
Then, X, is a Markov chain!

25



e Fixed-temperature mathematics:

— Suppose T is constant throughout the execution of the algorithm.

— It turns out the Markov chain can be solved easily to give:

lim P[X, = s] o e”C6)/rT

n—oo

— the state distribution is the Boltzmann distribution.

— Consider states s; and sp such that C(s) > C(sy).

For large n,
p = PXa=s)
P[Xn = 32]
e—C(s1)/6T
= e CE/AT
= e_[C(Sl)—C(S2)]/HT
Note:

x For large T', r =~ 1.
x For small T, r ~ oc.

— Theoretical result:

lim lim P[X, € S*] = 1.

T—(Q N0

(Recall: S* = set of optimal states.)
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e Decreasing-temperature mathematics:

— Asn —o00, T — 0.

— The process is still a Markov chain, but a non-standard Markov
chain (non-homogeneous)
= difficult to analyze.

— Theoretical result: If T,, — 0 slowly (e.g., T,, > login) then
Jim P[X, € S*]=1.

— Key idea in proof:
Let ¢ = maxi,j[C’(si) — C(SJ)}
Then,
Jim P[X, €S =1
if
P[stuck in a well] = 0

which is true if

Y e = o (Borel-Cantelli lemma)
n

which is true if

Ze—(c//w) logn __ 00
n

which is true if

= 00

S|

%

which is true.
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1.10 Simulated Annealing: Summary

e A metaphor from the physics of metals was used to create an algorithm.

e Simulated Annealing is a general purpose algorithm to solve combinato-
rial optimization problems.

e To solve a particular problem, you need to define a GENERATE-NEW-
STATE(s) fucntion for that problem.

e The initial temperature will have to be selected depending on the par-
ticular instance of the problem.

e The mathematics of simulated annealing involve Markov chains (a con-
struct in probability theory).

e In practice:

— Simulated annealing is easy to implement.

— Simulated annealing has been found to work well for approximately
bowl-like landscapes.

— Performance is strongly dependent on good neighborhood functions.

— Performance can be enhanced if supplemented with other strategies
(e.g., use multiple starting points).

— The theoretical temperature schedule is too slow.

— Newer algorithms (e.g., TABU search) build on and are better than
simulated annealing.



