CS 420-02: Undergraduate Simulation, Modeling and Analysis

RAHUL SIMHA

Department of Computer Science College of William & Mary Williamsburg, VA

Chapter 1

Simulated Annealing

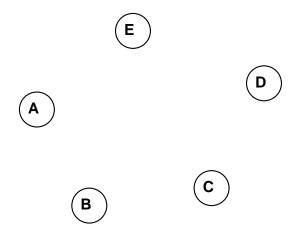
CS 420-02: Undergraduate Simulation, Modeling and Analysis

1.1 Introduction

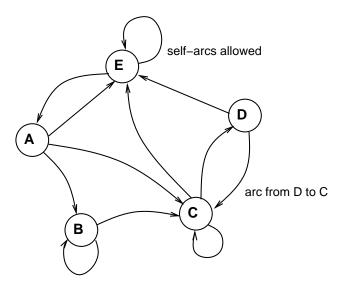
- Multi-part lecture:
 - 1. Markov chains.
 - 2. Statistical physics and the Boltzmann distribution.
 - 3. Annealing in metallurgy.
 - 4. Combinatorial problems and local search.
 - 5. Simulated annealing.

1.2 Markov Chains

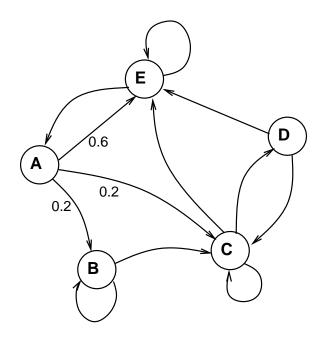
- Markov chains via an example: consider the following process:
 - 1. Draw a bunch of "states" (e.g., 5 states):



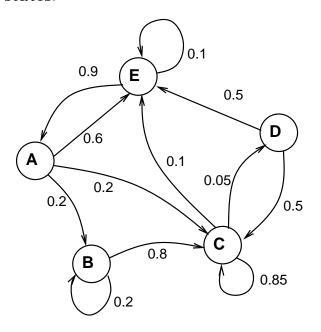
2. Draw directed arcs between some of the states:



3. For each state, use a probability distribution over the outgoing arcs:



4. Do this for all states:



5. Pick a start state, e.g. start = A.

6. Execute this algorithm:

```
i := 1;
s := \text{start};
repeat
jump to neighbor of <math>s using arc probabilities of s;
i := i + 1;
until i > n;
```

Note: jump probabilities are independent of past history

- Questions of interest:
 - Suppose X_n = state you are in after n-th jump.
 - Q: what is $P[X_n = A]$?
 - If I start in A, after how long do I get back to A?
 (first passage time to A).
- Markov chain theory:

If these conditions hold:

- 1. All states are reachable;
- 2. set of states is finite;

then

$$\lim_{n\to\infty} P[X_n = A]$$

exists and is easy to compute.

 $\lim_{n\to\infty} P[X_n=A] = \text{long term probability of being in A}.$

Note: limit theorems hold under other conditions as well.

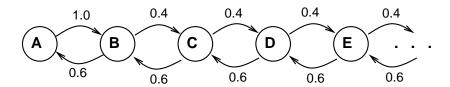
- Simulation:
 - For above example, which state is likely to have the least probability?

• Why Markov chains are useful:

- Many systems can be modeled as a process evolving on a state space
- If the "Markov" property holds, these systems can be analyzed quite easily.
- Many powerful results exist in the theory of Markov chains.

• Why Markov chains are called Markov chains:

- A.Markov: Russian mathematician who first worked out the mathematics of Markov chains.
- His examples usually looked like chains:



• Summary:

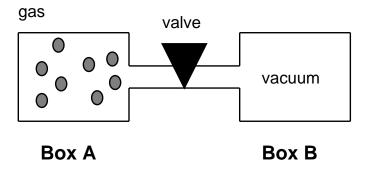
- A Markov chain is a process that jumps around from state to state, in a collection of states.
- The long term probability of being in a state can be computed.
- First passage time is the average time to return to a start state (hard to compute).

1.3 The Boltzmann Distribution

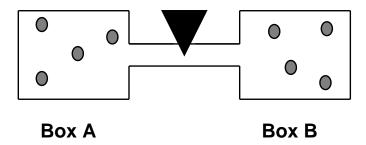
- Ludwig Boltzmann (Austria, 1844-1906):
 - Prior to Boltzmann, macroscopic laws of gases were discovered and empirically verified, e.g.,

$$\frac{PV}{T} = \text{constant}$$
 (Boyle's law)

- Boltzmann was interested in explaining macroscopic properties using microscopic properties.
- Example of a problem Boltzmann was interested in: Suppose all molecules are initially in Box A:



Then, the valve is opened and after a while the system is examined:



The molecules appear to be evenly distributed (identitical pressure).

The system is continuously observed for a long time, yet the initial configuration is never observed again - why?

• Markov chain analogy:

Let

$$n = \text{total } \# \text{ molecules}$$
 $n_A = \# \text{ molecules in A}$
 $n_B = \# \text{ molecules in B}$

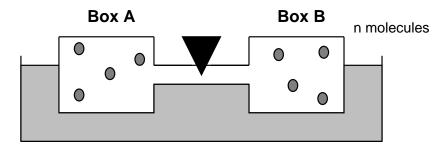
State of the system = (n_A, n_B) .

Initial state = (n, 0).

Observation: first passage time from (n,0) to (n,0) is *very* long. (average time is longer than the life of the universe, for a large system).

• A simple model:

- Suppose at every step, each molecule selects a Box at random (with equal probability).
- Then, $P[\text{all molecules in A}] = 0.5^n$.
- In fact, $P[k \text{ molecules in A}] = \binom{n}{k} 0.5^n 0.5^{n-k}$.
- Most probable state: $(\frac{n}{2}, \frac{n}{2})$.
- E.g., n=20:
 - * $P[\frac{n}{2} \text{ molecules in } A] = P[10 \text{ in } A] \approx 0.176.$
 - * $P[n \text{ molecules in } A] = P[20 \text{ in } A] \approx 10^{-6}$.
- Boltzmann's analysis: key assumptions
 - We cannot account for the behavior of each individual molecule.
 - All configurations with the same energy are equally probable.
- Boltzmann's analysis:
 - System:



- Notation:
 - * Each configuration of molecules is a *state*.
 - * $S = \text{set of states} = \{s_1, s_2, \dots, s_m\}.$
 - * E(s) = energy of state s.
 - * E_1, E_2, \ldots, E_k = possible energies.
- Desired: what is $P[a \text{ state has energy } E_i]$?
- Analysis:

Note that

 $P[\text{energy is } E_A + E_B] = P[\text{energy in A is } E_A] \times P[\text{energy in B is } E_B].$

Thus, the probability distribution has the form

$$f(x+y) = f(x)f(y).$$

Note that

$$e^{-\beta(x+y)} = e^{-\beta x}e^{-\beta y}$$

and thus $f(x) = e^{-\beta x}$ is a candidate function.

Fact: f is necessarily of the form $f(x) = e^{-\beta x}$.

Thus,

 $P[a \text{ state has energy } E] = (const)e^{-\beta E}.$

Recall: we have a finite number of energies. Hence,

 $P[a \text{ state has energy } E_i] = Ze^{-\beta E_i}.$

where

$$Z = \frac{1}{\sum_{k} e^{-\beta E_k}}.$$

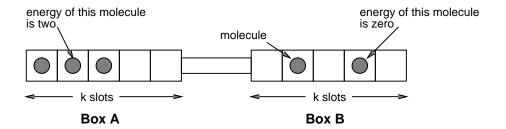
This is called the Boltzmann distribution.

- The probability of finding the system in energy E.
 - Let $P[E] = P[a \text{ state has energy } E] = Ze^{-\beta E}$.
 - Note: P[E] is a decreasing function of E.
 - Let $\Omega(E) = \#$ states with energy E.
 - Note: $\Omega(E)$ is an increasing function of E.
 - Let $P_{sys}[E] = P[\text{system has energy } E].$ Then,

$$P_{sys}[E] = \Omega(E)P[E].$$

Example: a plot of $\Omega(E)$, P[E] and $P_{sys}[E]$

- Q: why does $\Omega(E)$ increase?
- A simple simulation experiment:
 - System (1-dimensional example):



- -n molecules.
- Each molecule selects a slot randomly in either Box.
- The energy of a molecule = # neighbors.
- Energy of a configuration = sum of energies of molecules.
- The effect of temperature:
 - Recall Boltzmann distribution: $P[E] = Ze^{-\beta E}$.
 - By computing macro properties (e.g., pressure), it turns out:

$$\beta \propto \frac{1}{T}$$
.

This is usually written as

$$\beta = \frac{1}{\kappa T}$$

where κ is Boltzmann's constant. Thus,

$$P[E] = Ze^{-E/\kappa T}.$$

- Next, consider two states s_1 and s_2 with energies $E(s_2) > E(s_1)$. Then,

$$r = \frac{P[E(s_1)]}{P[E(s_2)]} = \frac{Ze^{-E(s_1)/\kappa T}}{Ze^{-E(s_2)/\kappa T}} = e^{[E(s_2)-E(s_1)]/\kappa T}.$$

- Q: What happens to r as $T \to \infty$?
- Q: What happens to r as $T \to 0$?
- Thus, low energy states are more probable at low temperatures.

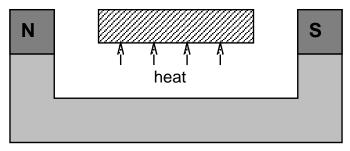
- Simulation example:

• Summary:

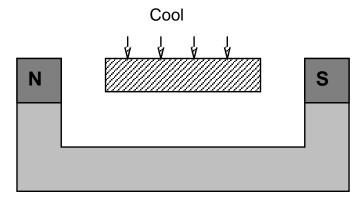
- $P[a \text{ state has energy } E] \propto e^{-E/\kappa T}$.
- Low energy states are favored at low temperatures.

1.4 Annealing

- Annealing is a process discovered centuries ago as a technique for improving the strength of metals.
- Key idea: cool metal slowly during the forging process.
- Example: making bar magnets
 - Wrong way to make a magnet:
 - 1. Heat metal bar to high temperature in a magnetic field:

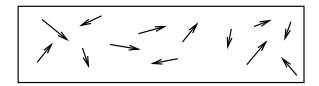


2. Cool rapidly (quench):

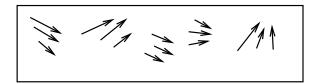


- Right way: cool slowly.

- Why slow-cooling works:
 - At high heat, magnetic dipoles are agitated and move around:

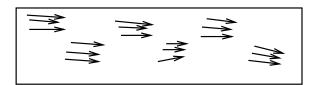


- The magnetic field tries to force alignment:



- If cooled rapidly, alignments tend to be less than optimal (local alignments):

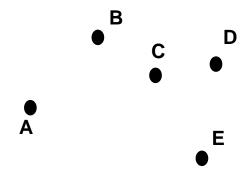
With slow cooling, alignments are closer to optimal (global alignment):



• Summary: slow cooling helps because it gives molecules more time to "settle" into an optimal configuration.

1.5 Combinatorial Optimization Problems

- A combinatorial optimization problem is:
 - -S = set of states (potential solutions).
 - C, a cost function over the states: $C(s) = \cos s$ of state s.
 - Goal: find state with least cost.
 - Usually S is too large for exhaustive search.
- Example: the Traveling Salesman problem
 - Informal description:We are given a bunch of cities:



and the distance between each pair of cities (matrix D):

We wish to find a tour through the cities (each city occurs only once in a tour) of minimal total length.

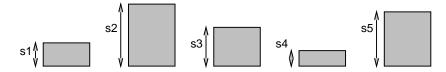
- Why is this a combinatorial optimization problem?
 - * Does it have a set of states?

$$S = \{ \text{ all possible tours} \}$$

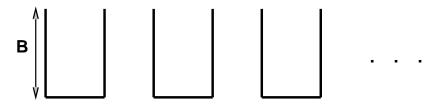
= $\{ ABCDE, ABCED, ABECD, \dots, EDCAB \}$ $\sqrt{ }$

- * Does it have a cost function on the states? $C(ABCDE) = D(A,B) + D(B,C) + D(C,D) + D(D,E). \qquad \sqrt{}$
- * Is the goal to find the minimal cost state?

 Goal: find an ordering of cities $\alpha_1\alpha_2\alpha_3\alpha_4\alpha_5$ such that $C(\alpha_1\alpha_2\alpha_3\alpha_4\alpha_5)$ is minimal.
- Example: the Bin Packing problem
 - Informal description: Given a collection of items of sizes s_1, \ldots, s_n



and an unlimited supply of bins each of size B:



pack the items into as few bins as possible.

- Formal description:
 - * Item sizes: s_1, s_2, \ldots, s_n .
 - * Assignment function:

$$\delta_{ij} = \begin{cases} 1, & \text{if item } i \text{ is put into bin } j \\ 0, & \text{otherwise} \end{cases}$$

* B =bin size.

* Goal: minimize k, the number of bins such that

$$\sum_{i=1}^{n} s_i \delta_{ij} \leq B \tag{1}$$

$$\sum_{i=1}^{k} \delta_{ij} = 1 \tag{2}$$

(3)

- Why is this a combinatorial optimization problem?
 - * Set of states: all possible assignments of 0-1 values to the matrix δ .
 - * Cost function: number of bins used.
- Example: the Satisfiability problem
 - U is a collection of Boolean variables $\{x_1, x_2, \ldots, x_n\}$.
 - O is a collection of Boolean operators: \land (and), \lor (or) and \prime (not).
 - -B is a Boolean expression using variables in U and operators in O, e.g.,

$$B = (x_1 \vee x_2) \wedge (x_1' \vee x_3 \wedge x_2)$$

- Is there an assignment of T and F values to the x_i 's such that B is true?
- Summary: a combinatorial optimization problem is:
 - $-S = \text{set of states} = \{s_1, s_2, \dots, s_m\}.$
 - A cost function $C: S \to R$ $C(s_i) = \text{cost of state } s_i.$
 - Goal: find least-cost state.
- Note:
 - Let $S^* = \{s : C(s) \le C(s') \text{ for every } s' \in S\}.$
 - Need to find any element in S^* .

- Usually size of problem is n (number of cities).
- Size of state space is large (all possible tours).
- Fact: A large class of problems (NP-complete problems) are polynomially equivalent to each other.

 (If you can solve one efficiently, you can solve every one of them).

1.6 Local Search

- Local search is a general-purpose algorithm to solve any combinatorial optimization problem.
- Algorithm:

```
GREEDY-LOCAL-SEARCH
Algorithm:
       s := \text{initial\_state}; // \text{e.g.}, \text{initial tour}
  1.
  2.
       repeat
          s' := \text{Generate-New-State}(s); // \text{ new tour}
  3.
          if C(s') < C(s) // new tour has less cost
  4.
            s := s';
  5.
            changed := true;
  6.
  7.
          else
  8.
            changed := false;
          endif;
  9.
  10. until not changed;
  11. return s, C(s);
```

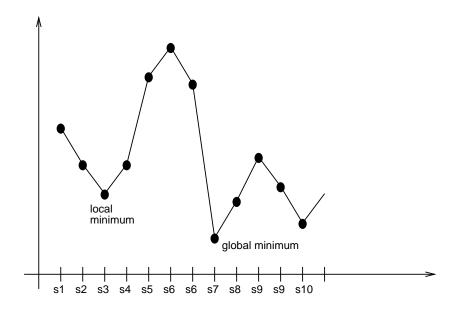
- How to generate new states? e.g., Traveling Salesman problem:
 - Suppose current tour is $s = \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5$.
 - Pick two cities at random, e.g.

- Swap the two cities: $s' = \alpha_1 \alpha_4 \alpha_3 \alpha_2 \alpha_5$.

• How well does Greedy-Local-Search work? Ans: not very well on most problems.

Why?

Ans: The local structure of the cost *landscape* reveals little about the global structure.



• Observation: perhaps we should allow an algorithm to "climb" out of local minima?

1.7 Summary So Far

- Markov chains:
 - A process that jumps from state to state.
 - Long-term probabilities can be computed.
- Boltzmann distribution:
 - Consider a system that can be in one of many states, and where each state has an energy level.
 - Suppose energy values are: E_1, E_2, \ldots, E_m .
 - The Boltzmann distribution:

 $P[a \text{ state has energy } E_i] = Ze^{-\beta E_i}.$

where

$$Z = \frac{1}{\sum_{k} e^{-\beta E_k}}.$$

- Small $T \Rightarrow$ low-energy states have higher probability.
- Annealing:
 - Slow cooling (after heating) helps improve properties of materials.
- Combinatorial optimization problem:
 - Set of states and a cost function over the states.
 - Goal: find minimum cost state.
- Local search:
 - Start in any state.
 - Jump to a neighboring state if it's cheaper.
 - Stop when you can't go anywhere.

1.8 Simulated Annealing

• Key ideas:

- Simulated annealing = local search with modifications.
- Allow jumps to higher cost states.
- Use a coin flip to determine whether you should jump to a higher cost state

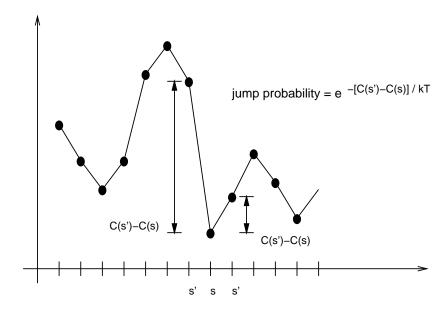
(with probability $e^{-[C(s')-C(s)]/\kappa T}$.)

- Decrease the probability as time goes on.
 (By decreasing the temperature).
- The hope is:
 - * Initially, higher-cost jumps occur with high probability \Rightarrow allows exploration of state space.
 - * Later, higher-cost jumps occur with low probability
 - \Rightarrow decrease the chances of jumping out of low cost states.

• Algorithm:

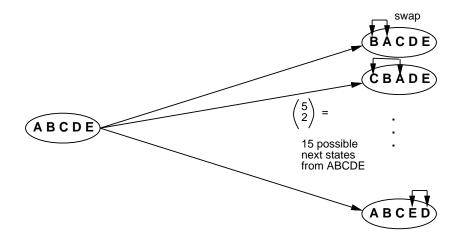
```
Algorithm:
               SIMULATED-ANNEALING
  1.
      s := initial\_state;
      min_s := s;
  2.
      T := initial\_temperature;
  3.
      repeat
  4.
        s' := GENERATE-NEW-STATE(s);
  5.
         if C(s') < C(s)
  6.
           s := s';
  7.
         else if uniform_random() < e^{-[C(s')-C(s)]/\kappa T}
  8.
           s := s'; // \text{ even though } C(s') > C(s)
  9.
  10.
         else
  11.
           stay in same state;
         endif;
  12.
  13.
         if C(s) < C(min_s)
           min_s := s;
  14.
         endif;
  15.
         T := \text{New-Temperature}(T);
  16.
  17. until tired;
  18. output min_s, C(min_s);
```

• Note: probability of jump depends on cost difference.

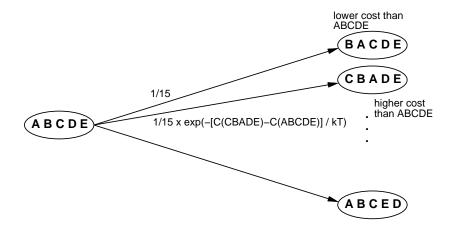


1.9 Mathematics of Simulated Annealing

- Example: Traveling Salesman over 5 cities.
- \bullet Consider the state ABCDE: where can we jump to from here?



What are the jump probabilities?



Next, let $X_n = \text{state after } n\text{-th jump.}$

Then, X_n is a Markov chain!

- Fixed-temperature mathematics:
 - Suppose T is constant throughout the execution of the algorithm.
 - It turns out the Markov chain can be solved easily to give:

$$\lim_{n \to \infty} P[X_n = s] \propto e^{-C(s)/\kappa T}$$

- the state distribution is the Boltzmann distribution.
- Consider states s_1 and s_2 such that $C(s_2) > C(s_1)$. For large n,

$$r = \frac{P[X_n = s_1]}{P[X_n = s_2]}$$

$$= \frac{e^{-C(s_1)/\kappa T}}{e^{-C(s_2)/\kappa T}}$$

$$= e^{-[C(s_1) - C(s_2)]/\kappa T}$$

Note:

- * For large T, $r \approx 1$.
- * For small $T, r \approx \infty$.
- Theoretical result:

$$\lim_{T \to 0} \lim_{n \to \infty} P[X_n \in S^*] = 1.$$

(Recall: $S^* = \text{set of optimal states.}$)

- Decreasing-temperature mathematics:
 - As $n \to \infty$, $T \to 0$.
 - The process is still a Markov chain, but a non-standard Markov chain (non-homogeneous)
 - \Rightarrow difficult to analyze.
 - Theoretical result: If $T_n \to 0$ slowly (e.g., $T_n \ge \frac{\gamma}{\log_e n}$) then

$$\lim_{n \to \infty} P[X_n \in S^*] = 1.$$

- Key idea in proof:

Let
$$c = \max_{i,j} [C(s_i) - C(s_j)].$$

Then,

$$\lim_{n \to \infty} P[X_n \in S^*] = 1$$

if

$$P[\text{stuck in a well}] = 0$$

which is true if

$$\sum_{n} e^{-c/\kappa T_n} = \infty \qquad \text{(Borel-Cantelli lemma)}$$

which is true if

$$\sum_{n} e^{-(c/\kappa\gamma)\log n} = \infty$$

which is true if

$$\sum_{n} \frac{1}{n} = \infty$$

which is true.

1.10 Simulated Annealing: Summary

- A metaphor from the physics of metals was used to create an algorithm.
- Simulated Annealing is a general purpose algorithm to solve combinatorial optimization problems.
- To solve a particular problem, you need to define a GENERATE-NEW-STATE(s) function for that problem.
- The initial temperature will have to be selected depending on the particular instance of the problem.
- The mathematics of simulated annealing involve Markov chains (a construct in probability theory).
- In practice:
 - Simulated annealing is easy to implement.
 - Simulated annealing has been found to work well for approximately bowl-like landscapes.
 - Performance is strongly dependent on good neighborhood functions.
 - Performance can be enhanced if supplemented with other strategies (e.g., use multiple starting points).
 - The theoretical temperature schedule is too slow.
 - Newer algorithms (e.g., TABU search) build on and are better than simulated annealing.