Parallel Discrete Event Simulation

PDES: the execution of a single DES program on a parallel
computer

Why PDES?

large simulations consume enormous amounts of time on
sequential machines

® engineering
e computer science
® eConomics

e military applications

PDES is interesting because real-world problems often contain
substantial amounts of parallelism yet are difficult to simulate
in parallel



Parallel Computing

Parallel computing involves the use of multiple processors (CPUs)
to solve a single problem

e reduces execution time

e able to increase scale of the problem

For the purposes of PDES, there are two basic classes of parallel
computers

e shared memory: common memory shared by processors

e distributed memory: each processor has its own memory

Distributed memory applications require passing messages along
network connections to relay information from one processor to
another

Shared memory applications permit processors to access com-
mon areas in memory using locks

PDES research exists in both classes



Revisiting Sequential DES

In a DES model

e changes in system state occur only at discrete points in time

e events move the simulation model from state to state
We are concerned with asynchronous systems

e events are not synchronized by a global clock
e instead, events occur at irregular time intervals

e example: communication network
— state variables: number of network nodes, length of
message queues, status of com-links, etc.

— events: msg arrival at network node, forwarding msg
from one node to another, failure of a node, etc.

For asynchronous systems, parallelism based on lockstep
execution performs poorly



Causality of Events

Consider a sequential DES:

e A sequential DES typically uses three data structures

— the system clock variable
— the state variables

— an event list of pending events
e Each event corresponds to a future change in system state
e Each event is time-stamped
e Repeatedly remove and process smallest time-stamped event

— change system state appropriately

— schedule new events

Selecting the smallest time-stamped event is crucial!

Otherwise, we simulate a system in which future events can
affect the past — causality errors

“... you built a time machine ... out of a DeLorean?”
— Marty McFly

“The way I see it, if you're gonna build a time machine into a
car, why not do it with some style?”
— Doctor Emmet Brown



Why PDES is Hard

Processing events concurrently on different processors is our
best opportunity for parallelism

How do we avoid causality errors?

e consider events Fi, Es with time-stamps Ty, 75 (17 < T3)

e if F; changes a state variable used by F,, FE; must be
executed first

e if I, E5 are executed on different processors, how do we
know when Es can be executed?

i.e., sequencing constraints are needed for the computation to
be correct

This problem is easy in a sequential DES, but quite difficult in
parallel



The Logical Process Paradigm

Most PDES strategies forbid processes to have direct access to
shared state variables

The Logical Process Paradigm:

e the physical system is composed of physical processes

— the processes interact at various points in time

— e.g., communication network of switching centers

e the simulation model is constructed as a set of logical
processes (LPy, LPy, . ..), one per physical process

e interactions between physical processes are modeled using
time-stamped event messages between corresponding LPs

e cach LP contains

— portion of the state corresponding to the physical pro-
cess it models

— local clock denoting how far the LP has progressed

The time-stamped event messages are used to control sequenc-
ing constraints



Other Causality Errors

Exclusion of shared states does not prevent all causality errors

Consider event F; at LP; with time-stamp 10 and event F5 at
L P, with time-stamp 20

20 1 E2
10 — E1
t
LP1 LP2

If F; schedules a new event E5 for LP, with time-stamp < 20,
then F5 could affect Fy

If there is no information about what events can be scheduled
by other events, must process event with smallest time-stamp

Sequential execution of the associated events!

Amdahl’s Law: speed-up < k-fold if 1/kth of computation is
sequential



Why PDES is Hard (Cont.)

PDES is difficult because the sequence constraints that dictate
computation order are complex and highly data-dependent,

The simulation must adhere to cause/effect relationships in
physical system

Fundamental dilemma of PDES:

e how do we know if F; affects F/y without simulating F47

e ) can affect Fy via a complex, time-stamp-dependent set
of events

This dynamic nature is the reason for no general solution

In contrast, parallel computation in other areas experiences
great success where much is known at compile-time about the
computation structure

e c.g., vector operations on large matrices



The Two PDES Camps

There are two basic PDES sequence constraint mechanisms

1. Conservative

e does not allow causality errors to occur

e some strategy required to determine when it is safe to
process an event

e no event is processed until all events that could affect
it have been processed

2. Optimistic

e allows causality errors to occur
e uses detection and recovery

e when a causality error is detected, some rollback mech-
anism recovers to a state of correct computation

Which approach is better? Depends on the application ...



Conservative PDES

Consider an LP containing event F; with time-stamp T}

e if no smaller time-stamp in the LP, and

e if the LP can determine impossibility of receiving an event
with time-stamp < 717,

e then the LP can safely process Fj, otherwise block (wait)
How does the LP determine this impossibility?

e Links between communicating LPs are statically specified
e Each link has an associated clock, either

— time-stamp of first (unprocessed) event in the assoc.
queue, or

— time-stamp of last received msg (if queue is empty)
e LP selects the link with smallest clock

— if there is a msg in the assoc. queue, process it
— otherwise, the LP blocks

Can lead to deadlock — multiple LPs blocking

10



Handling Deadlock in Conservative PDES

Several approaches for handling/avoiding deadlock

e deadlock avoidance using special null messages

e deadlock detection and recovery

e look-ahead

ability to predict what will or will not happen in future
e barrier synchronizations
e conservative time windows

e others

Regardless of the choice above, causally-linked events are never
processed out of order

11



Optimistic PDES

Optimistic methods do not avoid causality errors

e process events “optimistically”
e determine when a causality error has occurred

e rollback the system to a correct point in simulated time
Advantages over conservative:

e exploit parallelism where errors might occur but do not

e casy to dynamically allocate LPs (static links not required)
The Time Warp mechanism is the most famous protocol

e aggressive cancellation

e lazy cancellation

e lazy reevaluation

e optimistic time windows

e space-time simulation (2D space-time graph)

e others

12



How a Typical Optimistic Protocol Works

Time Warp mechanism with aggressive cancellation:

e an error is detected when an incoming msg has smaller
time-stamp than the local clock

e the offending event is called a straggler

e all LPs receiving straggler undo any events processed
prematurely

e requires each LP to periodically save state

e may also require sending anti-messages to other LPs to
undo effect of previous messages

Global Virtual Time (GVT): smallest time-stamp among all
processed event messages

e no event with time-stamp < GVT will ever be rolled back

e saved states affected by such events can be discarded

13



Conservative or Optimistic?

Conservative Pros/Cons

e Works well for problems with good look-ahead
e Results suggest not robust to small changes in application
e Difficult to dynamically create new LPs

e Must be concerned with synchronization mechanism details
Optimistic Pros/Cons

e Poor look-ahead not a show-stopper

e Exploits parallelism that conservative methods can’t
e State-saving and rollback time/space costs

e More complex to implement than conservative

e Best hope for general-purpose simulation mechanism

14



PDES Applications / Summary

Applications in areas similar to previous lecture topics:

e battlefield simulations
e communication networks
e biological systems

— ant foraging
— sharks world

— Lyme disease

e digital hardware

PDES can be used to achieve speed-up and/or to model large-
scale problems

Two main paradigms:

e Conservative: no causality errors

e Optimistic: causality errors with detection and recovery

The choice of paradigm depends heavily on the problem

15



Intractability

Intractable problem: one that is not easily solved

Scientists suffer from the curse of dimension, i.e., the more vari-
ables (dimensions), the harder a problem is to solve

e compute how a drug candidate will bind to receptor
e given the receptor, solvent, and 8000 atoms in the drug

e because of 3 spatial variables to describe atom position =
24000 variables!

Problems can have so many variables that no future increase in
computer speed will solve them in reasonable time

Can intractable problems be made tractable?

16



An Integration Example

Consider computing a definite integral (WLOG, assume limits
of integration are 0, 1)

In practice, most integration problems are more complicated
than those in calculus books

For these, the simple approaches that we all know will not work

The integral must be approximated numerically

e compute the integrand at finitely many points

e combine the values to produce the answer

Because the integrand is evaluated at discrete points, the inte-
gral can only be approximated

Specify accuracy of an approximation by quantifying the error
e error of approximation falls within some threshold e
To guarantee an error < ¢, need global knowledge of integrand

e c.g. evaluate at z = 0.2, 0.5 but know nothing in between

e must make assumption to bound the error, e.g., slope is
always < 45 degrees

17



Computational Complexity

Assume that determining integrand values and combining have
fixed costs

Computational complexity of evaluating the integral: the min-
imum cost required to guarantee the approximation is within e
of the true value

For one variable (dimension), complexity is inversely propor-
tional to desired accuracy

e i.e., solution can be approximated with cost 1/e
® casy
Computational complexity scales exponentially with dimension
In general, we must also consider smoothness r of the function
r > 0, where r = 0 implies least smooth
Many problems have computational complexity (1/ e)d/ r

e multivariate integration

e surface reconstruction

e PDEs

If €, r are fixed, complexity depends exponentially on dimension

18



Intractable vs. Unsolvable

Some problems are intractable, i.e., not easily solved
Still others are unsolvable
cannot compute even an approximation at finite cost

When smoothness parameter » = 0, computational complexity
becomes infinite

Therefore, for many problems with large number of dimensions,
guaranteeing an approximation with desired error is intractable
or even unsolvable

19



Breaking Intractability Using Randomization

Pick points to evaluate at random, rather than deterministically

Computational complexity is then at most on order of (1/¢)?
e problem is tractable even if r =0

Monte Carlo Method: Metropolis and Ulam, 1940s

e cvaluate integrand at Uniformly distributed points
e mean of these values is the integral approximation

e such randomization makes complexity independent of d
The price for success:

e ironclad guarantee that error < € is lost
e must settle for weaker assurance

e error is probably no more than e

20



Summary

Certain problems cannot be solved in a reasonable amount of
time

Randomization make many of these computationally feasible
Must settle for weaker guarantee of error

Not a cure-all

e does not break intractability for surface reconstruction

e can look at average-case error

Still other problems are not even solvable!

21



