AdaptLoad: effective balancing in clustered web servers under transient load conditions

Alma Riska, Wei Sun, Evgenia Smirni, Gianfranco Ciardo

Computer Science Department College of William & Mary

Motivation

- Internet
 - Too big, too variable, too heavy-tailed
- Issue
 - Flash crowd effect
 - Sudden fluctuations in arrivals and demands
 - \$\$\$
- Capacity planning
 - Critical for E-commerce sites
- · High performance & availability
- But mostly cost effective!

Clustered Web Servers

- · Clustering with a single system image
- Front-end: level-7 switch
- Back-end: multiple identical nodes

This Talk: Load Balancing

- Classic solutions
 - -Random
 - -Round-robin
 - -Join the Shortest Queue (JSQ)
- Not effective in such environments!

Why not effective?

- Too diverse workloads
- Heavy-tailed behavior
- Short jobs may get stuck behind extra-long ones in the queue
- Effect: HUGE slowdown
- Idea:
 - Separate long from short jobs!
- · Size-based policies then...

What is our workload?

- Must be realistic!!!
- · Trace data rather than artificial
- 1998 World Soccer Club
 - 30-low latency platforms
 - 92 days (April 26, 1998 to July 1998)
 - Date & time, size of transferred data
 - Static content

Workload Characterization

- Arrival intensities
 - How often
 - How variable
 - Possible periodic behavior
- · Service intensities
 - Assumption: service time linear to file size
 - How variable

Workload Characterization: Service Process • Keep looking at the same week... Average request size per 5 minute period 4000 June 23 June 24 June 25 June 26 June 27 June 28 June 29 June 30 • High variability

Workload Summary

- Rapidly changing environment
- Very wide variability in both arrivals and service times
- · Load balancing more tricky!
- Challenges
 - -Adapt balancing parameters
 - -Ensure equal load on all servers

Our solution: AdaptLoad • Basic idea: tasks of similar sizes to the same server | Ist interval (3rd server) | 2nd interval (2nd server) | 3rd interval (3rd server) | 4th interval (4th server) | 4th interval (4th server) | 5 Size

AdaptLoad (cont.)

- Problem
 - -A priori knowledge of the workload
- Solution
 - -Use past to predict future
 - On-line observations of limited number of requests
- Evaluation
 - -Trace driven simulation

Performance Issues

- Transient overloads
- Fast and slow servers
- Equal load (utilization)
- Fairness
- Scalable
- Improvements?

Improvements?

- Better knowledge?
- Exponentially discounted history
- Two parameters
 - -Batch size K
 - -Coefficient 0 <= a < =1
- Exhaustive search for (K,a)
- Sensitivity?
- Robustness?

Summary

- New policy: AdaptLoad
- Simulation-based evaluation
- Use history for future prediction
 - -Previous K requests
 - -Exponentially discounted history
- Works great!

Future Directions?

- Service differentiation
- Dynamic content
- Time-series analysis
- On-line analytic models
- Prototype implementation