Overview — Lecture One

Cellular automata
— definition

— modeling environment

Applications (brief)

Soil erosion model

— Synchronous/asynchronous updating

Prisoners’ Dilemma model

— Synchronous/asynchronous updating

Summary and bridge to future lectures

1

John Von Neumann (1903-1957)

e 1920s-30s: math, quantum physics
1930s-40s: game theory, economics
1940s-50s: computing (stored program)
1950s: automata, self-reproduction theory

e tried to prove self-reproduction possible

e kinematic model: a tangible automaton

e non-trivial self-reproducing CA
— not a mindless robot

— theory completed by A. Burks

www.brunel.ac.uk/depts/AI/alife/al-vonau.htm

2

Cellular Automata

an infinite 2D grid of cells

each cell in one of finite number of states

system evolves in discrete time steps

at each step, next state of cell (z,vy)

determined by:

1. current state of cell (z,vy)

2. current state of neighboring cells
— 4 cells: N, S, E, W

— 8 cells: Moore neighborhood

Game of Life

e John Conway, 1970

e two cell states: {off, on}

e rules for state changes:
1. if 3 neighbors on, next state is on
2. if 2 neighbors on, next state is current

3. otherwise, next state is off

e Interesting configurations:
— 3-dot blinker
— glider

— eater

Other Applications of CA

earthquakes

forest fires

snowflakes

mollusk shells

percolation

fluid dynamics

complex adaptive systems

Soil Erosion Model

Cellular Automata Machines
Toffoli and Margolus, MIT Press

used to study land development and
subsequent erosion

deterministically develop all possible land

avoid land collapse from erosion

The Landscape

2D X x Y cellular automaton

each (x,vy) cell represents plot of land

two cell states: undeveloped, developed
— undeveloped cell can become developed
— developed cell cannot revert

(no land reclamation)
two processes can cause development
1. intentional development by humans

2. natural erosion from over-development

T he Rules

e two deterministic rules model the processes

e stabilize rule: erosion from over-development

an undeveloped cell is “stable” if thereis an
undeveloped cell in Moore neighborhood

somewhere to north (N, NW, or NE),
somewhere to south (S, SW, or SE),
somewhere to east (E, NE, SE), and
somewhere to west (W, NW, SW);

otherwise, the undeveloped cell is “loose”
and will erode (become developed)

The Rules (Cont.)

e develop rule: intentional development

an undeveloped cell is "“safe” to develop if

undeveloped cell to immediate N,

undeveloped cell to immediate S,

undeveloped cell to immediate E, and

undeveloped cell to immediate W;

otherwise, the undeveloped cell is “unsafe”
and cannot be developed

e periodic boundary conditions:
each cell is center of Moore neighborhood

Visualizing the Rules

e White: undeveloped cell
shaded: developed cell

e the stabilize rule:

e the develop rule:

Stable “ Stable

Unsafe

10

Evolving the Landscape

e initially, a small proportion p of random
cells are developed

e landscape evolves via three-step process:

1. repeatedly apply stabilize rule until no
change in state of any cell

2. apply develop rule to deterministically
develop as many cells as possible

3. again repeatedly apply stabilize rule
until no change in state of any cell

e final stabilization causes landscape to reach
— stable configuration (p < 1.0), or

— complete erosion (p = 1.0)

11

Application of Develop Rule

e synchronous: apply to all cells in parallel

— change in state not realized by other
cells until next time step

— two copies of landscape required

1. one copy of current step values
2. one copy of next step values
(after application of develop rule)
e asynchronous: apply in sequence to (zx,vy)
cells selected at random w/o replacement

— only one copy of landscape required

— change in state immediately recognized
by subsequently selected cells

12

Algorithm: Synchronous Application

e for an X x Y landscape

while (/* no change in any cell’s state */)
for (x = 0; x < X; x++)
for (y = 0; y < Y; y++)
Stabilize(x, y);

for (x = 0; x < X; x++)
for (y = 0; y < Y; y++)
Develop(x, y);

while (/* no change in any cell’s state */)
for (x = 0; x < X; x++)
for (y = 0; y < Y; y++)
Stabilize(x, y);

13

Algorithm: Asynchronous Application

e for an X x Y landscape

while (/* no change in any cell’s state */)
for (x = 0; x < X; x++)
for (y = 0; y < Y; y++)
Stabilize(x, y);

while (/* unselected cells remain */)
/* select (x,y) cell at random WOR */
Develop(x, y);

while (/* no change in any cell’s state */)
for (x = 0; x < X; x++)
for (y = 0; y < Y; y++)
Stabilize(x, y);

14

Differences in Output

e very different results observed if develop
rule applied synchronously/asynchronously

e consider X xY = 50 x 50 landscape

(a) p=0.17 cells initially developed

(b) p = 0.19 after initial stabilization

(b)

15

Differences in Output (Cont.)

Synchronous
develop final stabilize
(a) p = 10.58 (b) p=1.00
Asynchronous
develop final stabilize

(c) p=0.39 (d) p = 0.39
16

Soil Erosion Summary

CA used to model land development

each cell in one of finite number of states

evolution controlled by deterministic rules

different output can be realized by
synchronous/asynchronous application of
develop rule

is this seen in other models?

17

Prisoners’ Dilemma Model

e Evolutionary Games and Spatial Chaos
Nowak and May, Nature, 10/1992

e used to study evolution of cooperative
behavior (Axelrod, 1984)

— two arrested for suspected joint crime
— each interrogated separately

— confess or deny?

e extend model to 2D landscape

18

The Landscape

2D X x Y cellular automaton

two cell states: cooperator, defector

The Dilemma:
— an encounter between neighboring cells

— payoffs awarded according to cells’ states

payoff p to (x1,y1) encountering (x5, y>):

state of (z1,y1) | state of (o, y>) P
defector cooperator T
cooperator cooperator R
defector defector P
cooperator defector S

where S< P<R<<T

19

Synchronous Application of the Encounter

e synchronous: apply to all cells in parallel

1. for each (x,y) cell, sum payoffs from
encounters within Moore neighborhood
(including self)

2. state of each (z,y) cell becomes state
of cell in neighborhood with largest total
payoff

3. this sequence of events (one time step)
continues indefinitely or until no change
in landscape

e change in state does not affect others until
next time step

20

Algorithm: Synchronous Application

e for an X x Y landscape

while (/* no change in any cell’s state */) {

for (x = 0; x < X; x++)
for (y = 0; y < Y; y++)
SumPayoffs(x, y);

for (x = 0; x < X; x++)

for (y = 0; y < Y; y++)
EvaluateState(x, y);

21

Asynchronous Application of the Encounter

e asynchronous: apply in sequence to (z,y)
cells selected at random w/o replacement

1. compute initial payoffs for each cell
2. select an (x,y) cell at random

3. its state becomes state of cell in neigh-
borhood with largest payoff

4. any payoffs affected by this state change
are recomputed

5. goto step 2

e one time step is complete when all cells
have been selected and updated

e change in state immediately recognized by
subsequently selected cells

22

Algorithm: Asynchronous Application

e for an X x Y landscape

while (/* no change in cell’s state */) {
do {
for (x = 0; x < X; x++)
for (y = 0; y < Y; y++)
if (/* any payoff needs recomputing */)
SumPayoffs(x, y);

/* select an (x,y) cell at random WOR */

EvaluateState(x, y);

} while (/* unselected cells remain */);

23

Initializing the Landscape

Initial configuration:

e X XY =99 x99

e non-periodic boundary conditions

e S=P=0R=1and T=1.9

e sole defector in middle, surrounded by all
cooperators

24

Differences in Output

color | previous state | current state
blue cooperator cooperator
red defector defector
green | defector cooperator
yellow | cooperator defector

G000 a4 aa
L g
ni e Sa o

citdena fe A

g

r-J
e A R e T
mﬁnﬂﬁaﬁa

(a) sync, t = 30 (b) async, t = 30
e synchronous: kaleidescope patterns persist

e asynchronous: no obvious patterns

25

Summary

Soil Erosion and Prisoners’ Dilemma models:

— CA used to model cooperative behavior

— each cell in one of finite number of states

— evolution controlled by deterministic rules

— different output for synchronous and
asynchronous evolution

26

Future Lectures

Extend CA (grid) to a more complex model

Introduce agents (rational actors) to the
landscape

Define rules to control landscape and agents

Try to infer global behavior from local rules

Examine synchronous vs. asynchronous time
evolution

27

Homework

e Implement synchronous Prisoners’ Dilemma:
X XY =99 x 99
non-periodic boundary conditions

S=P=0,R=1, and T =1.9

e Provide:

— number of defectors and landscape
pattern for ¢t = 107

— number of defectors and landscape
pattern for t = 219

— to capture postscript version of pattern:

~bglaws/umsa/draw

28

