## Materials Modeling — An Illustration with Magnetism

Shiwei Zhang

Department of Physics

## **Outline:**

Ferromagnetism in Fe, Ni, etc. (existence of  $T_c$ ) Can we develop a simple model for it?

- Phase transitions
- A BIT OF STATISTICAL MECHANICS
  - Boltzmann distribution
- The Ising Model for Ferromagnetism
- Grown-up's  $\pi$  game
  - allows actual calculations based on Boltzmann distribution
- SIMULATING THE ISING MODEL

#### PHASE TRANSITIONS

## (1) Percolation

- Each site of lattice is occupied with probability p
- There exists  $p_c$  at which a spanning cluster first appears
  - For 2-D square lattice,  $p_c \approx 0.593$
- At  $p_c$ , a phase transition occurs
  - Fundamentally different behaviors at  $p > p_c$  and  $p < p_c$ , e.g., conductivity in materials
- An example to see that  $p_c$  is special forest fire model:
  - \* Occupied site  $-\rightarrow$  a tree
  - \* All trees at one edge catch fire at  $t_0 = 0$
  - \* In each clock cycle, all trees adjacent to burning trees will start to burn
  - \* Trees burning at  $t_{n-1}$  will burn out at  $t_n$ 
    - **Q:** What is the time it takes for entire fire to burn out?

## PHASE TRANSITIONS

- (2) ice  $\Leftrightarrow$  water
- (3) Ferromagnetism in materials such as iron

ferromagnetic

non-ferromagnetic

 $T_c \sim 1000 \, \mathrm{K}$  for iron

In both 2 and 3:

- Interactions between particles play a key role
- $\bullet$  Phase transition occurs as a function of temperature T

In all cases, 1, 2, and 3, tuning of a parameter is involved, as opposed to self-organized critical phenomena.

## THE BOLTZMANN DISTRIBUTION

- For a system in equilibrium at temperature T, the probability for finding the system in any particular state  $\alpha$  is

$$P_{\alpha} \propto e^{-E_{\alpha}/kT}$$

- $E_{\alpha}$  is the energy of a (microscopic) state  $\alpha$
- -k is a universal constant (Boltzmann's constant)
- Any macroscopic quantity of the system is given by the weighted average of microscopic states, e.g.,

$$E = \sum_{\alpha} P_{\alpha} E_{\alpha} = \frac{\sum_{\alpha} E_{\alpha} e^{-E_{\alpha}/kT}}{\sum_{\alpha} e^{-E_{\alpha}/kT}}$$

Note:

- state  $\longleftrightarrow$  'snapshot'
- energy  $E_{\alpha}$  comes from particle interaction
- ullet As T is lowered, high-energy states are occupied less and less

# THE ISING MODEL FOR FERROMAGNETISM The Ising model:

- Square lattice of magnetic moments (think of as atoms with spin)
- Each lattice site has one spin
- Each spin can have one of two possible values  $s_i = \pm 1 \ (\uparrow \text{ or } \downarrow)$
- Near-neighbor spins interact

$$E_{\alpha} = -J \sum_{\langle ij \rangle} s_i \, s_j$$

 $\langle ij \rangle$ : a pair of near-neighbor spins i and j J>0: a known constant

• Periodic boundary condition is imposed

### Qualitatively:

- Aligned spins lower the energy
- High T, random; low T, aligned

#### Grown-up's $\pi$ game

#### Goal:

To generate a *uniform* distribution of stones inside (big) square

#### Algorithm:

- 1. Throw stone in random direction
- 2. <u>If</u> stone landed *inside* square, walk to stone, take out a new one from bag, and repeat 1 <u>otherwise</u> (stone landed *outside* square), take out a new stone from bag and drop it at current position; take out (yet another!) new stone and repeat 1

#### What's the point?

It's possible to create a Markov chain random walk with simple rules whose asymptotic distribution is the desired PDF

#### Note:

- Kids' game is *always* the better algorithm
- Specific drawbacks of grown-up's game:
  - requires equlibration time
  - successive samples are correlated (memory effect)
- But, unlike in this simple case, often there is no algorithm to directly sample a complicated, many-dimensional PDF
- Grown-up's game contains the essence of a general solution

#### — the Metropolis Algorithm

#### Extension of the grown-up's game

Another example:

How to sample x from the PDF  $f(x) = e^{-x}$  where x is on  $(0, \infty)$ ?

"Kids' algorithm": x=-log(rand())

The following algorithm *also* works: — Metropolis algorithm

- 0. Start random walk at any position x > 0
- 1. Propose to move x to a new position x', where x' is selected randomly and uniformly inside a 1-d box of length L centered at x.
- 2. Compute  $p \equiv f(x')/f(x)$ .
- 3. If  $p \ge 1$ , accept x', i.e., set x = x'otherwise

  accept x' with probability paccept: x = x'not accept: x = x
- 4. Repeat from 1.
- How to choose L?

## SIMULATING THE ISING MODEL

#### What exactly is it that we want to do?

- to generate states  $\alpha$  from the Boltzmann distribution  $P_{\alpha} \propto e^{-E_{\alpha}/kT}$ 

Given states distributed according to the PDF  $P_{\alpha}$ , macroscopic quantities can be computed, e.g., the total energy:

$$E_{\rm tot} = \sum_{\alpha} P_{\alpha} E_{\alpha}$$
 weighted average

is given by the average of  $E_{\alpha}$  w.r.t. the samples (Monte Carlo integration)

## The Metropolis Algorithm — grown-ups' game

- 0. Start random walk at any state  $\alpha = \{s_1, s_2, \dots, s_N\}$
- 1. Propose to move current state  $\alpha$  to a new state  $\alpha'$  by
  - (a) randomly selecting a site (say, i)
  - (b) flipping its spin (i.e., letting  $s'_i = -s_i$ )
- 2. Compute  $p \equiv P_{\alpha'}/P_{\alpha}$ .
- 3a. If  $P_{\alpha'}/P_{\alpha} \geq 1$ , accept  $\alpha'$  as new state, i.e., set  $\alpha = \alpha'$ ; otherwise, accept  $\alpha'$  with probability  $P_{\alpha'}/P_{\alpha}$ .
  - if accept, set  $\alpha = \alpha'$
  - if not accept, set  $\alpha = \alpha$
- 3b. Accumulate measurements (e.g.,  $E_{\alpha}$ ).
- 4. Repeat from 1.

## SIMULATING THE ISING MODEL

#### Note:

- 1. In proposing new state:
  - $N=L\times L$  attempted flips is considered one step
  - sweeping thru lattice also ok (vs. random site selection)
- 2 a. Computation of  $p \equiv P_{\alpha'}/P_{\alpha}$  is fast (local interaction).

Actual Simulation — and what can we learn from it?

http://bartok.ucsc.edu/peter/java/ising/keep/ising.html

#### SUMMARY:

- Phase transitions are common and important.
- Statistical mechanics provides framework to relate microscopic quantities to equilibrium macroscopic properties.
  - Boltzmann distribution
  - Phase transitions, as well as other equilibrium phenomena,
     directly arise from this framework
- The Ising model a simple microscopic model for magnetism
  - Has applications in magnetism, binary alloys, liquid-gas transitions, etc.
  - Has played an important role in furthering our understanding of the quantitative aspect of phase transitions
- The algorithm of Metropolis et. al.
  - A Markov chain random walk which generates random variables according to essentially any PDF.
  - Provides a general approach to simulating systems in thermal equilibrium, and allows detailed calculations according to the laws of statistical physics.
  - Is widely applied in many disciplines problems include polymers, protein folding, quantum electronics, etc.