Monte Carlo Methods in Physics

Shiwei Zhang

Outline:

WHAT IS MONTE CARLO?

• The π game

DIRECT MONTE CARLO

- Drunkard walks
- \bullet Particle transport, e.g.,
 - accelerator design
 - space engineering
- Earthquakes

INDIRECT MONTE CARLO

- Designer materials?
- Phase transitions (ice \rightarrow water); protein folding
- over-simplified
- GOAL: give "big picture"

WHAT IS MONTE CARLO

Monte Carlo: a class of computational methods whose essence is the invention of games of chance and whose behavior and outcome can be used to study some interesting phenomena.

A game to calculate π :

On a computer, random numbers play an essential role:

rand(): gives numbers uniformly distributed on (0,1)

$$(x,y)$$
: x=rand(); y=rand().

$$\pi=4\times\frac{\text{\# of points inside circle}}{\text{\# of points inside square}}$$

 \Rightarrow Monte Carlo can do integrals

 \rightarrow many-dimension

Random does not imply inaccurate

Drunkard's walks

1) Drunkard on a street with 2 bars

Moves left or right by 1 with equal probability in each step. Is trapped forever upon arrival at bar.

 \mathbf{Q} : What is probability distribution of drunkard after t steps?

Pseudo-code:

```
if rand() \leq 0.5, then x=x+1; else, x=x-1
```

Heat conduction in a metal stick: identical!

DIRECT MC: simulation of a natural stochastic process

Indirect MC: solution of non-probabilistic problems by probabilistic (MC) methods

Distinction between 'direct' and 'indirect' is not always clear

Drunkard's walks

2) Rain drop in random swirling breeze

Starts from h above ground:

Q: Average time to reach ground?

Pseudo-code:

```
r=rand() if r \le 0.6, then y = y - 1; else if r \le 0.6 + 0.1, then y = y + 1; else if r \le 0.6 + 0.1 + 0.15, then x = x - 1; else, x = x + 1
```

In general, to sample a discrete probability density function p_i :

- i) Draw r = rand().
- ii) Solve $\sum_{j=0}^{i-1} p_j \le r \le \sum_{j=0}^{i} p_j$ for i.

One way to sample a continuous P.D.F. f(x): $x \in (a, b)$

- i) Draw r = rand().
- ii) Solve $\int_a^x f(x)dx = r$ for x.

Particle transport

Neutron transmission through a plate:

Neutron collides with atoms inside plate.

Distance l between collisions is distributed as:

$$f(l) = 1/\lambda \exp(-l/\lambda), \qquad l \in (0, \infty)$$

Upon collision,

with probability p_s — scattered † with probability $p_c=1-p_s$ — captured

Q: What is probability for neutron to pass through plate?

Follow N neutron paths and see how many come through:

```
do while still inside plate \leftarrow for 1 neutron sample distance l advance neutron by l along current direction if rand() \leq p_c, then trajectory ends (captured) else sample random new direction (scattered) end if end do
```

[†] Scattering is uniform in all directions

Basic idea has many applications:

- accelerator design
- space engineering (radioactive effects on astronauts)
- semi-conductor (CPU chips) study and manufacturing
- crystal growth

Earthquakes

Q: Are earthquakes exceptional events due to special circumstances? Or are they part of a more general pattern of events that would occur *without* any specific external intervention?

Empirically, probability distribution of earthquake magnitudes:

$$N(E) \propto E^{-b}$$
 - "Gutenberg-Richter" law

Scale-invariant: $E \to sE$ leads to same N(E).

- No characteristic scale.
- Large events do occur.

Many objects in nature have scale-invariant (or fractal) structures.

In contrast, in the more familiar Gaussian form $e^{-(E/E_0)^2}$ — result of combining a large number of independent random events:

- Characteristic scale (E_0) .
- Large events pratically do not occur.

Need models to understand scale-invariant states without parameter tuning!

DIRECT SIMULATIONS

Earthquakes

A Model (Cellular Automata):

- Square lattice $N = L \times L$.
- Block on each site, connected by springs.
- z(i,j) is the force at site (i,j)
- z_{cr} (e.g., $z_{cr} = 4$) is critical threshold value.

Algorithm:

- 1 Increase z everywhere by p, e.g., p = 0.00001, and advance clock. \Leftarrow Represents increase of force from tectonic plate motion.
- 2 Check if $z(i,j) > z_{cr}$. If not, go to 1; else go to 3. \Leftarrow "no" means system is stable.
- 3 Let (i) $z \to z z_{cr}$ at the appropriate position(s) and (ii) $z \to z + 1$ at the four nearest-neighbors. \Leftarrow (i) represents the release of force due to slippage of a block and (ii) represents force transfer.

Indirect Monte Carlo

The story of high-temperature superconductors

- discovered around 1990
- normally insulators
- ullet become superconducting below temperature T_c
- T_c remarkably high: $T_c \sim 150\,\mathrm{K}$ (compare liquid nitrogen)
- enormous potential explosion in research effort

Q: Why? How?

Indirect Monte Carlo

The story of high-temperature superconductors

Q: Why? How? — Hubbard model?

To answer, study interacting electrons on a 2-dim lattice:

- Must solve Schroedinger equation (quantum mechanics)
- \bullet However, to study a 10 \times 10 lattice with 90 electrons requires diagonalization of a $L \times L$ matrix, where L is 3775914614554522689854057515489705090212865742534001561600
- Need new computational method one of the most outstanding problems in computational physics
- Recently, progress has been made by exploiting the similarity between the Schroedinger equation and the diffusion equation (drunkard!).
- Now 10 × 10 lattice above can be turned into random walks in (only!) 180 dimensions with birth/death, which can then be carried out by MC simulations.

SUMMARY:

- Monte Carlo refers to methods to solve problems which utilizes games of chance in an essential way.
- Monte Carlo methods are widely applied in physics.
 - direct Monte Carlo simulation
 - * particle transport
 - * earthquakes
 - indirect Monte Carlo calculation
 - * e.g., quantum mechanics
 - * often much more involved, but also much more powerful
- Monte Carlo methods are not necessarily rough
 - Individual methods can be extremely complex and elaborate.
 - Its results can be the most accurate possible; sometimes it's the *only* way to solve the problem.