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1. Motivation

Although easy to estimate and simulate, HPPs and renewal pro-
cesses do not allow for varying rates. The use of an NHPP is
often more appropriate for modeling.

Example: Customer arrivals to a fast food restaurant
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Other examples:
Cyclone arrival times in the Arctic Sea (Lee, Wilson, and
Crawford, 1991)
Database transaction times (Lewis and Shedler, 1976)

Calls for on-line analysis of electrocardiograms at a hospital
in Houston (Kao and Chang, 1988)

Respiratory cancer deaths near a steel complex in Scotland
(Lawson, 1988)

Repairable systems: blood analyzers, fan motors, power sup-
plies, turbines (Nelson, 1988)



2. Probabilistic properties

Notation
t time
N(t) number of events by time ¢
A(t)  instantaneous arrival rate at time ¢ (intensity function)
A(t) = JEX(T)dr cumulative intensity function
Property 1

PPA(T)dT " e JaA(r)dr
Pr(N(b)—N(a):n):[a (7) ]' n=0,1,...

n!

Property 2

EIN(t)] = A?)

Property 3 (Cinlar, 1975) If Ey, Fs,... are event times in
a unit HPP then A71(E),A"Y(E5),... are event times in an
NHPP with cumulative intensity function A(t).
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3. Estimating A(t) from k realizations on (0, S]
Data

t time
(0, 5] time interval where observations are collected
k number of realizations collected
N1, N9y ...y T number of observations per realization
L), t@)s -+ -5 tn) superposition of observations
n= Zle n; total number of observations collected

Intuitive solution (Law and Kelton, 2000): partition time
axis and let A(t) be piecewise constant.

Problems

(a) Determining cell width
e Small cell width — sampling variability
e Large cell width — miss trend

(b) Subjective due to arbitrary parameters
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Piecewise-linear nonparametric cumulative intensity
function estimator
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Properties

e Handles ties as expected

e Consistency

lim A(t) = A(t)

k—o00

e Confidence interval (asymptotically exact) for A(¢)

A

At) £ 20 %

e Variate generation straightforward
Input:
Number of observed arrivals n
Number of active realizations k
Superpositioned observations ¢y, ¢(2), - . -, {(n41)
Output:
Event times T1,T5, ..., T;_1 on (0, S]

i<+ 1 [initialize variate counter]
generate U; ~ U(0,1) [generate initial random number]
E; + —log.(1-U;) [generate initial exponential variate]
while F; < n/k do
begin
m ¢ | HDRE [set m 3 Atgm) < Bi < Atme)]

Ti < tim) + [tm+1) — )] (% - m)

[generate event time]
i+i+1 [increment variate counter]
generate U; ~ U(0, 1) [generate next random number]
E; + E;_1 —log,(1 —U;) [generate next HPP event time]

end



4. Estimating A(t) from overlapping realizations
Data

time
( S] time interval where observations are collected
# time intervals where the # realizations is fixed
<SJ,S]+1] interval j +1,5=0,1,...,r—1
kjt1  # realizations observed on (s, s;41), j =0,1,...,r —1
Nt number of observations on (s;, sj11]
), t(1)s - - - » L(n+r) SUpETpOsition of observations, sg, s1, ..., s;
Note: sg =0, s, =
A A@) = EJ: n_ (7’ — Zz1=1 (ng + 1)) Mj+1 Mj+1 (t — t(i))
=1 kq (nje1+ 1) kjia (i1 + 1) ki (Fany — t) |
t(i)<t§t(i+1); 1 =0,1,2,...,n+7r—1,
Sj<t§5j+1; ] :0,1,...,7‘—1,
Jj+1

Rationale: A(s; 1) = 3 n,/k,
q=1

Single segment of A(t) in the (j + 1)st region:

kjy1 realizations

nj+1 observations
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Example: Lunchwagon arrivals (Klein and Roberts, 1984)

Depiction of three regions for lunchwagon arrivals from 10:00
AM to 2:30 PM for k1 = 1, ks = 12, and k3 = 1; 517 = 1.5,
s9 = 3, and s3 = 4.5.
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An asymptotically exact 100(1— )% confidence interval for A(t)

A(t) — A(Sj) I Zj: A(Sq) — A(Sq—l)

kj+ g=1 kq

A@) - Aw)| < /J

Parent cumulative intensity function, nonparametric estimator,
and 95% confidence bands for lunchwagon arrivals from 10:00
AM to 2:30 PM for k; = 1, ks = 12, and k3 = 1; s; = 1.5,
s9 = 3, and s3 = 4.5.
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Variate Generation

Input:
Number of partitions r
Number of active realizations k1, ko, ..., k,

Number of observed arrivals per partition nq, no, ...

Superpositioned values t gy, (1), - - -
Output:
Event times 17,75, . ..

s Y(ntr)

,Tz'_l on (0, S]

7nT

141

J<0

MAX « 57_, n,/k,

generate U; ~ U(0, 1)

E; < —log,(1-U;)

while £; < MAX do
begin

while E; > ZH} ng/ky do

begin
j+—i+1
end

(nj41+1)kjq1 (Ei—zgﬂ ”q/kq)

[initialize variate counter]
[initialize region counter]

[set MAX to A(S)]

[generate initial random number]
]

[generate initial exponential variate

[update j if necessary]|

[increment region counter]

iy [RSENS
T < tm +[t(m+1 t(m)] (

1+—1+1

generate U; ~ U(0, 1)
B+ FE;_1— loge(l —

end

J + 2y (ng+1)

[set m > A(t(m) < B < Atpnin))]

(”j+1+1)k;+1(Ez Zqzlnq/kq)

nj 41 N (m - Egzl (nq + 1)))

[generate event time

]
[increment variate counter]
[generate next random number]

]

[generate next HPP event time



Example 1: Monte Carlo evaluation of the confidence interval
for A(t)

Coverages in the lunchwagon example (nominal coverage 0.95;
100,000 replications; k1 = 1,ky = 12,k3 = 1; 59 = 0,81 =
1.5, 50 = 3,53 = 4.5).

Time | Actual Coverage | Misses High | Misses Low
0.90 0.9501 0.0013 0.0487
1.35 0.9386 0.0048 0.0566
1.80 0.9505 0.0200 0.0296
2.25 0.9466 0.0196 0.0339
2.70 0.9498 0.0174 0.0329
3.15 0.9509 0.0295 0.0196
3.60 0.9498 0.0251 0.0251
4.05 0.9517 0.0167 0.0316




Example 2: Failure times for 20 copy machines (Zaino and
Berke 1992)

Failure times
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A(t) for the copy machine failure times
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Example 3: Failure times of heat pump compressors (Nelson
1990)

The compressors are located in five separate buildings, each un-
der repair contract for a time span (a, b, indicated by the bold-
face values. The data set consists of n = 28 failure times, and
yields r = 29 regions.

Bldg | Num of Comp Entry time, Failure Times, Exit time
B 164 2.59, 3.30, 4.62, 4.62, 5.75, 5.75, 7.42, 7.42, 8.77, 9.27, 9.27, 9.33
D 356 4.45, 4.47, 4.47, 5.56, 5.57, 5.80, 6.13, 7.02, 7.05
E 458 1.00, 2,85, 4.65, 4.79, 5.85, 6.73, 7.33
H 149 0.00, 0.17, 0.17, 1.34, 5.09
K 195 0.00, 2.17, 3.65, 4.14, 4.14

A(t) for the heat pump compressor failure times
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5. Conclusions
(a) Nonparametric estimation and simulation for NHPPs is straight-
forward

(b) Collecting data across overlapping intervals does not pose
any significant problems

(c) Once coded, this approach requires less effort than a para-
metric renewal process in order to simulate the observations



