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1. Introduction

Motivation
• Space Shuttle Challenger accident
• Chernobyl and Three Mile Island accidents
• product liability
• customer goodwill
• corporate reputation

Three closely-related fields of study
• Actuarial science
• Biostatistics
• Reliability engineering

Terminology
The event at the end of a lifetime is called

• a failure by reliability engineers
• death by actuaries and biostatisticians
• an epoch by point process researchers

The object of a study is called
• a system, component or item by reliability

engineers
• an individual by actuaries
• an organism by biostatisticians

To avoid switching terms, failure of an item will be
used here.



1.1 A definition of reliability

Definition 1.1 The reliability of an item is the
probability that it will adequately perform its
specified purpose for a specified period of time
under specified environmental conditions.

Item
• Resolution

an item may be an interacting arrangement of
components or the component level of detail
in the model may not be of interest

• Lev el of detail
determine the level of detail to be modeled

• External boundary for the item
what is to be considered part of the item and
what is to be considered part of the
environment around the item

Probability
• Range

all reliabilities must be between 0 and 1
inclusive

• Spinoffs from the probability axioms
statistical independence



Adequate performance
• Must be stated unambiguously
• Standards

Example: a ball bearing has failed when its
diameter falls outside of 3 + 0.05 mm

• Binary models
the item is in either the functioning or failed
state (e.g., a fuse)

Purpose
• Intended use

Example: a drill may have one grade for a
handyman and another for a contractor

Time
• Units

must be specified (e.g., hours, years)
• Notation

many lifetime models use the random
variable T

• Time need not be taken literally
consider an automobile tire, light switch

• Time duration must be specified
Example: 1000 hour reliability is 0.8

• Continuous operation vs. on/off cycling
time alone may not be the only consideration
(e.g., motors, computers)



Environmental conditions
• Factors

temperature, humidity, and turning speed all
affect the lifetime of a machine tool

• Preventive maintenance
usually effective in prolonging the lifetime of
the item and hence increasing the reliability

Reliability vs. quality
• reliability incorporates the passage of time
• quality is a static descriptor of an item

Example 1: Tw o transistors of equal quality. One
used in a television set, the other in a cannon
launch environment. Identical quality, different
reliabilities.

Example 2: Tw o automobile tires, each of high
quality. One was produced in 1957, the other in
1994. Same purpose, different reliabilities due
to improved design (e.g., tread or steel belts),
components (e.g., rubber) or processes (e.g.,
manufacturing advances). Some quality
improvements (e.g., improved tread design)
improve the reliability of the tire, while others
(e.g., improved white wall design) will not.



1.2 Case study

Item under consideration: the O-rings on the solid
rocket motors on the Space Shuttle

Subsystems
• orbiter
• external liquid-fuel tank
• two solid rocket motors

Each assembled solid rocket motor contains three
field joints that must be sealed.

O-rings
• 37.5 feet in diameter
• 0.28 inches thick
• all six O-rings must operate to avoid having the

propellant escape causing potential failure, so
the O-rings form a six-component series system

Figure 1.1 A six-component series
arrangement of O-rings.



Redundancy: a technique to increase reliability
• Redundancy is highly effective if the components

are independent.
• In 1977, NASA discovered field joint rotation

indicating that the failure of the primary and
secondary O-rings may not be independent.

• Prior to the Challenger accident, the solid rocket
motors were recovered in 23 of the 24 shuttle
flights.

• There was concern that an environmental
variable, temperature at launch, might influence
the reliability of the field joints.

• There was a forecast of 31oF for the morning of
the launch of the Challenger, the coldest launch
temperature to date.

Figure 1.2 A 12-component
arrangement of O-rings.
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Figure 1.3 Launch temperature versus
number of field joint failures.

Conclusion: temperature was indeed significant

2. Coherent Systems Analysis

• assume that an item (system) consists of n



components
• two key modeling decisions

which elements of the system are included
the level of detail

• the first two sections: structural properties
• the next two sections: probabilistic properties
• outline

structure functions
minimal path and cut sets
reliability functions
reliability bounds

2.1 Structure functions

Definition 2.1 The state of component i, xi , is

xi =




0

1

if component i has failed

if component i is functioning

for i = 1, 2, . . . , n.

The binary model
• n components form a system
• system state vector, x = (x1, x2, . . . , xn)
• the system state vector can assume 2n different

values

• 


n

j



of these vectors correspond to exactly j

functioning components, j = 0, 1, . . . , n



• the structure function, φ (x), maps the system
state vector x to 0 or 1, the system state

Definition 2.2 The structure function φ is

φ (x) =




0

1

if the system has failed under x
if the system is functioning under x.

Example 2.1 A series system functions when all
of its components function. Thus φ (x) assumes
the value 1 when x1 = x2 = . . . = xn = 1, and 0
otherwise.

φ (x) =




0

1

if there exists an i such that xi = 0

if xi = 1 for all i = 1, 2, . . . , n

= min {x1, x2, . . . , xn}

=
n

i = 1
Π xi .

1  2  n. . . 3

Figure 2.1 A series system block diagram.

Example 2.2 A parallel system functions when
one or more of the components function. Thus
φ (x) assumes the value 0 when
x1 = x2 = . . . = xn = 0, and 1 otherwise.



φ (x) =




0

1

if xi = 0 for all i = 1, 2, . . . , n

if there exists an i such that xi = 1
= max {x1, x2, . . . , xn}

= 1 −
n

i = 1
Π (1 − xi).

2

...

 3

 1

 n

Figure 2.2 A parallel system block diagram.

Applications
• kidneys
• brake system on an automobile with two brake

fluid reservoirs
Series and parallel systems are special cases of k-out-
of-n systems, where the system functions if k or more
of the n components function.

Applications



• suspension bridge (components: cables)
• an automobile engine (components: cylinders)
• a bicycle wheel (components: spokes)

Example 2.3 The structure function for a k-out-
of-n system is

φ (x) =







0

1

if
n

i = 1
Σ xi < k

if
n

i = 1
Σ xi ≥ k.

The block diagram for a k-out-of-n system is
difficult to draw in general.

 1

 2

 1

2

3

3

Figure 2.3 A 2-out-of-3 system
block diagram.

φ (x) = 1 − (1 − x1 x2)(1 − x1 x3)(1 − x2 x3)



2.3 Reliability functions

Assumptions
• the binary model applies to components and

systems
• the n components must be nonrepairable
• the components are independent

Definition 2.9 The random variable denoting
the state of component i, Xi , is

Xi =




0

1

if component i has failed

if component i is functioning

for i = 1, 2, . . . , n.

Random component states
• these n values can be written as a random system

state vector X
• pi = P[Xi = 1] is the reliability of the ith

component, i = 1, 2, . . . , n
• reliability vector p = (p1, p2, . . . , pn)
• must specify the time to which the reliability

applies (e.g., 5000-hour reliability is 0.83)
• the system reliability, r, is defined by

r(p) = P[φ (X) = 1]
• r(p) used when all component reliabilities are

equal



Technique 1: Definition of r(p)

Example 2.12 Series system of n independent
components

r(p) = P[φ (X) = 1] = P[
n

i = 1
Π Xi = 1] =

n

i = 1
Π P[Xi = 1] =

n

i = 1
Π pi

"Weakest link" for series systems
• system reliability less than smallest component

reliability
• improvement of weakest component most

effective

Special case: identical components r(p) = pn
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Figure 2.12 Reliability of n-component series systems.



Technique 2: Expected value of φ (X)

P[φ (X) = 1] = E[φ (X)]
since φ (X) is a Bernoulli random variable.

Example 2.13 Parallel system of n independent
components.

r(p) = E[φ (X)] = E[1 −
n

i = 1
Π (1 − Xi)]

= 1 −
n

i = 1
Π E[1 − Xi] = 1 −

n

i = 1
Π (1 − pi)

Special case: identical components
r(p) = 1 − (1 − p)n
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Figure 2.13 Reliability of n-component parallel systems.



"Law of diminishing returns" for parallel systems
• marginal gain in reliability decreases

dramatically as more components are added
• improvement of the strongest component is the

most effective

Notes on parallel systems
• standby system
• shared-parallel system

3. Lifetime Distributions

Motivation
Up to this point, reliability has only been considered
at one particular instance of time.

Outline
• lifetime distribution representations
• discrete distributions
• moments and fractiles
• system lifetime distributions
• distribution classes

3.1 Distribution representations

Five functions that define the distribution of T
• survivor function
• probability density function
• hazard function



• cumulative hazard function
• mean residual lifetime function

Survivor function (reliability function)

S(t) = P[T ≥ t] t ≥ 0
All survivor functions satisfy three conditions

S(0) = 1
t → ∞
lim S(t) = 0 S(t) is nonincreasing



Interpretations
• S(t) is the probability that an individual item is

functioning at time t
• S(t) is the expected fraction of items surviving to

time t
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Figure 3.1 Two survivor functions.

Conditional survivor functions

ST | T ≥ a(t) =
P[T ≥ t and T ≥ a]

P[T ≥ a]
=

P[T ≥ t]

P[T ≥ a]
=

S(t)

S(a)
for all t ≥ a.



Probability density function

f (t) = − S′(t)
f (t)∆t = P[t ≤ T ≤ t + ∆t]

for small ∆t values.

P[a ≤ T ≤ b] =
b

a
∫ f (t) dt = S(a) − S(b)

All probability density functions satisfy
∞

0
∫ f (t) dt = 1 f (t) ≥ 0 for all t ≥ 0
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Figure 3.3 The relationship between survivor and
cumulative distribution functions.



Hazard function (failure rate, force of mortality)

h(t) = f (t) / S(t) t ≥ 0
h(t)∆t = P[t ≤ T ≤ t + ∆t | T ≥ t]

for small ∆t values. Units: failures per unit time.

Interpretations
• h(t) is the amount of risk an item is under at t
• h(t) is a special case of the intensity function for

a nonhomogeneous Poisson process

All hazard functions must satisfy
∞

0
∫ h(t) dt = ∞ h(t) ≥ 0 for all t ≥ 0
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Figure 3.5 Common hazard function shapes.



Cumulative hazard function (integrated
hazard function and the renewal function)

H(t) =
t

0
∫ h(τ )dτ t ≥ 0

All cumulative hazard functions satisfy

H(0) = 0
t → ∞
lim H(t) = ∞ H(t) is nondecreasing

Applications
• variate generation in Monte Carlo simulation
• implementing certain procedures in statistical

inference
• defining certain distribution classes

Mean residual life function

L(t) = E[T − t | T ≥ t] =
1

S(t)

∞

t
∫ τ f (τ )dτ − t t ≥ 0

All mean residual life functions satisfy

L(t) ≥ 0 L′(t) ≥ − 1
∞

0
∫

dt

L(t)
= ∞



Example 3.2 Consider the exponential
distribution defined by the survivor function

S(t) = e− λ t t ≥ 0
with positive scale parameter λ .

f (t) = λe− λ t t ≥ 0
The mean residual life function is

L(t) = eλ t
∞

t
∫ τ λe− λτ dτ − t =

1

λ
t ≥ 0

by using integration by parts.

Knowing one of the five lifetime distribution
representations implies knowledge of the other four.

If the survivor function is known, for example, the
cumulative hazard function can be determined by

H(t) =
t

0
∫ h(τ )dτ =

t

0
∫

f (τ )

S(τ )
dτ = − log S(t)



3.3 Moments and fractiles

Motivation
Moments and fractiles contain less information than a
lifetime distribution representation, but they are often
useful ways to summarize the distribution of a
random lifetime.

Examples
• the mean time to failure, E(T )
• the median, t0.50

• the 95th percentile of a distribution, t0.95

Assumption: random lifetime T is continuous

E[u(T )] =
∞

0
∫ u(t) f (t) dt

Mean (abbreviated by MTTF or MTBF)

µ = E[T ] =
∞

0
∫ t f (t) dt =

∞

0
∫ S(t) dt

Variance

σ 2 = V [T ] = E[(T − µ)2] = E[T 2] − (E[T ])2

Coefficient of variation

γ =
σ
µ



Skewness

γ3 = E







T − µ
σ




3



Kurtosis

γ4 = E







T − µ
σ




4



Fractiles: t p satisfies

F(t p) = P[T ≤ t p] = p or t p = F −1( p )

Example 3.5 The exponential distribution has
survivor function

S(t) = e− λ t t ≥ 0

µ = E[T ] =
∞

0
∫ S(t) dt =

∞

0
∫ e− λ t dt =

1

λ

E[T 2] =
∞

0
∫ t2 f (t) dt =

∞

0
∫ t2 λ e− λ t dt =

2

λ2

σ 2 = E[T 2] − (E[T ])2 =
2

λ2
−

1

λ2
=

1

λ2

γ3 = λ3

6λ− 3 − 6λ− 3 + 3λ− 3 − λ− 3


= 2

t p = −
1

λ
log (1 − p)

4. Parametric Lifetime Models



Motivation
Survival patterns of a drill bit, a fuse, and an
automobile are vastly different.

Outline
• parameters
• exponential
• Weibull
• gamma
• other distributions

4.1 Parameters

Three types of parameters:
• location
• scale
• shape

Location (or shift) parameters
Shift a distribution along the time axis. If c1

and c2 are two values of a location parameter
for a lifetime distribution with survivor function
S(t; c), then there exists a constant α such that
S(t; c1) = S(α + t; c2).

Example Mean µ in the normal
distribution.



Scale parameters
Used to expand or contract the time axis by a
factor of α . If λ1 and λ2 are two values for a
scale parameter for a lifetime distribution with
survivor function S(t; λ), then there exists a
constant α such that S(α t; λ1 ) = S(t; λ2 ).

Example Exponential scale parameter λ .

Shape parameters
Affect the shape of the probability density
function.

Example Weibull shape parameter κ .
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Figure 4.2 A mixed discrete-continuous



survivor function.



4.2 The exponential distribution

Motivation
The exponential distribution plays a central role in
reliability modeling since it is the only continuous
distribution with a constant hazard function.
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Figure 4.3 Lifetime distribution representations
for the exponential distribution.



S(t) = e− λ t f (t) = λe− λ t h(t) = λ

H(t) = λ t L(t) =
1

λ
Property 4.1 (Memoryless property) If
T ∼ exponential(λ) then

P[T ≥ t] = P[T ≥ t + s | T ≥ s] t ≥ 0; s ≥ 0.

0.0 0.5 1.0 1.5 2.0

0.0
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1.0

t

S(t)

Figure 4.4 The memoryless property
of the exponential distribution.

Property 4.2 The exponential distribution is
the only continuous distribution with the
memoryless property.

4.3 The Weibull distribution



Motivation
The exponential distribution’s constant failure rate
is often too restrictive or inappropriate.

S(t) = e− (λ t)κ
f (t) = κ λκ tκ − 1e− (λ t)κ

h(t) = κ λκ tκ − 1 H(t) = (λ t)κ

for all t ≥ 0.

Notes
• λ is a positive scale parameter
• κ is a positive shape parameter
• exponential distribution is a special case

(κ = 1)
• hazard function increases from 0 when κ > 1

(IFR)
• hazard function decreases from ∞ to 0 when

κ < 1 (DFR)
• κ = 2 known as the Rayleigh distribution
• when 3 < κ < 4  the probability density

function resembles that of a normal random
variable

• the mode and median of the distribution are
equal when κ ≈ 3. 26

• the characteristic life is a special fractile

defined by tc =
1

λ
; all Weibull survivor

functions pass through the point (
1

λ
, e−1)



• since H(t) = − log S(t), all Weibull cumulative
hazard functions pass through the point

(
1

λ
, 1)

• if T has the Weibull distribution, then
Y = log T has the extreme value distribution

• self-reproducing property: if
Ti ∼ Weibull(λ i , κ ) for i = 1, 2, . . . , n, then

min {T1, T2, . . . , Tn} ∼ Weibull(
n

i = 1
Σ λ i , κ )

• moments

µ =
1

λ
Γ


1 +

1

κ



=
1

λκ
Γ


1

κ



σ 2 =
1

λ2







2

κ
Γ


2

κ



−




1

κ
Γ


1

κ







2 





γ =







2

κ
Γ


2

κ



−




1

κ
Γ


1

κ







2 





1 / 2

1

κ
Γ


1

κ


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Figure 4.7 Lifetime distribution representations
for the Weibull distribution.



4.5 Other lifetime distributions

Table 4.4 Distribution classes.

Distribution IFR DFR BT UBT

Exponential YES YES NO NO

Muth YES NO NO NO

Weibull YES YES NO NO

Gamma YES YES NO NO

Uniform YES NO NO NO

Log normal NO NO NO YES

Log logistic NO YES NO YES

Inv. Gaussian NO NO NO YES

Expon. power YES NO YES NO

Pareto NO YES NO NO

Gompertz YES NO NO NO

Makeham YES NO NO NO

IDB YES YES YES NO

Gen. Pareto YES YES NO NO



5. Specialized Models

Motivation
There are several ways to combine and extend the
continuous lifetime models previously outlined.

Outline
• competing risks
• mixtures
• accelerated life
• proportional hazards

5.1 Competing risks

Notes
• causes of failure may be grouped into k

classes
• an item is subject to k competing risks (or

causes) C1, C2, . . . , Ck

• can be thought of as a series system of
components

• origins of competing risks theory traced to a
study by Daniel Bernoulli in the 1700’s
concerning the impact of eliminating
smallpox

• a second and equally appealing use of
competing risks models is that they can be
used to combine component distributions to



form more complicated models
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Figure 5.1 Hazard functions
for a competing risks model.

• notation (for j = 1, 2, . . . , k)

T lifetime
k number of risks
X j net life for risk j
Y j crude life for risk j
π j probability risk j causes failure

• net lifetimes: causes C1, . . . , Ck are viewed
individually

• crude lifetimes: lifetimes are considered in the
presence of all other risks



5.2 Mixtures

Mixture models are appropriate when items ar
drawn from one of several populations (finite
mixtures) or can be differentiated by a continuous
parameter.

Finite mixtures

f (t) =
m

l = 1
Σ pl fl(t |θ l)

where
m

l = 1
Σ pl = 1, pl ≥ 0 for l = 1, 2, . . . , m.

Continuous mixtures (stochastic parameters)

f (t) =
allθ
∫ f (t |θ ) p(θ )dθ

where θ is called the mix parameter and p(θ )
indicates the distribution of the mix parameter.

Example 5.4 If m = 2 facilities produce
items with exponential(1) and exponential(2)
lifetimes, respectively, and 1 / 3  of the items
come from facility 1 and 2 / 3  come from
facility 2, the probability density function of
the time to failure of an item whose
manufacturing site is unknown is

f (t) = p1 f1(t | λ1) + p2 f2(t | λ2)



=
1

3
e− t +

4

3
e− 2t t ≥ 0

which is a finite mixture of the two
populations. This model is a special case of
the hyperexponential distribution.

Combining competing risks and finite mixtures

f (t) =
m

l = 1
Σ pl






kl

j = 1
Σ hlj(t) e

−
t

0
∫

kl

j = 1
Σ hlj(τ )dτ 





where m is the number of populations,
m

l = 1
Σ pl = 1,

kl is the number of risks acting within the l th

population, hlj(t) is the hazard function for the jth

risk within the l th population.

Application: casualty insurance
• m = 3 populations of dwellings

single family dwellings
condominiums
apartments

• k1 = k2 = k3 = 5 risks
fire
flood
tornado
earthquake



burglary



5.3 Accelerated life

The accelerated life and proportional hazards
models are appropriate for including a vector of
covariates in a lifetime model.

The q × 1 vector z = (z1, z2, . . . , zq)′ contains q
covariates associated with a particular item.

Example Reliability
T : drill bit failure time
z1: turning speed
z2: feed rate
z3: hardness of the material

Example Biostatistics
T : patient survival time
z1: age
z2: gender
z3: cholesterol level

Example Recidivism
T : time to return to prison
z1: age
z2: time served
z3: number of previous convictions



Notation

z = (z1, z2, . . . , zq)′ covariates
β = (β 1, β 2, . . . , β q)′ regression coefficients
ψ (z) link function
S0(t), f0(t), h0(t), H0(t) baseline functions

How to link covariates to a lifetime distribution
• one lifetime model when z = 0 (often called

the baseline model)
• other models when z ≠ 0

The accelerated life model

S(t) = S0(t ψ (z)) t ≥ 0
Notes

• S0 is a baseline survivor function
• ψ (z) is a link function satisfying ψ (0) = 1 and

ψ (z) > 0 for all z
• a popular link function choice is the log-linear

form ψ (z) = eβ ′z

• the covariates accelerate the rate at which the
item moves through time with respect to the
baseline case when ψ (z) > 1

• the covariates decelerate the rate at which the
item moves through time with respect to the
baseline case when ψ (z) < 1

• application: situations when testing items at
their operating environments is too time



consuming

5.4 Proportional hazards

Whereas accelerated life models modify the rate
that the item moves through time based on the
values of the covariates, proportional hazards
models modify the hazard function by the factor
ψ (z).

The proportional hazards model can be defined by

h(t) = ψ (z) h0(t).

Notes
• the covariates increase the risk when ψ (z) > 1
• the covariates decrease the risk when ψ (z) < 1
• the log-linear form ψ (z) = eβ ′z is still an

appropriate choice for the link function

Table 5.1 Lifetime distribution representations
for regression models.



Accelerated Life Proportional Hazards

S(t) S0(tψ (z)) [S0(t)]ψ (z)

f (t) ψ (z) f0(tψ (z)) f0(t)ψ (z)[S0(t)]ψ (z) − 1

h(t) ψ (z)h0(tψ (z)) ψ (z)h0(t)

H(t) H0(tψ (z)) ψ (z) H0(t)

Example 5.11 Consider the baseline hazard
function (Cox and Oakes, 1984)

h0(t) =




1

t

0 ≤ t < 1

t ≥ 1
Assumptions

• single binary covariate z
• when z = 0 (the control case), ψ (z) = 1
• when z = 1 (the treatment case), ψ (z) = 2
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Figure 5.3 Hazard functions for a piecewise-continuous
baseline hazard function.

hPH (t) = ψ (z) h0(t) t ≥ 0

hAL(t) = ψ (z)h0(tψ (z)) t ≥ 0

6. Repairable Systems

Motivation
So far, only nonrepairable systems of components
have been considered. Most systems are
repairable.

Outline
• Introduction
• Point processes
• Availability



• Birth-death processes

6.1 Introduction

A repairable item may be returned to an operating
condition after failure to perform a required
function by any method other than replacement of
the entire item.

Replacement models
• used when a nonrepairable item is replaced

with another item upon failure
• "socket models"
• unlimited spares
• redundancy allocation problem (optimal

number of spares)
• replacement policies

t
0

X X X X X X X

Figure 6.1 Failure replacement policy.

t
0

X X O X O X X O X

c c c

Figure 6.2 Age replacement policy.



t

0

X XO X O X XO O X O X

c c c c c

Figure 6.3 Block replacement policy.

• choice between these three replacement
policies depends on the lifetime distribution,
the cost of failure, administrative costs, etc.

• age and block replacement policies collapse to
a failure replacement policy as c → ∞

• expected number of items consumed (c fixed)

n f (t) ≤ na(t) ≤ nb(t) t > 0



6.2 Point processes

Hazard vs. intensity functions
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Figure 6.4 Hazard functions for an
item with a DFR and IFR distribution.
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Figure 6.5 Intensity functions for an improving
item and a deteriorating item.



Table 6.1 Terminology for nonrepairable
and repairable items.

Status Nonrepairable Repairable

Gets better burn-in h′(t) ≤ 0 improving λ ′(t) ≤ 0

Gets worse wear out h′(t) ≥ 0 deteriorating λ ′(t) ≥ 0

Point process models
• Poisson processes
• renewal processes
• nonhomogeneous Poisson processes

Notation and assumptions
• failures occur at times T1, T2, . . .
• the time to replace or repair an item is

negligible
• the origin is defined to be T0 = 0
• the times between the failures are X1, X2, . . .
• Tk = X1 + X2 + . . . + Xk , for k = 1, 2, . . .
• the counting function N (t) is the number of

failures that occur in (0, t]

N (t) = max { k | Tk ≤ t}
for t > 0

• {N (t), t > 0} is often called a "counting
process"

* if t1 < t2 then N (t1) ≤ N (t2)



* if t1 < t2 then N (t2) − N (t1) is the number
of failures in the interval (t1, t2]

• Λ(t) = E[N (t)] is the expected number of
failures that occur in the interval (0, t]

• λ(t) = Λ′(t) is the rate of occurrence of
failures
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Figure 6.6 A point process realization.

Tw o important properties
• independent increments: the number of

failures in mutually exclusive intervals are
independent

tX X X X( ] ( ]
t t t t1 2 3 4

0



Figure 6.7 Independent increments.
• stationarity: the distribution of the number of

failures in any time interval depends only on
the length of the time interval

Homogeneous Poisson process (HPP)

Definition 6.1 A counting process is a
Poisson process with parameter λ > 0 if

• N (0) = 0
• the process has independent increments
• the number of failures in any interval of

length t has the Poisson distribution
with parameter λ t.

Implications
• the distribution of the number of events in

(t1, t2] has the Poisson distribution with
parameter λ(t2 − t1).

• P[N (t2) − N (t1) = x] =
[λ(t2 − t1)]xe− λ(t2 − t1)

x!
for x = 0, 1, 2, . . .

• N (t) has the Poisson distribution with mean
Λ(t) = E[N (t)] = λ t, where λ is often called
the rate of occurrence of failures

• the intensity function is λ(t) = Λ′(t) = λ
• if X1, X2, . . .  are independent and identically

distributed exponential random variables,



then N (t) corresponds to a Poisson process
• this model is sometimes called just a Poisson

process



Nonhomogeneous Poisson process (NHPP)

Four reasons to consider an NHPP
• the HPP is a special case of an NHPP

(stationarity assumption relaxed)
• the probabilistic model for an NHPP is

mathematically tractable
• the statistical methods for an NHPP are also

mathematically tractable
• the NHPP is capable of modeling improving

and deteriorating systems

Intensity function: λ(t)

Cumulative intensity function: Λ(t) =
t

0
∫ λ(τ )dτ

Definition 6.4 A counting process is a
nonhomogeneous Poisson process with
intensity function λ(t) ≥ 0 if

• N (0) = 0
• the process has independent increments
• the probability of exactly n ev ents

occurring in the interval (a, b] is giv en
by



P[N (b) − N (a) = n] =
[

b

a
∫ λ(t)dt]n e

−
b

a
∫ λ(t)dt

n!
for n = 0, 1, . . . .

6.3 Availability

Notation
• Xi denotes the ith time to failure, i = 1, 2, . . .
• Ri denotes the ith time to repair, i = 1, 2, . . .

t

0

X O X O X O

R1 R2 R3X1 X2 X3

Figure 6.10 Failure and repair process
realization.



tX O

Time to detect failure
Time to diagnose the problem

Time to obtain parts and labor
Repair time

Testing time

Ri

Figure 6.11 Partitioning the repair time.

7. Lifetime Data Analysis

Motivation
Parameters have been assumed to be known
constants. The rest of the tutorial considers
parameter estimation (e.g., component reliability,
distribution parameter values).

Outline
• point estimation
• interval estimators
• likelihood function
• asymptotic properties of the likelihood

function
• censoring

7.1 Point estimation



A point estimator is a statistic used to estimate a
population parameter.

Definition 7.1 The point estimator θ̂ is an
unbiased estimator of θ if and only if
E[θ̂ ] =θ .

Definition 7.2 Let θ̂1 and θ̂2 be two unbiased
point estimators of the parameter θ . Then

V (θ̂1)

V (θ̂2)
is the efficiency of θ̂1 relative to θ̂2.

7.2 Interval estimation

Confidence intervals give bounds that contain a
population parameter with a prescribed probability

L ≤ θ ≤ U
Notes

• L and U are functions of
the sample size n
the lifetimes t1, . . . , tn

the nominal coverage of the interval 1 − α
• true value of the parameter θ is denoted by θ 0

• popular choices for α are 0.10 and 0.05
• confidence intervals: exact, approximate,

asymptotically exact
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Figure 7.2 Ten 90% confidence intervals for θ (n = 25).



7.3 Likelihood theory

Notation
• t1, t2, . . . , tn is a set of random lifetimes
• θ = (θ 1,θ2, . . . , θ p)′ is a vector of unknown

parameters
• L(t,θ ) is the likelihood function

L(t, θ ) =
n

i = 1
Π f (ti , θ )

• log L(t,θ ) is the log likelihood function

log L(t, θ ) =
n

i = 1
Σ log f (ti , θ )

• θ̂ = (θ̂1, θ̂2, . . . , θ̂ p)′ is the maximum
likelihood estimator
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Figure 7.7 Maximum likelihood estimation.
• the ith element of the score vector is



Ui (θ ) =
∂ log L(t,θ )

∂θ i
i = 1, 2, . . . , p

• the score vector components have expectation

E [Ui (θ ) ] = 0 i = 1, 2, . . . , p

and variance-covariance matrix

I (θ ) = E[U (θ ) U′ (θ )]

• this variance-covariance matrix is called the
Fisher information matrix with components

Cov(Ui (θ ),U j (θ )) = E




− ∂2 log L(t,θ )

∂θ i ∂θ j





for i = 1, 2, . . . , p and j = 1, 2, . . . , p.
• the observed information matrix has

components O(θ̂ ) is





− ∂2 log L(t, θ )

∂θ i ∂θ j



θ = θ̂

i = 1, 2, . . . , p

j = 1, 2, . . . , p



Example 7.7 Collect t1, t2, . . . , tn from an
exponential population with a single
parameter θ

f (t;θ ) =
1

θ
e− t /θ t > 0

The likelihood function is

L (t,θ ) =
n

i = 1
Π f (ti , θ )

=
n

i = 1
Π

1

θ
e− ti /θ

= θ − n e
−

n

i = 1
Σ ti /θ

The log likelihood function is

log L(t,θ ) = − n logθ −
n

i = 1
Σ ti /θ

The score vector is

U(θ ) =
∂ log L(t,θ )

∂θ
= −

n

θ
+

n

i = 1
Σ ti

θ 2

The maximum likelihood estimator is

θ̂ =
1

n

n

i = 1
Σ ti



The derivative of the score vector is

∂2 log L(t,θ )

∂θ 2
=

n

θ 2
−

2
n

i = 1
Σ ti

θ 3

The information matrix is

I (θ ) = E




− ∂2 log L(t,θ )

∂θ 2





= E







−
n

θ 2
+

2
n

i = 1
Σ ti

θ 3







= −
n

θ 2
+

2

θ 3
E





n

i = 1
Σ ti





=
n

θ 2

The observed information matrix is

O(θ̂ ) =




− ∂2 log L(t, θ )

∂θ 2



θ = θ̂

=
n

θ̂ 2



7.5 Censoring

A censored observation occurs when only a bound
is known on the time of failure.

Notation
• n: number of items on test
• r: number of observed failures
• c: censoring time

A data set where all failure times are known is
called a complete data set.

X
X

X
X

X

Figure 7.9 A complete data set with n = 5.

A data set containing one or more censored
observations is called a censored data set. The
most common type of censoring is right censoring.

X
O
O

X
X

Figure 7.10 A single Type II right-censored
data set with n = 5 and r = 3.



In single Type II censoring, the time to complete
the test is random. The second special case is
single Type I or time censoring.

X
O

X
X

X

Figure 7.11 A single Type I right-censored
data set with n = 5 and r = 4.

In single Type I censoring, the number of failures
is random.

Random censoring occurs when individual items
are withdrawn from the test at any time during the
study. It is usually assumed that the ith lifetime ti

and the ith censoring time ci are independent
random variables.

O

X

O

O

X

Figure 7.12 A randomly right-censored data set
with n = 5 and r = 2.

8. Fitting Parametric Models to Data

Motivation



Find point and interval estimators for the
exponential and Weibull distributions for sample
data sets.

Outline
• sample data sets
• exponential distribution
• Weibull distribution

8.1 Sample data sets

Example 8.1 A complete data set of n = 23
ball bearing failure times to test the
endurance of deep groove ball bearings (in
106 revolutions)

17.88 28.92 33.00 41.52 42.12 45.60
48.48 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 84.12 93.12 98.64
105.12 105.84 127.92 128.04 173.40

Example 8.2 A Type II right-censored data
set of n = 15 automotive a/c switches with
r = 5. The observed failure times measured
in number of cycles are

1410 1872 3138 4218 6971



Example 8.3 Determine the effect of 6-MP
(6-mercaptopurine) on leukemia remission
times. A sample of n = 21 patients were
treated with 6-MP, and r = 9 remission times
were observed. The survival times (in
weeks) are
6 6 6 6* 7 9* 10 10* 11* 13 16 17*
19* 20* 22 23 25* 32* 32* 34* 35*

Control group: 21 other leukemia patients
1 1 2 2 3 4 4 5 5 8 8

8 8 11 11 12 12 15 17 22 23

Example 8.4 Forty motorettes were placed
on test at 150oC, 170oC, 190oC and 220oC
(ten motorettes at each temperature level and
Type I censoring). The failure times (in
hours) are
150oC: 8064* 8064* 8064* 8064*
8064* 8064* 8064* 8064* 8064* 8064*
170oC: 1764 2772 3444 3542 3780

4860 5196 5448* 5448* 5448*
190oC: 408 408 1344 1344 1440 1680*

1680* 1680* 1680* 1680*
220oC: 408 408 504 504 504 528*

528* 528* 528* 528*
Failure times are the midpoint of an



inspection period. Operating temperature:
130oC.



8.2 The exponential distribution

Goal: find point and interval estimates for the
p = 1 parameter λ .

The exponential distribution can be parameterized
by either its failure rate λ or its mean
µ = θ = 1 / λ .

S(t, λ) = e− λ t f (t, λ) = λe− λ t

h(t, λ) = λ H(t, λ) = λ t
for all t ≥ 0.

Complete data sets

A complete data set consists of failure times
t1, t2, . . . , tn.

L(λ) =
n

i = 1
Π f (ti , λ)

The log likelihood function is

log L(λ) =
n

i = 1
Σ [log h(ti , λ) − H(ti , λ)]

or

log L(λ) =
n

i = 1
Σ [log λ − λ ti] = n log λ − λ

n

i = 1
Σ ti

The single element score vector is

U(λ) =
∂ log L(λ)

∂λ
=

n

λ
−

n

i = 1
Σ ti

The MLE is λ̂ =
n

n

i = 1
Σ ti



Exact confidence intervals for λ

λ̂ χ 2
2n, 1 − α / 2

2n
< λ <

λ̂ χ 2
2n, α / 2

2n

Example 8.5 Consider the n = 23 ball
bearing failure times. The maximum
likelihood estimator is

λ̂ =
n

n

i = 1
Σ ti

=
23

1661. 16
= 0. 0138

failures per 106 revolutions. An exact 95%
confidence interval is

0. 00878 < λ < 0. 0201
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Figure 8.1 Empirical and exponential fitted
survivor functions for the ball bearing



data set.

8.3 The Weibull distribution

Goal: find point and interval estimates for the
p = 2 parameters λ and κ .

The hazard and cumulative hazard functions are

h(t, λ , κ ) = κ λ(λ t)κ − 1 and H(t, λ , κ ) = (λ t)κ

for t ≥ 0.

Notation
• n is the number of items on test
• r is the number of observed failures
• t1, t2, . . . , tn are the failure times
• c1, c2, . . . , cn are the censoring times
• xi = min {ti , ci} for i = 1, 2, . . . , n

Assuming random censoring

log L(λ , κ ) =
i ∈U
Σ log h(xi , λ , κ ) −

n

i = 1
Σ H(xi , λ , κ )

= r log κ + κ r log λ + (κ − 1)
i ∈U
Σ log xi − λκ

n

i = 1
Σ xκ

i

The 2 × 1 score vector has elements

U1(λ , κ ) =
∂ log L(λ , κ )

∂λ
=

κ r

λ
− κ λκ − 1

n

i = 1
Σ xκ

i



U2(λ , κ ) =
∂ log L(λ , κ )

∂κ
=

r

κ
+ r log λ +

i ∈U
Σ log xi −

n

i = 1
Σ (λ xi)

κ log λ xi

There is not a closed form solution for λ̂ and κ̂ .
κ r

λ
− κ λκ − 1

n

i = 1
Σ xκ

i = 0

r

κ
+ r log λ +

i ∈U
Σ log xi −

n

i = 1
Σ (λ xi)

κ log λ xi = 0

The first equation can be solved for λ in terms of κ

λ =





r
n

i = 1
Σ xκ

i






1 /κ

The 2 × 2 information matrices are based on

− ∂2 log L(λ , κ )

∂λ2
=

κ r

λ2
+ κ (κ − 1)λκ − 2

n

i = 1
Σ xκ

i

− ∂2 log L(λ , κ )

∂κ 2
=

r

κ 2
+

n

i = 1
Σ (λ xi)

κ (log λ xi)
2

− ∂2 log L(λ ,κ )

∂λ∂κ
=

−
r

λ
+ λκ − 1




κ

n

i = 1
Σ xκ

i log xi + (1 + κ log λ)
n

i = 1
Σ xκ

i





Information matrices



• the expected values of these quantities are not
tractable

• use λ̂ and κ̂ to obtain the observed information
matrix

Example 8.15 Ball bearing data set. The
fitted Weibull distribution: λ̂ = 0. 0122 and
κ̂ = 2. 10.
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t
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Weibull

Exponential

Figure 8.8 Exponential and Weibull
fits to the ball bearing data.

The log likelihood function at the MLEs is

log L(λ̂ , κ̂ ) = − 113. 691
The observed information matrix is



O(λ̂ , κ̂ ) =




681, 000

875

875

10. 4





Using the fact that the likelihood ratio
statistic, 2[log L(λ̂ , κ̂ ) − log L(λ , κ )], is
asymptotically χ 2(2), a 95% confidence
region is

2[− 113. 691 − log L(λ , κ )] < 5. 99
since χ 2

2, 0.05 = 5. 99.
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Figure 8.9 Confidence region for
λ and κ (α = 0. 05).

Inverse of the observed information matrix:



O− 1(λ̂ , κ̂ ) =




0. 00000165

− 0. 000139

− 0. 000139

0. 108





The standard errors of the parameter
estimators are the square roots of the
diagonal elements

σ̂ λ̂ = 0. 00128 σ̂ κ̂ = 0. 329
An asymptotic 95% confidence interval for κ
is

2. 10 − (1. 96) (0. 329) < κ < 2. 10 + (1. 96) (0. 329)
or 1. 46 < κ < 2. 74.

9. Parametric Estimation for Models
with Covariates

Motivation
Estimate parameters for the accelerated life and
proportional hazards models.

Outline
• model formulation
• accelerated life
• proportional hazards

9.1 Model formulation

Goal: estimate the vector of regression
coefficients β = (β 1, β 2, . . . , β q)′



Applications
• determine which covariates significantly

impact survival
• determine the impact of changing the values of

covariates

The accelerated life model

S(t, z) = S0(t ψ (z))

The proportional hazards model

h(t, z) = ψ (z) h0(t)



Notation (for i = 1, 2, . . . , n; j = 1, 2, . . . , q)
• xi = min {ti , ci }
• δ i is a censoring indicator variable
• zi = (zi1, zi2, . . . , ziq)′
• zij is the value of covariate j for item i
• extra parameters: S(t, z, θ , β )

Matrix formulation

x =










x1

x2

.

.

.

xn










δ =










δ1

δ2

.

.

.

δ n










and Z =










z11

z21

.

.

.

zn1

z12

z22

.

.

.

zn2

. . .

. . .

.

.

.
. . .

z1q

z2q

.

.

.

znq










L(θ , β ) =
i ∈U
Π f (xi , zi , θ , β )

i ∈C
Π S(xi , zi , θ , β )

The log likelihood function is

log L(θ , β ) =
i ∈U
Σ log f (xi , zi , θ , β ) +

i ∈C
Σ log S(xi , zi , θ , β )

or

log L(θ , β ) =
i ∈U
Σ log h(xi , zi , θ , β ) −

n

i = 1
Σ H(xi , zi , θ , β )

Notes
• the maximum likelihood estimators for θ and

β cannot be expressed in closed form
• the number of unique covariate vectors and n

determine whether to use regression models



9.3 Proportional hazards

Example 9.2 A set of n = 3 light bulbs are
placed on test. The first and second bulbs are
100-watt bulbs and the third bulb is a 60-watt
bulb. A single (q = 1) covariate z1 assumes
the value 0 for a 60-watt bulb and 1 for a
100-watt bulb. Does the wattage have any
influence on the survival distribution of the
bulbs?

X

X

X

100 w

100 w

60 w

1

2

3

20 50 80
t

t

t

t

t t t(1) (2) (3)

1

2

3

z   = 1
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Figure 9.2 Proportional hazards
parameter estimation notation.
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Example 9.8 North Carolina collected
recidivism data on n = 1540 prisoners
in 1978 (Schmidt and Witte, 1988). T
is the time of release until the time of
return to prison. The purpose of the
study is to assess the impact of the
q = 15 covariates.

Table 9.2 North Carolina recidivism model.



zi Covar. β̂ √ V̂ [β̂ ]
β̂

√ V̂ [β̂ ]
p-value

z2 AGE -3.34 0.52 -6.43 0.000
z3 PRIORS 0.84 0.14 6.10 0.000
z1 TSERV 1.17 0.20 5.96 0.000
z6 WHITE -0.44 0.09 -5.07 0.000
z8 ALCHY 0.43 0.10 4.11 0.000
z13 FELON -0.58 0.16 -3.54 0.000
z9 JUNKY 0.28 0.10 2.91 0.002
z7 MALE 0.67 0.24 2.78 0.003
z15 PROPTY 0.39 0.16 2.47 0.007
z4 RULE 3.08 1.69 1.82 0.034
z10 MARRY -0.15 0.11 -1.42 0.077
z5 SCHOOL -0.25 0.19 -1.30 0.097
z12 WORK 0.09 0.09 0.96 0.169
z14 PERSON 0.07 0.24 0.30 0.381
z11 SUPER -0.01 0.10 -0.09 0.464

10. Nonparametric Methods

Motivation
Let the data "speak for itself", rather than
approximating the lifetime distribution by
one of the parametric models.

Outline



• nonparametric estimates of the survivor
function

• life tables

10.1 Survivor function estimation
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Figure 10.1 Parametric vs. nonparametric
survivor function estimates.

CASE I: complete data set of n lifetimes

Notation
• R(t), known as the risk set, contains the

indices of all items at risk just prior to
time t

• n(t) = |R(t)| is the cardinality, or number
of elements in R(t)



A nonparametric estimate for the survivor
function is

Ŝ(t) =
n(t)

n
t ≥ 0

Notes
• often referred to as the empirical survivor

function

• has a downward step of
1

n
at each

observed lifetime if there are no ties

• takes a downward step of
d

n
if there are d

tied observations at a particular time
value

An asymptotically valid 100(1 − α )%
confidence interval for S(t) is

Ŝ(t) ± zα / 2√ Ŝ(t)(1 − Ŝ(t))

n



Example 10.1 For the ball bearing data
set, find a nonparametric survivor
function estimator and a 95%
confidence interval for the probability
that a ball bearing will last 50,000,000
cycles.
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Figure 10.2 Ball bearing lifetime
survivor function estimate.

Note
• the downward steps in Ŝ(t) hav e

been connected by vertical lines
• some authors connect the survivor

function estimates at the failure
times with lines

• the survivor function takes a
downward step of 1 / 23 at each



data value except 68.64, where it
takes a downward step of 2 / 23



A point estimate for S(50) is

Ŝ(50) =
16

23
= 0. 696, and a 95%

confidence interval for S(50) is

Ŝ(50) ± 1. 96√ Ŝ(50)(1 − Ŝ(50))

23
or

0. 508 < S(50) < 0. 884

Case II: Right censoring

Notation
• let y1 < y2 < . . .  < yk be the k distinct

failure times
• let d j denote the number of observed

failures at y j , j = 1, 2, . . . , k
• let n j = n(y j) denote the number of

items on test just before time y j ,
j = 1, 2, . . . , k and it is customary to
include any values that are censored at
y j in this count

• R(y j) is the set of all indices of items
that are at risk just before time y j ,
j = 1, 2, . . . , k

Kaplan-Meier (product-limit) estimator



Ŝ(t) =
j ∈ R(t)′

Π [1 −
d j

n j
]

11. Model Adequacy

Motivation
Once a distribution has been fitted to a
sample data set, the adequacy of the model
should be accessed.

Outline
• all parameters known
• parameters estimated from data

11.1 All parameters known

Kolmogorov-Smirnov test

H0: F(t) = F0(t)

H1: F(t) ≠ F0(t)
where F(t) is the underlying population
cumulative distribution function. For a
complete data set, the test statistic is

Dn =
t

sup | F̂(t) − F0(t) |

Computational formulas

D+
n =

i = 1, 2, ..., n
max 


i

n
− F0(t(i))






D−
n =

i = 1, 2, ..., n
max 


F0(t(i)) −

i − 1

n



Dn = max {D+
n, D−

n }
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Figure 11.1 Empirical and fitted survivor functions.
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Figure 11.2 Empirical and fitted cdfs.

D23 = 0. 301 occurs just to the left of



t(4) = 41. 52.

Table 11.1 Approximate K-S critical
values (all parameters known).

1 − α

n 0.80 0.90 0.95 0.99

1 0.900 0.950 0.975 0.995
2 0.683 0.775 0.841 0.929
3 0.565 0.636 0.708 0.829
4 0.493 0.565 0.624 0.734
5 0.447 0.510 0.564 0.668
6 0.410 0.468 0.519 0.615
7 0.381 0.435 0.483 0.576
8 0.358 0.410 0.455 0.543
9 0.339 0.387 0.430 0.513
10 0.323 0.369 0.409 0.490
15 0.266 0.304 0.338 0.405
20 0.231 0.264 0.294 0.352
23 0.216 0.248 0.275 0.330
25 0.208 0.237 0.264 0.317
30 0.190 0.217 0.242 0.290
40 0.166 0.189 0.210 0.252
50 0.148 0.170 0.188 0.226

Table 11.1 gives estimates of the 1 − α
fractiles of the distribution of Dn under H0

determined by Monte Carlo simulation
(500,000 replications).



Example 11.1 Use the K-S test to
determine whether the ball bearing data
set was drawn from a Weibull
population with λ = 0. 01 and κ = 2.
Run the test at α = 0. 10.

The goodness-of-fit test is

H0: F(t) = 1 − e− (0.01t)2

H1: F(t) ≠ 1 − e− (0.01t)2

The test statistic is D23 = 0. 274. At
α = 0. 10, the critical value is 0. 248, so
H0 is rejected.

0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0

D23

Hypothesized Weibull dist.

Nonparametric estimator

t

F(t)

Figure 11.6 Empirical and fitted
Weibull cumulative

distribution functions for the ball
bearings.




