
Experimental Results

When all was said and done, the new algorithm was
run using both the Lazy and Strict policies using the
SMART tool and compared to the results of previous
MDD-based algorithms also run in SMART. For the
models that the algorithms were ran on, this papers’
approach is up to two orders of magnitude faster than
the Recursive algorithm, and up to one order of mag-
nitude faster than the forwarding algorithm.

The Saturation algorithm’s required peak memory is
often close to the final memory needed for storing the
overall state space.

Reguarding Generation time, in order from best to worst:
1) Lazy 2) Strict(100) 3) Strict(1) 4) Forwarding 5) Re-
cursive

Reguarding Memory Consumption 1) Strict(1) 2) Strict(100)
3) Lazy 4) Forwarding 5) Recursive

11



� The threshold that triggers recycling can be set
in terms of number of nodes or bytes of mem-
ory. The policy using a threshold of one node, de-
noted as STRICT(1), is optimal in terms of mem-
ory consumption, but has a heigher overhead due
to more frequent clean-ups.



STRICT Policy

� Disconnected nodes has a delete-flag set and its
arcs k.p[i] are re-direct to (k - 1.0) with possible
recursive effects on the nodes downstream.

� When a hit in the union cache or firing cache re-
turns s, we consider this entry stale if the delete
flag is set.

� By keeping per-level count of nodes with delete-
flags set, the decision can be made whether to
a) allocate new memory for a node at level k or
b) recycle the indices and physical memory of all
nodes at level k with delete-flag set after removing
all the entries in Union Cache and Firing Cache
referring to them.

10



Garbage Collection

� MDD nodes can become disconnect, unreach-
able from root

� Detected by using an incoming-arc counter for
each node

� LAZY policy - gives best runtime by removing these
disconnected nodes only at the end.

9



Given MDD encoding of the initial state s, we saturate
its nodes bottom-up. This improves both memory and
execution-time efficiency for generating state spaces
because of the following reasons:

1) Saturation order ensures that the firing of an event
affecting only the current and possibly lower levels
adds as many new states as possible

2) Since each node in the final encoding of S is sat-
urated, any node inserted in the unique table has a
chance of being part of the final MDD.

3) Once we saturate a node at level k, there is no need
to fire any event e in it again

8



Key Ideas

1) Fire events node-wise and exhaustively, instead of
level-wise and just once per iteration

2) Use a unique table to detect duplicate nodes

3) Use operation caches such as a union cache and
a firing cache to speed up computation

4) Only saturated nodes are checked in the unique
table or referenced in the caches

7



Algorithm Employing Node Saturation

In previous work, a naive strategy was used that cy-
cled through MDDs level-by-level and fired, at each
level k, all events e with First(e) = k.

Saturation not only simplifies this algorithm, but also
significantly improves its time and space efficiency

6



� Level 0 consists of two terminal nodes � 0.0 � and
� 0.1 �

� A non-terminal node � k.p � has �
�

arcs pointing
to nodes at level k - 1

� A non-terminal node cannot duplicate another node
at the same level

� Given a node � k.p � , we can recursively define
the node reached from it through any integer se-
quence using � ���	� and 
 �
����� the nodes below
and above � k.p � respectively.



Objective Want to use efficient data structures to en-
code S that exploit the system’s structure

Solution Multi-valued decision diagrams!

Notation Note: Superscripts are used for submodel
indices, not for exponentiation. Subscripts are used
for event indices.

� Sytem model is composed of K submodels

� Nodes are organized into K + 1 levels

� Level K contains only a single non-terminal node
� k.r � , the root

� Levels K - 1 through 1 contain one or more non-
terminal nodes

5



State Spaces and Next-State functions

A discrete-state model must specify i) S hat, the po-
tential states ii) s , initial state that must belong in S hat
iii) � , the next state function describing what states
can be reached from a given state in a single step

S is the reachable state space. In this paper we as-
sume that S is finite; however, for most practical asyn-
chronous systems, the size of S is enormous due to
the state-space explosion problem.

4



� In most concurrency frameworks, next-state func-
tions satisfly a product form that allow each com-
ponent of the state vector to be updated some-
what independently showing significant improve-
ments in speed and memory consumption when
compared to other state-space generators.

New Knowledge:

� The reachable state space of a system can be
built by firing the system’s events in any order, as
long as every event is considered often enough.

� This paper introduces a strategy which exhaus-
tively fires all events affecting a given MDD node,
thereby bringing it to its final “saturated” shape.

� Compared to previous work, saturation eliminates
amount of administration overhead, reduces the
average number of firing events, and enables a
simpler more efficient cache management.



Problem

Asynchronous systems, such as communication pro-
tocols, suffer from state-space explosion.

Solution

Problem has been addressed in previous work by us-
ing Multi-valued Decision Diagrams (MDDs)

MDDs in event-based asynchronous systems

Knowledge in Previous Work:

� Each event updates just a few components of a
system’s vector.

� Firing an event only requires the application of lo-
cal next-state functions and the local manipula-
tion of MDDs.

3



� BDDs construct their state spaces by iteratively
applying a single, global next-state function which
is itself encoded as a BDD.



Introduction

� State-space generation used in formal verification
tools

� Today’s high complexity of digital systems require
huge state spaces in the small memory of a work-
station

� Decision Diagrams are a kind of data structure
for implicitly representing large sets of states in
a compact fashion and therefore a rather logical
choice for data structure.

� Binary Decision Diagrams (BDD) have proven very
successful for synchronous systems, such as dig-
ital circuits, increasing the manageable size from
�����

states to
�������

states.

2



Purpose

� Present algorithm for generating state spaces of
asynchronous systems using Multi-valued Deci-
sion Diagrams (MDD)

� Accomplished through a new strategy called
saturation and implemented in the tool SMART

1



Saturation: An Efficient Iteration

Strategy for Symbolic State-Space

Generation

Gianfranco Ciardo, Gerald Luettgen,
and Radu Siminiceanu.

Departments of Computer Science
College of William and Mary, and Sheffield University

Kerry Connell
College of William and Mary

April 2 2002


