
A Large-Scale Study of Soft-Errors on GPUs in the Field

Bin Nie∗, Devesh Tiwari†, Saurabh Gupta†, Evgenia Smirni∗, and James H. Rogers†

∗College of William and Mary, †Oak Ridge National Laboratory

Abstract
Parallelism provided by the GPU architecture has enabled

domain scientists to simulate physical phenomena at a much
faster rate and finer granularity than what was previously
possible by CPU-based large-scale clusters. Architecture re-
searchers have been investigating reliability characteristics
of GPUs and innovating techniques to increase the reliability
of these emerging computing devices. Such efforts are of-
ten guided by technology projections and simplistic scientific
kernels, and performed using architectural simulators and
modeling tools. Lack of large-scale field data impedes the
effectiveness of such efforts. This study attempts to bridge this
gap by presenting a large-scale field data analysis of GPU
reliability. We characterize and quantify different kinds of soft-
errors on the Titan supercomputer’s GPU nodes. Our study
uncovers several interesting and previously unknown insights
about the characteristics and impact of soft-errors.

1. Introduction
Parallelism provided by the GPU architecture has enabled

domain scientists to simulate physical phenomena at a much

faster rate and finer granularity than what was previously pos-

sible by CPU-based large-scale clusters. Scientists are already

benefiting from the GPU deployments in large-scale comput-

ing systems such as the Titan supercomputer, the Blue Waters

supercomputer, and the Keeneland cluster [1, 22, 25, 36]. Rec-

ognizing the performance and energy-efficiency benefits of

GPUs, next generation pre-exascale supercomputers are also

expected to continue taking advantage of parallelism provided

by GPUs [4]. Given the challenges of power provisioning

for exascale systems, GPUs will continue to be an attractive

choice due to their performance per watt characteristics that

are better compared to their CPU counterparts [21].

Given the technology-trends and wide-spread adoption of

GPUs, many researchers have studied the performance and

energy-efficiency aspects of GPU-based applications in detail.

Architecture researchers have been investigating reliability

characteristics of GPUs and ways to increase the reliability

of these emerging computing devices. Such efforts are of-

ten guided by technology projections and simplistic scientific

kernels, and are performed using architectural simulators and

modeling tools. Lack of large-scale field data impedes the

effectiveness of such efforts. Only recently, researchers have

started to investigate the reliability characteristics of GPUs

using large-scale field data [8,33,34]. In particular, these stud-

ies have quantified the hardware and manufacturing related

failures of GPUs, firmware/application-related GPU errors,

and the improvement in the resilience of GPU architecture

over generations. Nevertheless, there is a limited understand-

ing about the soft-errors on GPUs at large-scale, their impact

on performance, the correlation between user jobs and GPU

errors, and their relation with GPU resource utilization. The

goal of this paper is to improve our understanding in these as-

pects and identify opportunities for future GPU system design

and better resource management.

Unfortunately, developing such an understanding is chal-

lenging for multiple reasons. First, there are often multiple

factors responsible for different types of GPU errors, making

it hard to distill their cause and their impact on applications.

Second, it is hard to study the correlation or impact of applica-

tions on GPU reliability characteristics or resource utilization

since we do not have access to the end-users’ application-

base. Third, we often do not have control over several factors

such the power/cooling conditions, user behavior or node-

assignments to different jobs. This makes the development of

an accurate understanding of the GPU errors more challenging.

Despite these challenges, this work attempts to improve our

current understanding about GPU reliability at-scale while

carefully considering these challenges.

In this work, we specifically quantify and characterize the

soft-errors on the Titan supercomputer’s GPU nodes. Our

study uncovers several interesting and previously unknown

insights about the characteristics and impact of soft-errors

(e.g., single bit error, dynamic page retirement error, and dou-

ble bit error). We characterize the temporal characteristics of

single bit errors and its association with other errors. We study

the impact of workloads, resource utilization, and variance

in load-level on error-affected GPU nodes. In particular, our

study aims to understand the correlation between application

characteristics and specific GPU errors. Our study also pro-

vides a deep understanding of possible temperature effects on

soft-errors. As we describe our findings, we also point out how

different methodologies may lead to different observations,

and the importance of our observations to system administra-

tors and architects. We believe that insights obtained from our

large-scale field data analysis carry significant implications for

current and future HPC computing facilities, system operators,

and system architects.

2. Background and Methodology

In this section, we provide an overview of the Titan super-

computer and its GPU architecture. Next, we provide details

about our data collection and analysis methodology. We also

describe the limitations of this study.

978-1-4673-9211-2/16/$31.00 c© 2016 IEEE

519



Node
(GPU +CPU)  

Blade
(four nodes)

 
)

Cage
(eight blades))

Cabinet
(three cages)

Titan supercomputer
(200 cabinets)

Titan supercomputer

Figure 1: Overview of the Titan supercomputer’s physical organization.

2.1. Titan Supercomputer Organization and GPU Archi-
tecture

Fig. 1 shows the physical organization of the Titan supercom-

puter. It consists of 200 cabinets organized in 25 rows and 8

columns. Each cabinet has three cages/chassis. There are eight

blades in each cage. Four nodes constitute one blade. Each

node has one AMD Opteron 6274 CPU (with 32 GB of DDR3

memory) and one NVIDIA K20X GPU (with 6 GB of GDDR5

memory). Each blade has two high-speed interconnect Gemini

routers, each shared by two nodes. NVIDIA K20X GPU has a

total of 14 streaming multiprocessors, each streaming multi-

processor has 192 CUDA cores. Each streaming multiproces-

sor has 64K registers, 64KB of combined shared memory and

L1 cache, and 48KB of read-only data cache. The L2 cache

(1536 KB) and the GDDR5 memory (6GB) is shared by all

streaming multiprocessors. Overall, each GPU has peak per-

formance of over 1.30 Tflops (double precision). On-chip and

off-chip GPU memory structures including the device memory,

L2 cache, instruction cache, register files, shared memory, and

L1 cache are protected by a Single Error Correction Double

Error Detection (SECDED) error correction code (ECC). In

the K20X GPU architecture, the read-only data cache is parity

protected. On the other hand, structures such as logic, thread

schedulers, instruction dispatch unit, and interconnect network

are not protected by the ECC.

2.2. GPU Errors: Collection and Analysis Methodology

Our study is based on the Titan supercomputer consisting of

18,688 GPUs. GPU errors can be classified into several cate-

gories. GPU hardware related errors, such as double bit errors,

Off the Bus, and micro-controller halts cause the application to

crash. Soft errors that can be corrected by the ECC mechanism

do not result in execution loss. Single bit errors are corrected

by the SECDED ECC. Two single bit errors on the same page

result in a dynamic page retirement (DPR) error [3]. This par-

ticular error is also reported when a double bit error happens

and the page is retired in order to improve the longevity of the

card.

There is a host of GPU related errors including errors that

are caused by the application, driver issues, firmware bugs, or

thermal issues. Note that NVIDIA documents a list of such

XID errors and their possible causes [6]. GPU applications

may also terminate with a non-zero exit code, indicating that

the execution was not successful. Other than hardware-related

and XID errors, several other reasons may be responsible for

non-zero exit codes, e.g., programming errors and expiration

of time-quota. However, unlike previous works [15,33], we do

not study these XID errors or system-integration errors (e.g.,

Off the Bus). This study primarily focuses on single bit errors,

dynamic page retirement errors, and double bit errors.

We collect GPU-error related data from February 2015

to June 2015 (more than 60 million node hours). The con-

sole logs from Titan are parsed to log critical system events.

These critical system events alert the system operators of unex-

pected/undesired behavior. We point out that we apply a filter

to separate a “parent” failure event from its “child” events.

This methodology is similar to the one outlined in previous

works [15, 24, 34, 35], but understanding the impact and effect

of “parent/child” failure events is not the focus of this paper,

this topic is covered in detail by other works [15, 33].

We note that single bit errors are not logged in the console

log, these errors are collected via the nvidia-smi utility on all

GPU nodes. This utility provides snapshot information, i.e.,

it does not timestamp individual single bit errors, but records

single bit errors before and after each batch job. This allows

us to do temporal analysis on single bit errors, albeit at the

granularity of a “batch job”. We denote a batch job as a set

of submitted applications that are submitted by the same user

(using a qsub command on Titan). Multiple “applications”

(also referred as “apruns”) can run within a submitted batch job

(also referred to as “job” or “batch”). The single bit error count

is collected at the start and end of the batch job and hence, can

not be associated with an application run directly. We also

note that our framework can identify the node locations on

which the single bit errors occur. We collect GPU resource

utilization information such as GPU core-hours, maximum

memory consumption, and total memory consumption, on a

per application basis.

The output from the nvidia-smi utility also includes double

bit and dynamic page retirement related errors. We do not use

this utility to analyze double bit or dynamic page retirement

errors due to inconsistency in error logging as pointed out by

previous works [34].

2.3. Limitations and Scope

While our study covers the GPU error data for a supercomput-

ing facility over an extended period of time, we recognize that

our work is subject to assumptions and limitations.

520



(a) (b)

Figure 2: Cumulative single bit error (SBE) count distribution
over days (a), and cumulative SBE count distribution
over days excluding top 2 days (b).

First, our analysis is post-hoc in nature and hence, by def-

inition it can not answer what-if scenarios where one may

require changing the system/workload environment to observe

the effect of a change.

Second, we note that such a large-scale computing facility

is often very dynamic in nature with respect to software stack

changes. Operational practices are continuously tweaked and

unscheduled outages take place among other system updates.

We have limited control over such factors. Therefore, isolating

the impact of the above factors on our study is challenging.

Instead, as we discuss our findings in the paper, we specifically

point out the external factors that we believe may influence our

findings. Previous works have also pointed out that NVIDIA’s

GPU error logging has improved over time [33, 34]. Our error

collection framework attempts mitigate this by collecting the

same error information via multiple possible methods.

Third, our study provides insights about correlation between

applications/users and GPU error characteristics. Yet, it is not

possible to investigate specific applications since we do not

have access to application source codes. We point out that

we have little to no knowledge about users’ intentions. User

behavior may change over time as the scientific knowledge in

a particular domain improves. A new computational model or

method in a particular domain may affect all applications in

that domain at a given time or over a period of time. We also

note that while our logs report the application name (binary

name) at the end of each job, it is possible for a user to use

the same binary name for two different applications, or the

same application with different input types. However, for our

analysis we conservatively treat them as the same application

because of the lack of more detailed knowledge.

We show that performing similar analysis at the user-level

mitigates some of the side-effects and provides additional

understanding. However, this is a fundamental challenge that

can not be rectified in a post-hoc analysis, especially for a

production supercomputing facility where system resource

managers can not influence user computing practices/behavior.

(a) (b)

Figure 3: Daily SBE count across time excluding the top two
days (a), and autocorrelation function of the SBE in-
terarrival times (b).

3. Analyzing Single Bit Errors (SBE) on the Ti-
tan Supercomputer

In this section, we aim to understand the temporal character-

istics of single bit errors (SBE) on the Titan supercomputer.

While previous studies have shown that most of the SBEs tend

to occur only in a few GPU cards [34], the temporal charac-

teristics of the SBEs have not been explored because of the

inability to collect SBE occurrence information continuously

over time. As described earlier in Section 2, our framework

enables us to collect SBE counts at the batch job granularity.

Fig. 2(a) shows the CDF of the single bit error counts on

a per day granularity. Recall that the time stamp of each

SBE occurrence is not recorded. However, since the Titan

supercomputer is highly utilized, we are able to collect the

SBE data from a large number of batch jobs and aggregate

them over 24-hour periods. It should be noted in Fig. 2(a)

that the x-axis presents the days in the observation data in

increasing order of their daily SBE count.

The steep curve of the distribution suggests that only a few

days accounts for most of SBEs. In fact, only three days

account for the 97.18% of the total SBEs, while the top ten

days with most SBEs account for 97.84% of the total SBEs.

Due to this skewness, it not clear how errors are being ac-

cumulated over the rest of the days. To better view this, we

plot in Fig. 2(b) the cumulative distribution function of SBE

counts but exclude the top two days. We observe that SBE

occurrences are not proportionally distributed over the rest of

the days either, i.e., 40% of the days with the lowest SBE daily

counts account for only 10% of the total SBE counts, while

the remaining 60% of the days account for 90% of SBEs.

This uneven distribution of SBEs across days led us to

investigate how these errors appear across time. Fig. 3(a)

shows the normalized SBE count per day for the whole period

of the study. We normalize the daily SBE count by the average

of the daily SBE count over the whole period. This figure

indicates that the density of SBEs across days is fairly uneven

and appears bursty.

To examine whether there is burstiness and/or periodicity

in SBEs, we analyze the time series of SBE occurrences and

plot the autocorrelation function of the inter-arrival times of

521



batches with non-zero SBE counts since SBE measurements

are at the per batch granularity. Autocorrelation is a math-

ematical representation of the degree of similarity in a time

series and a lagged version of itself. As such, it is ideal for

discovering repeating patterns by quantifying the relationship

between different points of a time series as a function of the

time lag [18]. The autocorrelation metric is in the range of

[−1,1]. Higher positive values indicate that the two points

between the computed lag distance are “similar”, i.e., have

stronger correlation. Zero values suggest no periodicity. Nega-

tive values show that the two points that are lag elements apart

are diametrically different. Fig. 3(b) illustrates the autocor-

relation function of the inter-arrivals of batches as a function

of the distance between successive arrivals (lags). The figure

illustrates a noticeable periodic pattern: the pattern repeats

within every 6 weeks, and the periodic pattern for positive au-

tocorrelation values becomes even more pronounced as the lag

increases. This indicates that both burstiness and periodicity

are present, it may be therefore possible to predict future SBE

occurrences using this information [37]. One may argue that

burstiness in SBE occurrence is an artifact of burstiness in the

inter-arrival of GPU jobs. To address this, we performed the

autocorrelation analysis on the number of applications exe-

cuted every day. We found the autocorrelation metric to be

close to zero, indicating lack of burstiness in the inter-arrival

of GPU applications. This is expected since the Titan super-

computer is a highly-utilized computing platform with long

job-queue waits. Therefore, we conclude that our observa-

tion about SBEs in not an artifact of the GPU job execution

characteristics.

Observation 1 Our field data analysis suggests that single
bit error occurrences on the Titan supercomputer are bursty
in nature. These errors tend to be clustered in time. Given
that most of these errors are also limited to only a few
GPU cards [34], system administrators can exploit these
observations together for better GPU job scheduling at a
large scale (e.g., avoid scheduling critical workloads on
certain nodes / days, and possibly turn off ECC on certain
nodes during specific time-periods for improved performance).

Previous work has shown that only a few selected GPU

cards experience most of the SBEs in the system [34]. We note

that the measurement period here does not overlap with that of

a previous study on the same system but, our study reconfirms

the findings presented in previous work [34]. Here, the top two

SBE offenders out of all 590 SBE offenders account for 96.9%

of SBE errors. Interestingly, we also found that these top

two SBE offenders accumulate all the SBEs on a single day.

This led us to investigate how SBE offender nodes accumulate

these errors over time and look for how many distinct days

each SBE offender experiences one or more SBEs. Fig. 4(a)

shows the number of distinct days that a specific SBE offender

node experiences an error. We make two observations. First,

(a) (b)

Figure 4: Number of SBE-affected days for all nodes (sorted in
increasing order of total SBE count) (a), and normal-
ized variation in the daily SBE count distribution for
the top twenty SBE offender nodes excluding the top
two nodes (red line in the middle represents median
while green dot represents mean) (b).

as illustrated by the points in the bottom right corner of the

plot, a few top SBE offender nodes experience most of their

errors over a small number of days. Second, the rest of nodes

do not show a linear trend in terms of the number of distinct

days over which SBEs occur. For example, the bottom 65%

of the SBE offenders (approximately 400 nodes) accumulate

their SBEs over less than 20 days, while the top 35% of

SBE offenders (approximately 200 nodes) take up to 6 times

more days to accumulate their SBEs. This non-linearity in

SBE accumulation can be particularly useful to HPC facility

administrators for identifying high SBE offender nodes and

exploiting this information for better GPU job scheduling.

Motivated by the above observation, we look deeper into the

top 20 SBE offender nodes. In particular, we plot the variation

in daily SBE count for top 3 to 20 nodes (we do not consider

the top 2 nodes because all their SBEs occur on a single day

only). Fig. 4(b) illustrates the boxplot of the daily SBE counts

that shows the 25th and 75th percentiles as well as median (flat

line) and mean (dot). The boxplots show that variation can be

significantly high for certain nodes. This suggests that while

high count SBE offenders accumulate single bit errors over a

large number of distinct days, it may be challenging to predict

the number of single bit errors these nodes are expected to

experience on a particular day.

Observation 2 A few top SBE offenders experience all of
SBEs over a very small number of days. However, the rest
of nodes do not show a linear trend in terms of the number
of distinct days over which SBEs occur. High count SBE
offenders experience errors over a significantly high number
of distinct days compared to the low count SBE offenders
nodes. Moreover, the variation of SBE occurrence among
days can change significantly across SBE offender nodes.

After investigating the temporal characteristics of SBE oc-

currences, we attempt to understand how GPU resource utiliza-

tion affects SBE occurrences. In particular, we test if higher

GPU resource utilization may lead to higher SBEs. We point

out that single bit errors can occur due to multiple reasons,

522



(a) (b)

Figure 5: GPU resource distribution for the SBE offender
nodes (excluding top two SBE offenders): GPU core
hours (a), and GPU memory utilization (b).

therefore, higher GPU resource utilization alone may not be

considered as the “cause”. Fig. 5 shows the normalized GPU

core hours and memory utilization for all SBE offender nodes.

The normalization is performed using the average for all SBE

offender nodes except the top two nodes (which are considered

outliers, as their SBEs occur in a single day only). We observe

that the nodes with higher SBE count do not necessarily use

higher GPU core hours or run workloads with higher memory

utilization.

While GPU resource utilization does not seem to be directly

correlated with the SBE occurrence frequency on the GPU

nodes, we suspect that the variance in GPU resource utilization

may be correlated to higher SBE occurrences. More precisely,

we want to test the hypothesis that days with higher variance

in GPU utilization experience higher single bit errors. Fig. 6

shows the top 50 days that encountered most SBEs (in increas-

ing order) and the corresponding variance in GPU resource

utilization on that day. We note that Fig. 6(a) and (b) indicate

that the couple of days with the highest SBE count may also

experience the highest variance in their GPU resource utiliza-

tion. However, a more closer look at top 4 to 50 days (Fig. 6(c)

and (d)) shows that variance in GPU resource utilization does

not imply higher daily SBEs.

Observation 3 We found that GPU resource utilization and
the variance in the GPU resource utilization do not seem to
be significantly correlated with the SBE occurrences. Higher
GPU resource utilization or its variance do not necessarily
result in a higher SBE count. We believe that an important
implication of this finding is that GPU resilience simulation
and modeling frameworks do not necessarily need to vary the
soft-error rate based on the compute load or variance in the
load. This can potentially simplify the design of such tools
without compromising the accuracy of the study.

We learned that the GPU resource utilization is not

highly correlated with the SBE frequency on SBE offender

nodes. Here, we investigate the relationship between specific

users/applications and SBE counts. In other words, is a certain

fraction of users/applications experiencing more single bit er-

rors than others? If so, what are the respective GPU resource

utilization levels?

(a) top 50 days (b) top 50 days

(c) top 4 to 50 days (d) top 4 to 50 days

Figure 6: Variance in the GPU resource utilization and daily
SBE count: GPU core hours for top 50 days (a),

for top 50 days excluding the top 3 days (b), GPU

memory utilization for top 50 days (c), and for top

50 days excluding the top 3 days (d). Days are sorted

in increasing order of SBE count.

(a) (b)

Figure 7: GPU core-hours for users (a), and applications (b)
experiencing SBEs.

Fig. 7(a) shows the SBE count of different users versus

their respective GPU core hours. Both SBE count and GPU

core hours have been normalized by their respective average

values. We also point out that only users that encountered at

least one single bit error are included in the plot. We found

that the correlation between GPU core hours and SBE count

is significant when studied at the user-level. The Pearson

coefficient is 0.59 with p-value < 0.05 while the Spearman

coefficient is 0.89 with p-value < 0.05. This indicates a strong

non-linear correlation. We did similar analysis between the

SBE count for users versus their respective GPU memory

utilization. We found similar trends in the results (not shown

here due to lack of space).

Fig. 7(b) shows that SBE count for applications versus its

respective GPU core hours. Only the applications affected by

SBEs are included in the plot. Similar to our previous analysis

for users, we found strong non-linear correlation in this case as

523



Figure 8: DPR errors for SBE offender cards (excluding top
two SBE offenders which had no DPRs).

well. The Pearson coefficient is 0.67 with p-value < 0.05 while

the Spearman coefficient is 0.89 with p-value < 0.05. Analysis

between the SBE count of different applications versus their

respective GPU memory utilization shows similar trends.

In summary, our data suggests that GPU resource utiliza-

tion at the user-level appears highly correlated with the SBE

frequency for different users and applications.

Observation 4 SBE occurrence frequency appears to be
highly correlated with users and applications. This correla-
tion is better expressed by a non-linear relationship and is not
necessarily an artifact of the bursty nature of single bit errors.
This indicates the necessity and importance of application-
centric GPU error resilience techniques and tools.

4. Analyzing Dynamic Page Retirement (DPR)
Errors on the Titan Supercomputer

Dynamic Page Retirement (DPR) is an important resilience

feature to improve the longevity of an otherwise good GPU

card. A page in the GPU device memory is blacklisted if two

single bit errors or one double bit error occur on the same

page. This page is not allocated to the application on the next

reload of the GPU driver [3]. In this section, we study single

bit errors and dynamic page retirement errors together since

SBEs can cause DPRs. We also investigate the impact of GPU

resource utilization and applications on DPR occurrence.

For the measurement period, we observe a total of 50 DPR

errors on 43 distinct GPU cards. Recall that we observe that

SBEs tend to be more concentrated in a few selected GPU

cards. More generally, the distribution of SBEs is not uni-

form among all the 590 SBE offender cards. Therefore, we

hypothesize that DPR errors are more likely to occur in the

top SBE offender cards. Fig. 8 shows the DPR and SBE error

frequency for all SBE offender cards (excluding the top 2 SBE

offenders which do not have any DPR). The plot shows that

some top SBE offender cards do observe DPR errors. For

example, the top 10 SBE offender cards account for 4 DPR

errors, while the top 20 SBE offender cards account for 7 DPR

errors out of total 50 DPRs. Cards with low SBE counts show

no DPRs during the measurement period. Most of the top SBE

offenders do not experience any DPRs either. It is possible

(a) (b)

Figure 9: Histograms of difference in SBE count for a 24-
hour windows after and before the DPR occurrence
for DPR offender nodes (a), and non-DPR offender
nodes (b). Dotted vertical lines represent the average

difference in SBE count.

that some top SBE offender cards may potentially experience

a DPR error in the future but we argue that our measurement

period is long enough to account for most of such cases given

the bursty occurrences of SBEs.

Observation 5 Top SBE offender GPU cards do not neces-
sarily experience more dynamic page retirement errors. In
fact, DPR errors may occur on any SBE offender cards, even
to those with relatively lower single bit error counts.

One can also reasonably hypothesize that the SBE count is

likely to be higher on DPR offender nodes before the DPR

error, since two SBEs trigger a DPR. To test this hypothesis,

we calculate the difference of SBE counts after and before

each DPR occurrence within a certain time window (i.e., 24-

hour), for both DPR offender nodes and non-DPR offender

nodes. In other words, we accumulate the SBE count on the

node for 24 hour window both after and before the DPR event,

and then take the difference. Fig. 9 presents the histograms

of the difference in SBE count for a 24-hour window for both

DPR offender nodes and non-DPR offender nodes. The dotted

vertical line in each graph shows the average. Average value of

this difference for DPR offenders is around 160 while the value

for non-DPR offenders is around 0. Similarly, the cumulative

distribution in Fig. 10(a) shows that DPR offending nodes and

non-DPR nodes have significantly different distribution. We

also conduct the Kolmogorov-Smirnov Test (KS test) to test

this hypothesis. We find that D = 0.389, p-value = 5.991×
10−7. For our sample size here, the critical D value is 0.19

and therefore we can reject the null hypothesis, and conclude

that DPR offending nodes show significantly higher values of

difference in SBE counts compared to non-DPR nodes.

Next, we test if SBEs continue to occur on the DPR offender

nodes beyond the 24-hour period since the last DPR error

occurrence. If so, for how long do the DPR offender nodes

continue to experience single bit errors? Fig. 10 shows the

cumulative distributions of difference in SBE count for two

different size of time windows. As a comparison point, we

present results for 24 hours time-window and 72 hours time-

window (Fig. 10(a) and (b)). We observe that the cumulative

524



(a) (b)

Figure 10: Cumulative distributions of difference in SBE count
for a 24-hour window (a) and a 72-hour window
(b) for DPR offender nodes and non-DPR offender
nodes. Some outliers are omitted for clarity. Omis-

sion of outliers causes the DPR-curve not to ap-

proach 1.

distribution does not change significantly from 24 hours to

72 hours. This indicates that the majority of SBEs occurring

after the DPR occurrence tend to occur within first 24 hours.

We find that the likelihood of SBEs increases after the DPR

occurrence, but it does not continue to remain at that level

always. We also note that the time-period after which the

probability of SBE occurrence returns to normal level can

vary across GPU nodes. We found 24-hour to be a good

threshold in our case and do not present more detailed, fine-

grained results (due to space constraints). In summary, this

is an interesting and counter-intuitive finding as the original

hypothesis suggests higher SBE occurrences before the DPR

error; on the contrary, our field data indicates that more SBEs

are likely to occur after the DPR error.

Observation 6 Our field data analysis shows that single bit
errors tend to occur more frequently on the DPR offender
nodes after the DPR error than before. This is counter-
intuitive since single bit errors are a cause of DPR errors,
and hence, one would expect the SBE error rate to be higher
before the DPR error. We also observe that the majority
of SBEs occurring after the DPR occurrence tend to occur
within first 24 hours. This finding can be useful in cases where
an application/user may turn on/off ECC support based on
the probability of soft-error occurrences.

Recall that the DBE is another cause for DPR errors. We

conducted analysis to understand the relationship between

DBEs and DPRs. However, due to the limited number of er-

rors, it is not possible to draw conclusions with high statistical

significance. Next, we investigate the effect of GPU resource

utilization on the DPR error frequency, similar to the analysis

performed for single bit errors. Fig. 11 presents the GPU

resource utilization for the GPU nodes that experience DPR er-

rors. We point out that the GPU core-hours and sum-memory

metrics are normalized to the corresponding average across

all nodes. Fig. 11 shows that GPU resource utilization points

do not show any clear trend. Nodes that experience a DPR do

not have higher resource utilization compared to nodes that

(a) (b)

Figure 11: DPR affected GPU nodes with increasing error
counts and normalized GPU core-hours (a), and
normalized GPU memory utilization (b).

(a) (b)

Figure 12: DPR errors and GPU core-hours for DPR affected
users (a), and DPR affected applications (b).

do not experience DPR errors. This finding is similar to the

one expressed in Fig. 5 where SBE events do not show strong

association with the GPU resource utilization.

Observation 7 We observe that there is no significant
association between DPR count and GPU resource utilization.

As we do not find any significant relation between GPU

resource usage on DPR affected GPU nodes and DPR error fre-

quency, we now look into how GPU resource usage of certain

users and applications correlates to DPR errors. Naturally, the

GPU resource usage varies among different users and applica-

tions. Therefore, we investigate if applications that experience

higher DPR errors also have higher GPU resource utilization.

Fig. 12 shows that GPU resource utilization is not necessar-

ily correlated to the number of DPR events experienced by

different users and applications. The Spearman and Pearson

coefficients show almost no correlation. In summary, we can

observe from Fig. 12 that users that experience more DPR

errors do not necessarily use longer GPU hours.

5. Analyzing Performance Variance in SBE and
DPR Affected GPU Nodes

In this section, we investigate if nodes affected by SBE and

DPR errors are more likely to show higher performance vari-

ation or significant degradation in performance compared to

error-free nodes. Toward this, we perform extensive exper-

iments on the SBE and DPR affected nodes and randomly

selected nodes on Titan.

525



(a) MatMul.

Random Nodes.

(b) MatMul.

Top 10 SBE Nodes.
(c) MatMul.

All DPR Nodes.
(d) BFS.

Random Nodes.

(e) BFS.

Top 10 SBE Nodes.
(f) BFS.

All DPR Nodes.

Figure 13: Distribution of execution time on random nodes, top 10 SBE nodes, and DPR offending nodes.

We run two representative GPU kernels, Matrix Multiplica-

tion (MM) and Breadth-first Search (BFS) on all DPR nodes,

top 10 SBE offender nodes, and randomly selected error-free

GPU nodes. These kernels have significantly different compu-

tational characteristics. MM is a regular, compute-intensive

benchmark, while BFS is an irregular data-intensive one. MM

and BFS kernels were obtained from the NVIDIA CUDA

toolkit [2] and Rodinia Benchmark Suite [5], respectively.

We collect performance data by repeatedly running these ker-

nels on the selected GPU nodes. We conducted over 24000

experiments on Titan GPU nodes, covering more than 9000

randomly selected GPU nodes. Each kernel is run 100 times

on each DPR offender node and top 10 SBE offender nodes.

Fig. 13 shows the distribution of execution times on

randomly-selected nodes, top 10 SBE offender nodes, and

DPR offender nodes. The execution time on the x-axis is

normalized with respect to average performance across all

runs. We note that some outliers in these plots are omitted for

presentation clarity but their effect on mean and standard devi-

ation is reflected on the graphs. For the MM benchmark, we

notice that SBE nodes and DPR nodes have 3-4% better perfor-

mance on average compared to the randomly selected nodes.

This is because randomly-selected nodes exhibit a bimodal

distribution of execution times, making the average execution

time of these nodes slightly higher. For the BFS benchmark,

there is no significant difference in average performance be-

tween the top 10 SBE and DPR offender nodes compared to

randomly-selected nodes. The SBE and DPR offending nodes

show slightly lower standard deviation compared to randomly

selected Titan nodes. We believe that this is primarily because

the number of DPR and top 10 SBE offender nodes are much

smaller compared to our randomly-selected node pool (over

9000 nodes). There are other factors that can cause higher

standard deviation among such a large number of nodes (e.g.,

variance in temperature, spatial location, device properties).

Observation 8 The distribution of execution time across ran-
domly selected nodes on Titan in itself may be application-
dependent. Our experimental data suggests that top 10 SBE
and DPR offending nodes do not exhibit lower performance
than the average performance of randomly selected nodes.
The implication of this finding is that system operators do not
need to replace GPU cards with high SBE / DPR error counts
specifically for performance degradation or variance reasons.

Table 1: Statistics for Temperature (◦C) (DPR)

60min before
(avg / stddev)

15min before
(avg / stddev)

5min before
(avg / stddev)

DPR 34.55 / 8.53 37.00 / 8.95 39.02 / 8.79

Non-DPR 34.68 / 8.71 36.77 / 9.24 38.56 / 9.27

(same cage)

Non-DPR 30.54 / 7.70 31.54 / 7.79 32.47 / 8.11

(random)

6. Understanding the Effect of Temperature on
Dynamic Page Retirement and Double Bit Er-
rors

In this section, we investigate the effect of temperature on

GPU soft-errors, in particular DPRs, DBEs, and SBEs. Past

work points to temperature dependence of hardware errors on

other systems [10,30]. Here, we perform a detailed analysis of

the relationship between temperature and soft-errors on GPUs.

In the Titan supercomputer, upper cages are typically at

higher temperature than lower cages. We found that the distri-

bution of DPR errors across different levels of cages is fairly

equally distributed. Therefore, this does not imply a direct

impact of temperature on DPR errors as such. To investigate

deeper, we collected GPU card-level temperature for different

time windows of 5 minutes, 15 minutes, and 60 minutes before
each DPR occurrence for a large number of GPU nodes. We

collect temperature data every minute for each GPU card. Ta-

ble 1 shows the mean and standard deviation of temperatures

across the three time windows of 5 minutes, 15 minutes, and

60 minutes before each DPR occurrence. These statistics are

collected for the DPR offender node, all nodes within its cage,

and over 800 random nodes in the system.

First, we observe that temperature across all three types

of nodes increases consistently during the hour as the DPR

occurrence approaches (Table 1). This may be possibly due

to power/cooling condition in the machine room or the cur-

rently running workload. Interestingly, the DPR offenders

have higher average temperature than randomly selected nodes.

This indicates that higher temperature may be associated with

DPR errors. However, we also note that the nodes in the same

cage as the DPR offenders show similar average temperature.

This suggests that higher temperature may be associated with

the increase in the likelihood of a DPR error. However, one

526



DPR timestamp
10

20

30

40

50

60

70

Te
m
p
e
ra
tu
re
(◦ C
)

Time Window: 5 min

(a) DPR offender nodes

DPR timestamp
10

20

30

40

50

60

70

Te
m
p
e
ra
tu
re
(◦ C
)

Time Window: 60 min

(b) DPR offender nodes

DPR timestamp
10

20

30

40

50

60

70

Te
m
p
e
ra
tu
re
(◦ C
)

Time Window: 5 min

(c) Non-DPR offender nodes (same cage)

DPR timestamp
10

20

30

40

50

60

70

Te
m
p
e
ra
tu
re
(◦ C
)

Time Window: 60 min

(d) Non-DPR offender nodes (same cage)

DPR timestamp
10

20

30

40

50

60

70

Te
m
p
e
ra
tu
re
(◦ C
)

Time Window: 5 min

(e) Non-DPR offender nodes (random)

DPR timestamp
10

20

30

40

50

60

70

Te
m
p
e
ra
tu
re
(◦ C
)

Time Window: 60 min

(f) Non-DPR offender nodes (random)

Figure 14: Temperature variation before each DPR occurrence.

can not trivially conclude that higher temperature leads to

DPR errors since other GPU nodes in the same cage do not

observe a DPR error despite similar average temperature.

These results emphasize the importance of selecting the

correct methodology for comparisons: comparing the data

across random nodes in the entire system and nodes within

the same cage, we see the importance of selecting what to

compare with. Choice of random nodes may sound as the

right choice for comparison but in such-large scale systems

usage behavior and node characteristics can be significantly

different in randomly chosen nodes.

Table 1 also shows that the standard deviation in tempera-

ture across all three types of nodes is similar. Yet, the standard

deviation for DPR offenders is generally higher than the stan-

dard deviation for randomly selected nodes. Since the standard

deviation is a single number and may not capture the entire

picture, we investigate deeper to understand the effect of tem-

perature variation of DPR errors. Fig. 14(a)-(f) illustrate how

temperature variations occur for different type of nodes with

a DPR occurrence for the extreme time windows: 5 minutes

and 60 minutes. Each element on the x-axis corresponds to a

DPR occurrence (i.e., its timestamp), each box-plot shows the

25 and 75 percentiles, the median (as a flat line), as well as

the ending points of the temperature distribution (whiskers).

We observe that there is more variation in the temperatures

if the time window is longer. This observation is true across

all types of nodes. However, closer to the DPR occurrence,

the temperature variations decrease significantly for DPR of-

fender nodes as compared to randomly selected nodes and

nodes in the same cage as the DPR offender. Unlike previous

research for hard-disk related errors [10], our analysis sug-

gests that higher temperature variation does not necessarily

increase the probability of DPR errors. In fact, the majority

of DPR offender nodes remain comparatively hotter and with

non-fluctuating temperatures. We also point out that the tem-

perature variation for randomly selected nodes is also affected

by the large number of samples, partially contributing toward

higher variance.

Next, Fig. 15 presents histograms of the frequencies of tem-

peratures for the three categories of nodes: DPR offenders,

DPR cages, and random. The average values are denoted by

the dashed lines in each histogram. The figure indicates that

for the randomly selected nodes the right tails (corresponding

to higher temperatures) are thinner than those of the DPR and

DPR-cage ones. Focusing on the histograms that correspond

to the 5 min observations (i.e., the left column of Fig. 15), one

can notice the difference in shapes across the three histograms.

The random nodes, shown in Fig. 15(e) have significant prob-

527



10 20 30 40 50 60 70

Temperature (◦C)
0%

3%

6%

9%

F
ra
c
.
o
f
S
a
m
p
.

5 min

(a) DPR offender nodes

10 20 30 40 50 60 70

Temperature (◦C)
0%

3%

6%

9%

F
ra
c
.
o
f
S
a
m
p
.

60 min

(b) DPR offender nodes

10 20 30 40 50 60 70

Temperature (◦C)
0%

3%

6%

9%

F
ra
c
.
o
f
S
a
m
p
.

5 min

(c) Non-DPR offender nodes

(same cage)

10 20 30 40 50 60 70

Temperature (◦C)
0%

3%

6%

9%

F
ra
c
.
o
f
S
a
m
p
.

60 min

(d) Non-DPR offender nodes

(same cage)

10 20 30 40 50 60 70

Temperature (◦C)
0%

3%

6%

9%

F
ra
c
.
o
f
S
a
m
p
.

5 min

(e) Non-DPR offender nodes

(random)

10 20 30 40 50 60 70

Temperature (◦C)
0%

3%

6%

9%

F
ra
c
.
o
f
S
a
m
p
.

60 min

(f) Non-DPR offender nodes

(random)

Figure 15: Temperature variation before each DPR error.

ability mass that is below 40 degrees comparing to the DPR

offenders and non-DPR offenders within the same cage. This

mass may not be as pronounced in the 60 min observations,

but it is still present across all histograms in the right column

of Fig. 15. Overall, the six histograms shown in this figure

allow the reader to appreciate how the mere differences in stan-

dard deviation that are shown in Table 1 indeed correspond to

significantly different temperature frequencies.

To better compare these histograms quantitatively, we com-

pare them as CDFs in Fig. 16. Fig. 16(a) shows all CDFs for

the 5 minutes case and Fig. 16(b) shows all CDFs for the 60

minutes case. Across both graphs, we see that the random

nodes (non-DPR) have significantly lower temperature than

those of DPR offenders. For example, in the 5-minute win-

dow, we see that 50% of random nodes have temperature less

than 35◦C, but only 25% of those within the DPR case reach

this mark. This trend is consistent across most temperatures,

nearly 20% of nodes that are randomly selected are consis-

tently cooler than those in the DPR categories (individual and

cage). Further we see that even within the same temperature

percentile level, there is a difference in temperatures ranging

between three to ten degrees. For the longer time window of

60 minutes, these differences still exist but not as large.

In summary, we have seen that while the temperatures of

Table 2: Statistics for Temperature (◦C) (DBE)

60min before
(avg / stddev)

15min before
(avg / stddev)

5min before
(avg / stddev)

DBE 32.64 / 5.97 32.02 / 5.54 33.30 / 6.18

Non-DBE 32.14 / 6.24 32.23 / 6.07 33.14 / 6.82

(same cage)

Non-DBE 32.89 / 8.54 32.79 / 7.96 33.39 / 7.89

(random)

15 25 35 45 55 65

Temperature (◦C)

0%

20%

40%

60%

80%

100%

C
D
F

DPR

non-DPR(cage)

non-DPR(rand.)

(a) 5 min before

15 25 35 45 55 65

Temperature (◦C)

0%

20%

40%

60%

80%

100%

C
D
F

DPR

non-DPR(cage)

non-DPR(rand.)

(b) 60 min before

Figure 16: CDF of temperature variation before DPR errors.

DPR offenders may be similar to nodes within the same cage,

but they are consistently hotter than randomly selected nodes

in the machine. This further supports the observation that

high temperature may precipitate the occurrence of a DPR,

especially if it remains consistently high (i.e., temperature

variations are rather limited).

We conduct similar analysis for DBE occurrences, results

are shown in Table 2. We observe that there is no significant

difference in temperature of DBE offender node, other nodes

in the same cage as the DBE errors, and randomly selected

nodes. Therefore, we can not conclude the effect of temper-

ature on DBEs as per this analysis. However, we found that

DBEs occur more frequently in the upper cages than the lower

cages (similar to previous work [34]). This indicates some as-

sociation with temperature, since the upper cages are typically

hotter than the lower cages. It should be noted that, this in

itself can not lead to well-formed conclusion due the varying

temperature of nodes over time. Recall that single bit errors

are collected at start and end of each batch job and hence, we

do not have the exact timestamp of occurrence. This limits

our capability to perform fine-grained analysis on the effect of

temperature on single bit errors.

Observation 9 Temperature may have an impact on GPU
soft errors (DPR and DBE), but this conclusion is highly
dependent on the choice of nodes to compare against. Our
analysis clearly shows that a comprehensive methodology
should be followed and described when making such
assessments. We found that the higher temperature may
be correlated with DPR and DBE errors, and the higher
variability in temperature does not necessarily lead to
increased probability for DPR errors.

528



7. Related Work

Quantifying and characterizing the system failures is key to

improving the reliability of any computing system. This is

even more important for large-scale computing systems since

the impact of system failures is larger on these system and may

lead to significant scientific productivity loss and monetary

loss. Consequently, researchers have investigated failures on

large-scale systems in detail [8, 9, 19, 20, 24, 26–28]. Several

studies have exploited the insights from such efforts to predict

failures and adapt fault-tolerance mechanisms to minimize the

impact of system failures. Some of these studies propose to

predict failure by identifying the correlation among failure

events [11–13, 19]. Such proposals often rely on machine

learning and other prediction techniques on the RAS logs and

the system logs. This may result in high-overhead and low

lead time for prediction, but nevertheless they demonstrate

that failure prediction is possible and effective in certain cases.

Several studies have focused on studying the reliability as-

pect of large-scale computing systems. For example, Liang

et al. investigated different component failures including net-

work, disk, memory and CPU for the Blue Gene/L system,

and proposed failure prediction models [19]. Oliner et al. in-

vestigated system failure logs for multiple HPC systems at

the Los Alamos National Laboratory and the Sandia National

Laboratory, including RedStorm and Thunderbird system [24].

They studied both software and hardware errors and devel-

oped the methodology for applying filtering to failure logs.

Schroeder et al. have studied the system failures and its impact

on multiple HPC systems at LANL [28].

There have also been more focused effort on studying fail-

ures for a given system components such as DRAM, disks, and

SSDs. For example, DRAM-focused efforts have shown the

effect of height and vendors on soft-errors [17, 31, 32]. These

studies also showed the pitfalls in studying the DRAM er-

rors and its impact on the reliability assessment of the system.

Disk-focused efforts demonstrate that disk failure in the field

can be significantly higher than what one would estimate from

the vendor’s sheet [7, 29]. Such studies also show that periph-

eral components fail more often than one may expect in large

scale storage systems. Recent study [23] on SSD failure in the

field provide insights about differences in the early detection

life cycle between SSDs and Disks, lack of read disturbance

error in the wild, and implication of these findings for future

SSDs. However, large-scale GPU reliability characterization

studies have been relatively limited [8, 16, 34], primarily be-

cause GPU architecture is relatively newer technology to be

deployed at such a large-scale.

Recently, there have been efforts focusing on studying

and improving GPU reliability at scale [14]. Several recent

studies [8, 33, 34] present error characterization for the GPU-

enabled Cray supercomputers such as the NCSA Blue Water

and Titan supercomputer. They study the spatial and tempo-

ral characteristics of GPU errors, how these errors propagate

spatially in a short time-window, frequency of GPU errors in

different memory structures of a GPU, correlation between

batch jobs and correctable GPU errors, etc. These efforts have

primarily focused on understanding XID errors, manufacturing

errors (e.g., Off the Bus error), and its effect on application-

execution. These studies have also shown via neutron beam

testing that more recent generation of GPUs are more error

resilient than previous generation of GPU architecture. These

studies have also focused on issues and challenges with cur-

rent GPU error logging methods. Previous efforts by Haque et

al. [16] have deployed a software-based GPU soft-error detec-

tor on Folding@home distributed platform for two different

architectures, the G80 and GT200 architectures. They showed

that newer generation of GPUs observed significantly lower

soft error rate. Additionally, they found that the GPUs were

sensitivity to memory faults in a pattern-dependent manner.

However, none of these studies study presents detailed anal-

ysis and characterization of soft-errors on GPUs at large-scale.

Our study discovers several previously unknown insights about

the characteristics of single bit errors, dynamic page retirement

errors, and double bit errors. For the first time, we charac-

terize the temporal characteristics of single bit errors and its

association with other errors. In contrast to previous works,

we investigate the impact of workloads, resource utilization,

and variance in load-level on error-affected GPU nodes in de-

tail. Our study also provides a deep understanding of possible

temperature effects on soft-errors in GPU architecture, and

quantification of performance variation on soft-error affected

GPU nodes. Given that GPUs are likely to be an important

part of an exaflop HPC system, we believe that our study

with the world’s largest GPU-enabled system will help the

whole community in improving the understanding the impact

of GPU errors on scientific applications and its implications

for large-scale GPU resource management.

8. Conclusion
In this study we focus on single bit errors, dynamic page re-

tirement errors, and double bit errors on Titan’s GPUs and

analyze their characteristics and relationships with resource us-

age, applications, users, and temperature. Our study discovers

several previously unknown insights about the characteristics

of SBE, DBE, and DPR errors. For example, we show that

SBEs happen in bursts and tend to be clustered in time. Aver-

age GPU resource utilization and its variance do not seem to be

significantly correlated with the SBE occurrences, but shows

strong dependence with respect to users and applications. In-

terestingly, our analysis also shows that top SBE offending

GPUs do not necessarily experience more dynamic page re-

tirement errors or DBEs. Another counter-intuitive finding

is that SBEs are more likely to occur on the DPR offending

GPUs after the DPR error rather than leading to the DPR error.

We also provide interesting and deep analysis about possible

performance-variation effects of soft-errors and its association

with temperature.

529



9. Acknowledgment
We thank the reviewers for their feedback that has significantly

improved the paper. This research is partially supported by

NSF grant CCF-1218758. This work also used the resources

of the Oak Ridge Leadership Computing Facility at the Oak

Ridge National Laboratory, which is managed by UT Battelle,

LLC for the U.S. DOE (under the contract No. DE-AC05-

00OR22725).

References
[1] “Computational science requirements for leadership computing,

2007, http://www.olcf.ornl.gov/wp-content/uploads/2010/03/ORNL_
TM-2007_44.pdf.”

[2] “Cuda c programming guide,” https://docs.nvidia.com/cuda/
cuda-c-programming-guide.

[3] “Dynamic page retirement,” http://docs.nvidia.com/deploy/
dynamic-page-retirement/index.html.

[4] “Ibm and nvidia launch supercomputer centers of excellence with the
u.s. department of energy’s oak ridge and lawrence livermore national
labs,” http://www-03.ibm.com/press/us/en/pressrelease/47318.wss.

[5] “Rodinia: Accelerating compute-intensive applications with
accelerators,” http://www.cs.virginia.edu/~skadron/wiki/rodinia/index.
php/Rodinia:Accelerating_Compute-Intensive_Applications_with_
Accelerators.

[6] “Understanding xid errors,” http://docs.nvidia.com/deploy/xid-errors/
index.html.

[7] L. N. Bairavasundaram, Characteristics, impact, and tolerance of
partial disk failures. ProQuest, 2008.

[8] C. Di Martino, F. Baccanico, W. Kramer, J. Fullop, Z. Kalbarczyk,
and R. Iyer, “Lessons learned from the analysis of system failures at
petascale: The case of blue waters,” 44th international.

[9] N. El-Sayed and B. Schroeder, “Reading between the lines of failure
logs: Understanding how hpc systems fail, DSN,” 2013.

[10] N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A. Hwang, and
B. Schroeder, “Temperature management in data centers: why some
(might) like it hot,” ACM SIGMETRICS Performance Evaluation Re-
view, vol. 40, no. 1, pp. 163–174, 2012.

[11] S. Fu and C. Xu, “Quantifying temporal and spatial correlation of fail-
ure events for proactive management,” in Reliable Distributed Systems,
2007. SRDS 2007. 26th IEEE International Symposium on. IEEE,
2007, pp. 175–184.

[12] A. Gainaru, F. Cappello, J. Fullop, S. Trausan-Matu, and W. Kramer,
“Adaptive event prediction strategy with dynamic time window for
large-scale hpc systems,” in Managing Large-scale Systems via the
Analysis of System Logs and the Application of Machine Learning
Techniques. ACM, 2011, p. 4.

[13] A. Gainaru, F. Cappello, M. Snir, and W. Kramer, “Fault prediction
under the microscope: A closer look into hpc systems,” in Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society Press,
2012, p. 77.

[14] L. A. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang,
S. Gurumurthi, S. Keckler, K. Pattabiraman, R. Rech, and M. S. Re-
orda, “Gpgpus: How to combine high computational power with high
reliability,” in 2014 Design Automation and Test in Europe Conference
and Exhibition, Dresden, Germany, 2014.

[15] S. Gupta, D. Tiwari, C. Jantzi, J. Rogers, and D. Maxwell, “Understand-
ing and exploiting spatial properties of system failures on extreme-scale
hpc systems,” International Conference on Dependable Systems and
Networks (DSN), 2015.

[16] I. S. Haque and V. S. Pande, “Hard data on soft errors: A large-scale as-
sessment of real-world error rates in gpgpu,” in Cluster, Cloud and Grid
Computing (CCGrid), 2010 10th IEEE/ACM International Conference
on. IEEE, 2010, pp. 691–696.

[17] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays don’t
strike twice: understanding the nature of dram errors and the implica-
tions for system design,” ACM SIGPLAN Notices, vol. 47, no. 4, pp.
111–122, 2012.

[18] L. M. Leemis and S. K. Park, Discrete-Event Simulation, A First
Course. Prentice Hall, 2006.

[19] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. Sahoo,
“Bluegene/l failure analysis and prediction models,” in Dependable
Systems and Networks, 2006. DSN 2006. International Conference on.
IEEE, 2006, pp. 425–434.

[20] Y. Liang, Y. Zhang, A. Sivasubramaniam, R. K. Sahoo, J. Moreira,
and M. Gupta, “Filtering failure logs for a bluegene/l prototype,” in
Dependable Systems and Networks, 2005. DSN 2005. Proceedings.
International Conference on. IEEE, 2005, pp. 476–485.

[21] R. Lucas, “Top ten exascale research challenges,” in DOE ASCAC
Subcommittee Report, 2014.

[22] C. L. Mendes, B. Bode, G. H. Bauer, J. Enos, C. Beldica, and W. T.
Kramer, “Deploying a large petascale system: The blue waters experi-
ence,” Procedia Computer Science, vol. 29, pp. 198–209, 2014.

[23] J. Meza et al., “A large-scale study of flash memory errors in the field,”
ACM SIGMETRICS Performance Evaluation Review, 2015.

[24] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in Dependable Systems and Networks, 2007. DSN’07.
37th Annual IEEE/IFIP International Conference on. IEEE, 2007,
pp. 575–584.

[25] “Preparing for Exascale: ORNL Leadership Computing Facility Ap-
plication Requirements and Strategy, 2009, http://www.olcf.ornl.gov/
wp-content/uploads/2010/03/olcf-requirements.pdf.”

[26] A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R. K. Iyer, “Improving
log-based field failure data analysis of multi-node computing systems,”
in Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st
International Conference on. IEEE, 2011, pp. 97–108.

[27] R. K. Sahoo, M. S. Squillante, A. Sivasubramaniam, and Y. Zhang,
“Failure data analysis of a large-scale heterogeneous server environ-
ment,” in Dependable Systems and Networks, 2004 International Con-
ference on. IEEE, 2004, pp. 772–781.

[28] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” Dependable and Secure Computing,
IEEE Transactions on, vol. 7, no. 4, pp. 337–350, 2010.

[29] B. Schroeder and G. A. Gibson, “Disk failures in the real world: What
does an mttf of 1, 000, 000 hours mean to you?” in FAST, vol. 7, 2007,
pp. 1–16.

[30] ——, “Understanding failures in petascale computers,” in Journal of
Physics: Conference Series, vol. 78, no. 1. IOP Publishing, 2007, p.
012022.

[31] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the
wild: a large-scale field study,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 37, no. 1. ACM, 2009, pp. 193–204.

[32] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gu-
rumurthi, “Feng shui of supercomputer memory: positional effects in
dram and sram faults,” in Proceedings of SC13: International Con-
ference for High Performance Computing, Networking, Storage and
Analysis. ACM, 2013, p. 22.

[33] D. Tiwari, S. Gupta, G. Gallarno, J. Rogers, and D. Maxwell, “Reliabil-
ity lessons learned from gpu experience with the titan supercomputer
at oak ridge leadership computing facility,” Proceedings of SC15: In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, 2015.

[34] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux et al., “Under-
standing gpu errors on large-scale hpc systems and the implications for
system design and operation,” in High Performance Computer Archi-
tecture (HPCA), 2015 IEEE 21st International Symposium on. IEEE,
2015, pp. 331–342.

[35] D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy checkpointing: Ex-
ploiting temporal locality in failures to mitigate checkpointing over-
heads on extreme-scale systems,” in Dependable Systems and Net-
works (DSN), 2014 44th Annual IEEE/IFIP International Conference
on. IEEE, 2014, pp. 25–36.

[36] J. S. Vetter, R. Glassbrook, J. Dongarra, K. Schwan, B. Loftis, S. Mc-
Nally, J. Meredith, J. Rogers, P. Roth, K. Spafford et al., “Keeneland:
Bringing heterogeneous gpu computing to the computational science
community,” Computing in Science and Engineering, vol. 13, no. 5, pp.
90–95, 2011.

[37] J. Xue, F. Yan, R. Birke, L. Y. Chen, T. Scherer, and E. Smirni, “Prac-
tise: Robust prediction of data center time series,” in Proceedings of
the 11th International Conference on Network and Service Mangement
(CNSM 15), 2015.

530



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


