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Abstract—Effective workload characterization and prediction
are instrumental for efficiently and proactively managing large
systems. System management primarily relies on the workload
information provided by underlying system tracing mechanisms
that record system-related events in log files. However, such
tracing mechanisms may temporarily fail due to various reasons,
yielding “holes” in data traces. This missing data phenomenon
significantly impedes the effectiveness of data analysis. In this
paper, we study real-world data traces collected from over 80K
virtual machines (VMs) hosted on 6K physical boxes in the
data centers of a service provider. We discover that the usage
series of VMs co-located on the same physical box exhibit strong
correlation with one another, and that most VM usage series show
temporal patterns. By taking advantage of the observed spatial
and temporal dependencies, we propose a data-filling method
to predict the missing data in the VM usage series. Detailed
evaluation using trace data in the wild shows that the proposed
method is sufficiently accurate as it achieves an average of 20%
absolute percentage errors. We also illustrate its usefulness via a
use case.

I. INTRODUCTION

Collection of performance measures is central to the
success of long-running systems that serve performance-
sensitive applications. From supercomputing systems [1], to
data centers [2], to storage systems [3], collecting traces of
performance measures is instrumental for effective system
management and resource allocation, for meeting user service
level objectives, and for enhancing system reliability. For long-
running, large, distributed systems it is a common phenomenon
that the tracing mechanism of some of its components may
periodically fail, i.e., it is possible that for a period of time
there may be gaps in the trace data due to failures either in
the actual measurement instrumentation but also into the actual
recording of the system-related events in log files (e.g., due to
transient errors in communication or storage infrastructure) [4],
[1], [5]. It is common that such failures are transient, i.e., after
a period of time, trace recording is restored.

The focus of this paper is on the analysis of data gaps in
traces and on mechanisms that can potentially compensate for
such missing data. Specifically, we study the CPU usage data
of virtual machines (VMs) hosted on a multitude of physical
boxes in IBM cloud data centers and we observe that for almost
over 50% of the physical boxes, the VMs traces have signif-
icant gaps in their usage series. Past work on managing data
centers [2] is based on effectively characterizing the system
workload and on accurately predicting the upcoming one, this
allows proactive management of resources and contributes to
improving the user quality of experience. Yet, if only a portion
of the traces is usable for prediction, improvements as those
described in [2], [6] are restricted to the portion of the system
that complete trace data are available. In this paper, we present
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Fig. 1: CPU usage series of four co-located VMs within the
same box. The traces show strong spatial dependency across
six days. Here V M2 has gaps in its observations from points
4.5 to 5.5 in the x-axis, essentially missing data for nearly 24
hours.
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Fig. 2: CPU usage series of a certain VM in a cloud data
center exhibits strong temporal dependency for more than two
months.

a methodology that can compensate for missing data using
statistical characteristics of the data traces.

Figure 1 presents the CPU usage series on six days for
four VMs that are co-located on the same physical box. We
notice that V M2 does not have any CPU usage data recorded
for one day period, from point 4.5 to point 5.5, possibly due
a system failure. Previous works in data center management
show that the resource usage series of VMs co-located on
the same physical box exhibit strong spatial dependency [2],
[6], this strong dependency between V M1 and V M2, as well
as between V M3 and V M4 is visually clear in Figure 1. We
propose to leverage spatial dependencies between co-located
VMs to generate data to fill in the gaps using linear regression.

In addition to spatial dependency among VMs in co-
located usage series, another interesting observation is that VM
usage series exhibit strong temporal dependencies [7]. Figure 2
presents the CPU usage workload of a randomly selected VM
for over two months. This usage series shows strong daily
and weekly patterns, with distinct peaks and valleys. This
observation intuitively suggests that it is possible to leverage
temporal dependency of past observations within a VM usage
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series to potentially fill up missing data in the same series.

In this paper, we propose a model to fill up missing data
in time series based on the spatial and temporal dependencies
across and within different time series. We first conduct a
detailed, workload characterization study on VM CPU usage
series in IBM production data centers corresponding to 80K
VMs hosted on over 6K physical servers and discover the
statistical characteristics of data gaps in VM usage series.
We then develop a spatial-temporal model that fills in the
gaps based on the characteristics of the series. Our evaluation
results show that the proposed spatial-temporal model achieves
an average of 20% absolute percentage errors, and can be
efficiently integrated with customized resource management
policies.

The outline of this work is as follows. Section II provides a
characterization study on the VM CPU usage series as well as
the spatial and temporal dependencies across/within co-located
VMs in the IBM data centers. We propose spatial-temporal
filling-up methods for resource usage series in Section III.
In Section IV, we evaluate the effectiveness of the proposed
model. Section V presents related work, followed by summary
and conclusion in Section VI.

II. CHARACTERISTICS OF VM WORKLOADS

We first perform statistical analysis on a real-world trace
collected from IBM production data centers that serve diverse
industries, including banking, pharmaceutical, IT, consulting,
and retail. The trace includes CPU usage data from over
80K VMs (mostly VMware VMs) hosted on 6K physical
boxes. On average, 10 VMs reside within one physical box.
Each data point on the trace data corresponds to resource
usage averages within a widow of 15 minutes. Ideally, there
should be 96 data points per VM per day within the data,
yielding to over 54 million data points across all VMs. In
reality, there are several missing data points, this is either
because the tracing mechanism or the recording of usage data
periodically fails, which results in several “holes" in the time
series. The phenomenon of missing data is quite common in
other environments, including social science data [4], [8], HPC
systems [1], [9], and medical data [10], [11]. For the specific
problem in hand, the observed holes in the VM time series
significantly impede the effectiveness data analysis and the
development of methodologies for better data center manage-
ment [6], [2]. Our thesis is that provided certain temporal
and spatial trace characteristics, it may possible to accurately
recreate the missing data with minimal errors.

A. Missing Data in the Wild

To begin, we present an overview of the prevalence of
missing data in the IBM trace. Figure 3(a) shows the histogram
of physical boxes with missing data in the VMs that they
host. For each box, we calculate the percentage of VMs with
missing data. We then partition boxes into 10 bins according
to the percentage of VMs with missing data (see x-axis). The
y-axis represents the percentage of boxes in each bin. The
figure shows that more than 50% of boxes have more than
10% of their co-located VMs with missing data. At the most
extreme case, for nearly over 20% of boxes, almost all of
their co-located VMs have missing data (see bin [0.9,1]). Such

observation shows clear evidence of the prevalence of missing
data in the wild.

Next, it is natural to focus on the boxes that contain VMs
with missing data and study the severity of such data gaps.
Recall that CPU usage is collected every 15 minutes, this
results in 96 data points per VM per day. Figure 3(b) illustrates
the histogram of the percentage of boxes that have missing time
windows. The x-axis shows the average number of missing
data per VM on each box (organized in seven bins) while the
y-axis shows the percentage of boxes in each bin. The figure
confirms that more than 70% of boxes fall into bins [32,64)
and [64,96], indicating that the VMs residing in these boxes
experience more than 8 hours of missing usage logs. Such
critical lack of data impedes the usefulness of data analysis of
the VM usage data series.

Since our intention is to use the data series of complete
VM time series to recreate the data of the VM time series
with missing data, we look into co-located VMs and at the
percentage of common missing holes, see Figure 3(c). The x-
axis represents the percentage of common time holes across
all consolidated VMs in the same physical box, the y-axis
gives the percentage of boxes in each bin. Note that for 20%
of the boxes (see bin [0,0.1)), their missing time holes are
quite spread across different time windows. This suggests that
it is possible to exploit the similarity of data series of VMs in
the same box to fill up missing data by exploiting potential
spatial dependency of different VMs residing on the same
box. On the contrary, for boxes in bin [0.9,1] (around 50%
of boxes), the majority of missing time holes occur at the
same time among the VMs in the same box. Any spatial
model on those boxes is not feasible. For such boxes, we look
beyond spatial dependency and more specifically into possible
temporal patterns.

B. Spatial Dependency Analysis

To quantify spatial dependency, we use the concept of
correlation coefficient [12]. For each pair of co-located VMs
on the same box, we calculate the Pearson correlation [12]
of their CPU usage series. For a physical box with M VMs,
there are M×(M−1)

2 coefficient values. We use the mean and
90%ile values to represent to spatial dependency of each box
and show the cumulative distribution function (CDF) of boxes
for these two measures in Figure 4. We observe that co-located
VM CPU usage series exhibit strong spatial dependency. The
mean values of mean and 90%ile cross-correlation are 0.31
and 0.56, respectively. The distance between the two CDFs as
well as their shapes show clearly that there is strong spatial
dependency among VMs, as there is a significant percentage
of VM pairs with high correlation coefficients as shown by
the 90%ile graph and naturally fewer pairs that have lower
coefficients, which contribute to reducing the mean.

C. Temporal Dependency Analysis

Figure 3(c) illustrates that the missing data of around 50%
of the boxes cannot be filled by spatial models. This leads
us to explore whether temporal dependency within the time
series of the same VM can be used as an alternative. We
select two representative VMs and show their daily CPU usage
over two months, see Figure 5(a) and 5(b). The graphs show
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(a) PCT of VMs with holes per box (b) Length of holes per VM (c) Ratio of same holes for co-located VMs

Fig. 3: Overview of missing data in the VM CPU usage series across 6K boxes.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
0

50

100
VM =3812

Time (Day)

C
P

U
 U

S
E

D
 P

C
T

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
0

50

100
VM =35458

Time (Day)

C
P

U
 U

S
E

D
 P

C
T

(a) VM 3812 (b) VM 35458
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(c) Autocorrelation function of CPU Usage of VM 3812 (d) Autocorrelation function of CPU Usage of VM 35458

Fig. 5: CPU utilization over time for two representative VMs in (a) and (b), with their autocorrelation functions presented in (c)
and (d), respectively.
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Fig. 4: CDFs of cross-correlation among co-located VM CPU
usage series in terms of mean and 90%ile.

obvious periodical patterns, i.e., the CPU usage repeats every
day and week for VM 3812 and VM 35458 (see Figure 5(a)
and 5(b), respectively). We quantify this periodicity using the
autocorrelation function. Autocorrelation shows the degree of
similarity between a time series and its lagged version. It is
commonly used to uncover periodical patterns in the time
series [12]. The range of autocorrelation values is [−1,1].

High positive values imply strong similarity, while negative
values indicate diametrical differences. Zero values mean no
repeating patterns present in the time series. From Figures 5(c)
and 5(d), we notice that the autocorrelation values peak either
on a daily-basis or on a weekly-basis, which are in accordance
with observations in Figures 5(a) and 5(b).

To summarize, the missing data phenomenon is commonly
observed. Fortunately, we find that strong spatial and temporal
dependencies is also present in the data trace, and can be
exploited to compensate for the missing data.

III. METHODOLOGY

In this section, we propose a new prediction methodology
that fills up the missing data in a usage trace, leveraging on
the spatial and temporal dependency within/across co-located
VMs in the same box. The high level description is as follows:
given a set of VMs with missing data in their usage logs, we
first calculate their spatial and temporal dependency levels, and
then leverage either spatial or temporal models to fill up the
missing data. The workflow of the proposed filling-up method
is presented in Figure 6.

A. Step 1 - Dependency Comparison

As illustrated in Section II, usage series in data centers
exhibit spatial dependency among co-located VMs in the same
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Fig. 6: Steps to fill up the missing data in usage series.

box, and temporal dependency within themselves across time.
As a first step, we need to quantify the spatial and temporal
dependencies of each VM usage series with missing data.

1) Quantification of Spatial Dependency: To measure spa-
tial dependency, we use cross-correlation. For each box and
each VM with missing data, we first compute the pairwise
correlation coefficients [12], of the target VM with all other
VM usage series in the same box that do not have the same
periods of missing data. For a target VM i with missing data,
there are at most (M−1) pairs ρi,l , where M is the number of
co-located VMs in the same box, and l is the index of a co-
located VM with l 6= i. To find the most correlated VM with
the target VM i, we select VM k with the largest absolute
correlation coefficient ρi,k. ρi,k expresses the strongest spatial
dependency that we observe for VM k and the target VM i in
the box. VM i will be presented by the usage series of VM k
using linear regression.

2) Quantification of Temporal Dependency: As shown in
Section II, it is possible that all VMs in the same box experi-
ence the same gaps in their time series, In such cases, temporal
models could instead be used to fill up the missing data. In
the following, we propose a method to quantify the predictive
capability of the series using temporal models. We define a
metric called goodness of temporal dependency (GTD):

GT D = α ∗max{ACFshort}+(1−α)∗max{ACFlong}. (1)

Here ACFshort is a list of autocorrelation coefficients for lags
that correspond to time stretches of less than 1 day, and ACFlong
consists of autocorrelation coefficients for lags that are more
than 1 day. We capture the highest autocorrelations both for
short- and long-term, i.e., max{ACFshort} and max{ACFlong},
respectively. The term α ∈ [0, 1], is a weight that represents
how important is the short-term behavior for filling up missing
data in the usage series. This is inversely related to the
prediction length, defined as:

α = 1−min{ Length o f Missing Data
Number o f Observations per Day

, 1}. (2)

The higher the GDT, the stronger the temporal dependency of
the usage series is.

Having proposed measures that quantify spatial and tem-
poral dependencies, it is natural to ask which dependency is
stronger in the trace. We carry out statistical analysis across
all VMs suffering from missing data, and present the CDFs
of their spatial and temporal dependencies in Figure 7. The
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Fig. 7: CDFs of temporal and spatial dependencies across all
VMs with missing data.

figure shows that more than 60% of VMs exhibit strong de-
pendencies, as their spatial or temporal dependency values are
greater than 0.4. This again confirms opportunities to fill up the
missing data of VM usage series. It is also worth mentioning
that across all VMs, around 85% of them have stronger spatial
dependencies than temporal ones. This suggests that leveraging
spatial models may be more effective than temporal ones.
We note also that since spatial models are based on linear
regression, they are much cheaper than temporal models that
are based on more expensive neural networks.

B. Step 2 - Model Selection

Here, we provide technical details on the two prediction
models.

1) Spatial Models: Given a pair of highly spatially corre-
lated VMs, we use linear regression [13] to predict the missing
data. Specifically, for the usage series Di of VM i with missing
data, let the co-located VM k be the one with the strongest
correlation with VM i. Recall VMs k and i cannot have the
same periods of missing data. For statistical significance, when
the cross-correlation between VMs i and k is computed, there
need to be at least 28 usage observations in the same time
periods [13].

We express the usage series Di of VM i by a linear
regression model of the usage series Dk of VM k:

Di = ai,k×D j +bi,k. (3)

To calculate the coefficients ai,k and bi,k, we first need to obtain
the intersection between the usage series of VM i and VM k,
denoted as Dk

i and Di
k respectively, logged in the same time

periods for both VMs. We train a linear regression model with
Dk

i as target variable and Di
k as predictor variable, to compute

ai,k and bi,k. Finally, to compute Di,tm for the missing periods
tm ∈ {tm1, tm2, tm3, ...} for VM i, we insert the observed usage,
e.g., Dk,tm , of VM k into the Eq.(3). We continue until the
prediction for all the missing usages of VM i is complete.

2) Temporal Models: To build a temporal model of the
usage series Di for VM i, assume that Di is the target variable
for prediction and Di,t is the value of Di at time t, then the
goal is to create a model of the following form:

Di,t = f (Di,t1 ,Di,t2 ,Di,t3 , · · · ,Di,tn)+ εi,t , (4)
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(a) PCT of VMs with holes per box (b) Length of holes per VM (c) Ratio of same holes for co-located VMs

Fig. 8: Selected boxes for simulations follow the same characteristics of missing data in the original trace.

where f is the function of the temporal model, t1 < t2 < t3 <
· · ·< tn < t, and εi,t is an error term. To obtain the coefficients
in the function f , we first need to insert the observed periods of
usage series for VM i into Eq. (4). We then apply the temporal
model and compute the value of Di,tm for missing periods tm ∈
{tm1, tm2, tm3, ...} for VM i.

Traditional temporal models such as ARMA/ARIMA [14]
and Holt-Winters exponential smoothing [15] are usually lim-
ited by the linear basis function and poor in predicting bursty
workloads [7]. Our previous work [7] has shown that temporal
models based on neural networks achieve accurate prediction
of usage series in data centers, especially peak values. Here,
we use neural networks as the temporal models to predict the
missing data in the VM usage series. To achieve efficient and
accurate prediction, selecting appropriate temporal features
(e.g., Di,t j , where j ∈ [1, n] in Eq. 4) is key, as it should
reliably capture periodic behavior, changing trends, and re-
peating patterns. To identify informative features, we resort to
the correlogram (e.g., Figure 5) because autocorrelation can
provide quantitative and qualitative information on the above
factors. Figure 5 shows that there can be several lags with high
positive autocorrelation values. This indicates that there exist
several good candidate features that represent short- and long-
term correlation patterns. To automate the process, we use a
local maximum detection function to identify the peak points
in autocorrelations and use the respective lag values as features
for neural network training. In this way, different correlation
ranges from short- to long-term can all be captured, which
improves the efficiency and accuracy of the temporal models.

IV. EVALUATION

For evaluation of the proposed model it is not possible
to directly use the real trace, as there is no ground truth for
missing data. To solve this, we randomly select 400 physical
boxes that contain only VMs with no missing data. As a
second step, we create holes in the CPU usage series of the
VMs on these boxes, by deliberately removing some data
points aiming to result in a new trace that strictly follows the
characteristics of the real trace. Given the histograms of VMs
with holes and the length of missing data across the 6K boxes
(see Figure 3), we determine the selection of VMs to create
the time holes in each box, and the length of the holes for
each VM. Figure 8 presents histograms of the generated data
from the three perspectives presented in Figure 3. The strong
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Fig. 9: Overall prediction accuracy across all tested VMs.
We show the prediction errors in terms of 25%ile, mean, and
75%ile for each VM.

similarity between Figures 3 and 8 confirms that the generated
data follow the characteristics of the real trace. Consequently,
using the created data to evaluate the proposed spatial-temporal
model is sound because the missing data characteristics are
similar to the real trace and because now we have a ground
truth to evaluate the effectiveness of the method.

A. Prediction Accuracy

We use the commonly used absolute percentage error
(APE), see Equation 5, to evaluate prediction accuracy. APE
quantifies the relative difference between the prediction results
and the actual data. Clearly, smaller APE values indicate better
prediction quality.

APE =
|Prediction−Actual|

Actual
×100% (5)

1) Prediction overview: For every tested VM, there is a
list of time windows with missing CPU usage data, and the
prediction of each of those missing data points corresponds to
an APE value. Therefore, there is a set of APE values per VM.
We use the mean APE value to represent the average prediction
quality of the VM, together with the 25%ile and 75%ile values.
Figure 9 shows the CDFs of the three APE representatives
across all tested VMs. Looking at the mean APE line, an
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Fig. 10: Representative VM usage series with the missing data
filled up.

average APE of 21.4% is achieved for all VMs, suggesting
good model effectiveness. The average of the 25%ile APE is
the lowest (i.e., 9.3%), indicating that the model can deliver
high prediction quality for VMs. Even for the 75%ile APE, we
still observe a not-so-high average APE of 25.7%, which again
confirms that the model is able to effectively fill up missing
time holes.

2) Normal vs. Peak: Previous work [2] has illustrated that
peak usages of VMs are key to resource allocation. Next,
we evaluate prediction quality by separating normal and peak
periods in the usage series of VMs, as accurately capturing
peak usages is a lot more challenging than normal ones [7].
To demonstrate the performance of the proposed model, we
randomly select three VMs with different spatial and temporal
characteristics, and show their actual CPU usages along with
the predicted ones with missing data filled-up, see Figure 10.
We notice that mostly the prediction and ground truth are close
to each other during both normal and peak periods.
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Fig. 11: Prediction accuracy for normal and peak usages across
all the tested VMs. We show the mean prediction errors for
each VM.
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We also quantitatively compare the prediction quality for
normal and peak usages. Normal and peak usages in the
time series are detected using the k-means algorithm. Normal
usages represent low levels of resource usage, while peak ones
correspond to workload burstiness. Figure 11 shows the CDFs
of the VM mean APEs for both usage types. We observe an
average APE of 19.6% for normal usages, while the average
APE of the more challenging peak usages is 24.8%. This last
observation is especially encouraging since it demonstrates that
the spatial-temporal model is effective for prediction of both
usage levels.

3) Effects of various factors on accuracy: Key to selecting
whether a spatial or temporal model are the relative value of
their respective dependencies, see Figure 6. The model type
could be one of the potential factors dominating the prediction
quality. Figure 12 shows the boxplots of the values for the three
APE representatives (i.e., 25%ile, mean, and 75%tile) of each
VM for both spatial and temporal models. We notice that the
pair-wise boxplots are quite similar to each other, indicating
that prediction quality provided by either type of dependency
is comparable with each other.

Next, we investigate the impact of various dependency
levels, which are quantified by the correlation coefficients



Dependency Value
0.1 0.3 0.5 0.7 0.9

M
e
a
n
 A

b
s
. 
P

C
T

 E
rr

o
r 

(%
)

0

10

20

30

40

50

60

70

80

Fig. 13: Effect of various dependency level on prediction accu-
racy. Dots represent the mean while horizontal lines represent
the median.
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Fig. 14: Effect of the length of missing data on prediction
accuracy. Dots represent the mean while horizontal lines
represent the median.

for spatial dependency and GTD for temporal dependency, as
described in section III. Intuitively, one may assume that the
stronger the dependency, the lower the APE, thus the better
the prediction quality. Figure 13 confirms this intuition by
showing that the average of VM mean APE values decreases
as the dependency level decreases. Even for VMs that exhibit
low dependency levels (e.g., 0.1), the model is still able to
exploit sufficient characteristics and results in predictions with
an average error of 25%.

Next we explore the impact of the length of missing data on
prediction quality, see Figure 14. We observe that the average
of VM mean APE values is slightly higher for VMs with
more missing data, which is understandable as longer periods
of missing data introduces more difficulties to the spatial-
temporal model. Even for the most difficult cases (i.e., with
more than 2.5 days of missing data), the model provides quite
accurate predictions (i.e., an average APE of 21%).

B. Use Case Scenario

In this section we illustrate a case study that shows the
usefulness of the proposed spatial-temporal model to fill in

the missing holes in VM CPU usage series for reducing per-
formance tickets in data centers [2]. Performance ticketing sys-
tems provide the means to data centers to interactively improve
user experience, maintain performance at tails, and guarantee
smooth system operation. Typically, system monitoring and
users issue tickets when the resource usage exceeds a pre-
defined threshold, e.g., 60%. Ticket resolution is unfortunately
very expensive [16], [17] as a significant amount of manual
labor is required for root-cause analysis and to remedy the
detected problem [18]. Previous work [2] has proposed a VM
resizing algorithm to reduce the amount of performance tickets
in data centers. Limited by the missing data problem on the
trace, this resizing algorithm could only be implemented on
a small fraction of boxes that had no missing data. Given
the proposed data filling method, we are able to extend the
feasibility of the VM resizing algorithm to all boxes.

To evaluate the efficiency of the spatial-temporal models,
we use the VM resizing algorithm presented in [2] on the 400
physical boxes that have no missing data, and we can treat
the result as ground truth since we do know the outcome. We
introduce holes in the data trace and apply the spatial-temporal
models to evaluate how effective VM resizing is. Results are
presented in Table I and present the mean ticket reduction and
its standard deviation. The reduction of tickets for the case of
the trace with holes is 89.4%, just 7 percentage points less
than the ground truth.

TABLE I: Ticket reductions across 400 boxes using the VM
resizing algorithm. The original case corresponds to the trace
without any missing data, while the filling-up method predicts
values for the the created holes.

Mean StD of
Ticket Reduction (%) Ticket Reduction(%)

Original 96.2 8.2
Filling-up method 89.4 12.1

We now apply the VM resizing algorithm to all boxes
(6K boxes), with and without missing data. We first select all
those that have no holes and apply resizing for ticket reduction
and then to the entire set of boxes. For the entire set of
boxes, if there are data missing, we fill the gaps using the
spatial-temporal models. Results are presented in Table II and
illustrate that the percentage of ticket reduction is very similar
in both cases. Yet, for the case of all boxes, the sheer number
of ticket reduction is significantly higher as ticket reduction is
applied now to all nodes of the datacenter and is not restricted
to the select few with no missing points.

TABLE II: Ticket reductions using the VM resizing algorithm
across all boxes with or without missing data. Boxes with time
holes are filled up by spatial-temporal models.

Mean StD of
Ticket Reduction (%) Ticket Reduction(%)

Boxes w/o holes 95.1 10.7
All boxes 96.0 11.8



V. RELATED WORK

A. Prediction under Missing Data

The missing data problem is common in many real-world
traces and challenges researchers from diverse areas including
statistics and mathematics [19], [20], social science [4], [8],
data centers and HPC systems [1], [9], transportation sys-
tems [5], and medical science [10], [11]. Authors in [19],
[20] summarize commonly used missing data estimation meth-
ods, i.e., Expectation-Maximization algorithm and Bayesian
multiple imputation. In addition to those general methods
to mitigate missing data challenges, researchers also design
customized solutions based on the characteristics of their
data traces. Ma et al. [4] predict missing data by leveraging
user-based and item-based similarities among movie ratings
and effectively improve the performance of their proposed
collaborative filtering algorithms. Van Lint et al. [5] propose
a specialized recurrent neural network that takes advantage of
the freeway stretch lay-out and sufficiently reduce the impact
of missing data on travel time prediction. In this work, we
resolve the missing data problem with the help of the inherent
spatial and temporal dependencies presented in the IBM data
trace, and the proposed data-filling model is able to effectively
and accurately predict missing time holes.

B. State-of-the-Art Time Series Prediction

As an important way to develop proactive system manage-
ment polices, time series prediction and analysis have been
studied extensively [21], [22]. ARIMA [14] is an effective
temporal model that is able to learn the strong seasonality
in time series. Livni et al. [23] take advantage of sophisti-
cated neural network models to capture the characteristics in
highly irregular time series at the expense of long training
overheads. In addition, time series clustering algorithms are
able to explore spatial dependency through original series (e.g.,
DTW [24]) or extracted features (e.g., moments [25]). The
data-filling model proposed in this paper takes advantage of the
low-overhead linear model derived from spatial dependencies,
but also improves the predictability with the powerful neural
network model that exploits temporal dependencies [7].

VI. CONCLUSION

In this paper, we focus on the commonly observed missing
data phenomenon in real-world data traces. We study the CPU
usage series of IBM data centers and discover strong spatial
and temporal dependencies. We design ways of quantifying
the strength of spatial and temporal dependencies in the VM
CPU usage series, and propose a data-filling method to predict
the missing data. We show that the spatial-temporal model is
able to reach accurate predictions with around 20% absolute
percentage error on the average, and is able to achieve rea-
sonable performance even under challenging situations, such
as boxes with low dependency and usage series with long
lengths of missing data. Meanwhile, the model can be also
efficiently integrated with customized resource management
policies, such as ticketing systems in the IBM data centers.
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