
Supporting Applications Involving Dynamic Data Structures

and Irregular Memory Access on Emerging Parallel Platforms

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree Doctor
of Philosophy in the Graduate School of The Ohio State University

By

Bin Ren, B.S., M.S.

Graduate Program in Department of Computer Science and Engineering

The Ohio State University

2014

Dissertation Committee:

Dr. Gagan Agrawal, Advisor

Dr. P. Sadayappan

Dr. Radu Teodorescu

c© Copyright by

Bin Ren

2014

Abstract

SIMD accelerators and many-core coprocessors with coarse-grained and fine-grained

level parallelism, become more and more popular. Streaming SIMD Extensions (SSE),

Graphics Processing Unit (GPU), and Intel Xeon Phi (MIC) can provide orders of magni-

tude better performance and efficiency for parallel workloads as compared to single core

CPUs. However, parallelizing irregular applications involving dynamic data structures and

irregular memory access on these parallel platforms is not straightforward due to their in-

tensive control-flow dependency and lack of memory locality. Our efforts focus on three

classes of irregular applications: Irregular Trees and Graphs Traversals, Irregular Reduc-

tions and Dynamic Allocated Arrays and Lists, and explore the mechanism of parallelizing

them on various parallel architectures from both fine-grained and coarse-grained perspec-

tives.

We first focus on the traversal of irregular trees and graphs, more specifically, a class

of applications involving the traversal of many pointer-intensive data structures, e.g. Ran-

dom Forest, and Regular Expressions, on various fine-grained SIMD architectures, e.g. the

Streaming SIMD Extension (SSE), and Graphic Processing Unit (GPU). We address this

problem by developing an intermediate language for specifying such traversals, followed

by a run-time scheduler that maps traversals to SIMD units. A key idea in our run-time

scheme is converting branches to arithmetic operations, which then allows us to use SIMD

ii

hardware. In order to make our approach fast, we demonstrate several optimizations in-

cluding a stream compaction method that aids with control flow in SIMD, a set of layouts

that reduce memory latency, and a tiling approach that enables more effective prefetching.

Using our approach, we demonstrate significant increases in single-core performance over

optimized baselines for two applications.

However, different SIMD architectures have different features, so a significant chal-

lenge to our previous work is to automatically optimize applications for various archi-

tectures, i.e., we need to implement performance portability. Moreover, one of the first

architectural features programmers look to when optimizing their applications is the mem-

ory hierarchy. Thus, we design a portable optimization engine for accelerating irregular

data traversal applications on various SIMD architectures by emphasizing on improving

the data locality and hiding memory latency. The contributions of this work are two fold:

First, we develop a set of data layout optimizations that improve spatial locality for appli-

cations that traverse many irregular data structures. Unlike prior data layout optimizations,

our approach incorporates a notion of both inter-thread and intra-thread spatial reuse into

data layout. Second, we enable performance portability for these applications on SIMD ar-

chitectures by accurately modeling the impact of inter and intra thread locality on program

performance. As a consequence, our model can predict which data layout optimization to

use on a wide variety of SIMD architectures.

We next explore the possibility of efficiently parallelizing two irregular reduction ap-

plications on Intel Xeon Phi architecture, an emerging many-core coprocessor architecture

with long SIMD vectors, via data layout optimization. During this process, we also iden-

tify a general data management problem in the CPU-Coprocessor programming model, i.e.,

iii

the problem of automating and optimizing dynamic allocated data structures transfers be-

tween CPU and Coprocessors. For dynamic multi-dimensional arrays, we design a set of

compile-time solutions involving heap layout transformation, while for other irregular data

structures such as linked lists, we improve the existing shared memory runtime solution to

reduce the transfer costs.

Dynamic allocated data structures like List are also commonly used in high-level pro-

gramming languages, such as Python to support dynamic, flexible features to increase the

programming productivity. To parallelize applications in such high-level programming lan-

guages on both coarse-grained and fine-grained parallel platforms, we design a compilation

system linearizing dynamic data structures into arrays, and invoking low level multi-core,

many-core libraries. A critical issue of our linearization method is that it incurs extra data

structure transformation overhead, especially for the irregular data structures not reused

frequently. To address this challenge, we design a set of transformation optimization algo-

rithms including an inter-procedural Partial Redundancy Elimination (PRE) algorithm to

minimize the data transformation overhead automatically.

iv

This is dedicated to the ones I love: my parents and my wife.

v

Acknowledgments

It has been a long road, and there are so many people to whom I would like to extend my

sincerest thanks! It would not have been possible to write this doctoral dissertation without

their help and support. To only some of them, it is possible to give particular mention here.

First, I would like to thank my Advisor Prof. Gagan Agrawal for his constant patience,

support, and advice over the last six years. I came to OSU in 2008, when I had very limited

knowledge and experience in both research and parallel computing area. It is impossible for

me to finish this difficult, but extremely rewarding journey without his teaching, encour-

agement and help, and it is impossible for me to learn so much without his unsurpassed

insight into compiler, parallel computing, and research methodology as well. Moreover,

his enthusiasm for research were also contagious and motivational for me, especially dur-

ing the toughest time. From now on, he will be an excellent example for me for my whole

career.

Next, I would like to acknowledge the financial, academic, technical and all other kinds

of supports from National Science Foundation, The Ohio State University, and the Com-

puter Science and Engineering Department, especially the head of our department, Prof.

Xiaodong Zhang, and all administrative staffs of our department, especially Kathryn M.

Reeves and Lynn Lyons. I also want to extend my thanks to all Professors who have taught

me in past six years for their vivid teaching and helpful suggestions in both my study and

research, and they are: Prof. Atanas Rountev, Prof. Srinivasan Parthasarathy, Prof. D.K.

vi

Panda, Prof. Arnab Nandi, Prof. Timothy Long, and Prof. Rephael Wenger. Especially, I

would like to thank my candidacy committee members, Prof. P. Sadayappan, Prof. Radu

Teodorescu, and Prof. Feng Qin for their valuable time and invaluable advice, without

which, this dissertation would not have been possible.

I also would like to extend my sincerest thanks to my internship mentors, Dr. Todd

Mytkowicz from Microsoft Research, and Dr. Nishkam Ravi and Dr. Yi Yang from NEC

Labs. They are not only my mentors but also my friends, and they helped me a lot in

both my research and my life. I would never forget the beautiful sunny days for sailing in

Seattle, and the excited happy moment of championing the Volleyball Game in Princeton.

At the same time, I would like to thank all collaborators in my past research, Dr. Bradford

L. Chamberlain, Dr. Steve Deitz, Dr. James R. Larus, Dr. Tomi Poutanen, Dr. Wolfram

Schulte, Dr. Min Feng, and Dr. Srimat Chakradhar, without whose generous efforts, it is

impossible for the projects in this dissertation to come true.

I also would like to thank all my colleagues in my lab, Data-Intensive and High Perfor-

mance Computing Research Group. Former and present members of our group have been

very supportive and helpful both inside and outside school, and they are: David Chiu, Qian

Zhu, Fan Wang, Wenjing Ma, Vignesh Ravi, Wei Jiang, Tantan Liu, Tekin Bicer, Jiedan

Zhu, Xin Huo, Yu Su, Linchuan Chen, Yi Wang, Mehmet Can Kurt, Mucahid Kutlu, Jiaqi

Liu, and Sameh Shohdy. Our group has been a source of friendships as well as good advice

and collaboration.

Also I would like to thank all my friends in and out our department. I just want my bud-

dies to know how much I appreciate them and their friendship. Every time when I strug-

gled, my buddies comforted me; every time when I felt happy, my buddies were around

vii

me. Many places have witnessed our friendship, and we have also gained a lot from it, not

only in our research, but also in our life.

At last, special thanks are extended to my parents and my wife for their constant gen-

erous support! I love you forever!

viii

Vita

December 7th, 1983 . Born - Zhengding, China

2006 . B.S. Software Engineering,

Beihang University, Beijing, China

2008 . M.S. Software Engineering,

Beihang University, Beijing, China

2013 . M.S. Computer Science & Engineering,

Ohio State University, Columbus, OH

June, 2011 - September, 2011 Research Intern,

Microsoft Research, Redmond, WA

May, 2013 - August, 2013 Research Intern,

NEC Lab America, Princeton, NJ

Publications

Research Publications

Bin Ren, Nishkam Ravi, Yi Yang, Min Feng, Gagan Agrawal, and Srimat Chakradhar.

“Automating and Optimizing Data Transfers for Many-core Coprocessors”. In Proceedings

of The 28th ACM International Conference on Supercomputing (ICS), June, 2014. (Poster

Paper, Full Paper is Under Submission).

Xin Huo, Bin Ren, and Gagan Agrawal “A Programming System for Xeon Phis with Run-

time SIMD Parallelization”. In Proceedings of The 28th ACM International Conference on

Supercomputing (ICS), June, 2014.

Bin Ren, Todd Mytkowicz, and Gagan Agrawal. “A Portable Optimization Engine for Ac-

celerating Irregular Data-Traversal Applications on SIMD Architectures”. In ACM Trans-

actions on Architecture and Code Optimization (TACO), 2014.

ix

Bin Ren, Gagan Agrawal, James R. Larus, Todd Mytkowicz, Tomi Poutanen, and Wolfram

Schulte. “SIMD Parallelization of Applications that Traverse Irregular Data Structures”. In

Proceedings of The 2013 International Symposium on Code Generation and Optimization

(CGO), February, 2013.

Bin Ren, Gagan Agrawal, James R. Larus, Todd Mytkowicz, Tomi Poutanen, and Wolfram

Schulte. “Fine-Grained Parallel Traversals of Irregular Data Structures”. In Proceedings of

The 21th International Conference on Parallel Architectures and Compilation Techniques

(PACT), October, 2012. (Poster Paper).

Bin Ren, and Gagan Agrawal. “Compiling Dynamic Data Structure in Python to Enable

the Use of Multi-core and Many-core Libraries”. In Proceeding of The 20th International

Conference on Parallel Architectures and Compilation Techniques (PACT), October, 2011.

Bin Ren, Gagan Agrawal, Brad Chamberlain, and Steve Deitz. “Translating Chapel to

Use FREERIDE: A Case Study in Using an HPC language for Data-intensive Computing”.

In Proceeding of The 16th International Workshop on High-Level Parallel Programming

Models and Supportive Environments(HIPS) held in conjunction with IPDPS, May, 2011.

Fields of Study

Major Field: Computer Science and Engineering

x

Table of Contents

Page

Abstract . ii

Dedication . v

Acknowledgments . vi

Vita . ix

List of Tables . xv

List of Figures . xvi

1. Introduction . 1

1.1 Introduction to SIMD accelerators and Many-core coprocessors 5

1.1.1 SSE . 5

1.1.2 Many-core Coprocessors: Nvidia GPUs and Intel Xeon Phi . . . 6

1.2 Dissertation Contributions . 10

1.2.1 Fine-Grained Parallel Traversals of Irregular Data Structures on

SIMD Architectures . 11

1.2.2 A Portable Optimization Engine for Accelerating Irregular Data-

Traversal Applications on SIMD Architectures 12

1.2.3 Efficiently Parallelizing Irregular Applications on Xeon Phi by a

Programming System . 14

1.2.4 Automating and Optimizing Data Transfers for Many-core Co-

processors . 16

1.2.5 Compiling Dynamic Data Structures in Python to Enable the Use

of Multi-core and Many-core Libraries 19

1.3 Outline . 20

xi

2. Fine-Grained Parallel Traversals of Irregular Data Structures on SIMD Archi-

tectures . 21

2.1 Anatomy of Three Irregular Programs 22

2.1.1 Random Forests . 22

2.1.2 B+-Tree . 23

2.1.3 Regular Expression Matching 24

2.1.4 Challenges to Efficient Execution 25

2.2 SIMD Traversal of Fine-Grained Tasks 26

2.2.1 High Level Approach to SIMD Execution 27

2.2.2 A General Solution for Multiple Applications 29

2.3 Optimizations for Execution Efficiency 34

2.3.1 Light-Weight Stream Compaction 34

2.3.2 Reducing Memory Latency with Intelligent Data Layouts 36

2.3.3 Tiling of Trees . 39

2.4 Experimental Evaluation . 40

2.4.1 Methods . 40

2.4.2 Overall Speedups from SIMD Parallelization 40

2.4.3 Benefits from Optimizations . 44

2.5 Related Work . 50

2.6 Summary . 52

3. A Portable Data Locality Optimization Engine to Accelerate Irregular Data

Traversals on Various SIMD Architectures . 54

3.1 Intelligent Data Layouts . 54

3.1.1 Improving Inter-Thread Locality 56

3.1.2 Improving Intra-Thread Locality 58

3.1.3 Hybrid Layout . 58

3.2 Cache Analysis Model for Automatic Selection of Layout 60

3.2.1 Parameters and Assumptions 62

3.2.2 Basic Model for Balanced Accesses 63

3.2.3 Capturing Biased Accesses . 65

3.2.4 Impact of Sparse Buckets Accesses 66

3.2.5 Modeling a System Without L1/L2 Cache 67

3.3 Experimental Results . 67

3.3.1 Speedups and Performance with Different Layouts 69

3.3.2 Model Validation . 73

3.4 Related Work . 79

3.4.1 Improving Data Locality of Irregular Data Structures 79

xii

3.4.2 Exploring Inter-thread Data Locality in Multi-threaded Environ-

ment and Cache Modeling . 80

3.5 Summary . 82

4. Efficiently Parallelizing Irregular Applications on Xeon Phi by a Programming

System . 83

4.1 Overview of our Approach . 83

4.1.1 Irregular Reduction Application 84

4.1.2 Challenges and Opportunities 85

4.2 API and Runtime Support on Xeon Phi 86

4.2.1 Sample Kernel . 87

4.2.2 Data Reorganization . 88

4.3 Evaluation . 92

4.3.1 Benchmarks . 93

4.3.2 Speedups from Our Framework 93

4.3.3 Overall Scalability . 95

4.3.4 Comparison with OpenMP . 97

4.4 Related Work . 98

4.5 Summary . 99

5. Automating and Optimizing Data Transfers for Many-core Coprocessors 101

5.1 Motivation and Problem Definition . 101

5.2 Compile-time Automation of Data Transfers 108

5.2.1 Complete Linearization . 108

5.2.2 Partial Linearization with Pointer Reset 115

5.2.3 Interaction with Compiler Optimizations 121

5.3 Runtime Memory Management . 123

5.3.1 Combined Static and Runtime Approach 125

5.4 Evaluation . 128

5.4.1 Implementation . 128

5.4.2 Experimental Methodology . 129

5.4.3 Results and analysis . 130

5.5 Related Work . 135

5.6 Summary . 137

6. Compiling Dynamic Data Structures in Python to Enable the Use of Multi-Core

and Many-Core Libraries . 139

6.1 Challenges and Overview of Our Work 140

6.1.1 Python and Performance Issues 140

xiii

6.1.2 Overview of Our Translation Framework 142

6.2 Insertion Algorithm . 145

6.2.1 Intra-procedural PRE Algorithm 145

6.2.2 Inter-procedural PRE algorithm 149

6.2.3 Checking Homogeneity of a List 155

6.3 Linearization and Mapping Algorithm 157

6.3.1 Linearization . 158

6.3.2 Mapping . 159

6.4 Implementation and Experiments . 161

6.4.1 Implementation Overview . 162

6.4.2 Evaluation Goals and Platforms 162

6.4.3 Experiments with Data-Intensive Applications 163

6.4.4 Scaling Compute-Intensive Applications with a GPU 166

6.5 Related Work . 169

6.6 Summary . 170

7. Future Work . 171

7.1 Improving Memory Performance for Hierarchical Parallelism 171

7.1.1 Potential Future Research . 172

8. Conclusions . 175

8.1 Contributions . 175

Bibliography . 178

xiv

List of Tables

Table Page

2.1 Bytecodes Supported by our Interpreter and their Semantics 29

2.2 Random Forest Using the Bytecodes . 30

2.3 NFA Regex Using the Bytecode . 30

2.4 Summary of Datasets for Random Forest 41

3.1 Model Parameters . 62

3.2 Characteristics of Datasets Used in Our Experiments 69

5.1 Key Directives in Common Directive-based Languages for Accelerator Pro-

gramming . 102

5.2 Legality Check Cases . 120

5.3 Benchmarks . 129

5.4 Impact of the Two Linearization Approaches on Key Compiler Optimizations132

6.1 Terms Used in the PRE Data Flow Equations 148

6.2 Homogeneity Decision Expression (Global Level) 157

6.3 Descriptions of the Parameters in Mapping Algorithm 160

xv

List of Figures

Figure Page

1.1 An Illustration of Using SSE Registers . 5

1.2 Nvidia Tesla GPUs Architecture . 7

1.3 CUDA Programming Model . 8

1.4 The Illustration of Intel MIC Architecture 9

2.1 An Example of B+-Tree Structure . 23

2.2 An Example of Stream Compaction for SIMD Efficiency 34

2.3 Memory Layout with Different Schemes 37

2.4 Depth First Level by Level Layout for a Single Tree 38

2.5 Speedup with Our Approach (over Baseline Implementations) - Random

Forest . 41

2.6 SSE Speedups with Different Data Layouts - Random Forest 42

2.7 Speedup of the SIMD interpreter over GNU grep - Regular Expressions . 44

2.8 Speedup Improvements from Stream Compaction - Random Forest Using

5 Datasets . 45

2.9 Reduction in Workload from Stream Compaction: Poker and Microsoft

Datasets . 46

xvi

2.10 Percent of Time Backend is Stalled (Function of the Tree Size, for Different

Layouts) . 47

2.11 Benefits of Tiling (Poker Dataset) . 48

2.12 Execution Time with Changing Tree Levels and Tiling Sizes - SSE + DLL

on Poker . 49

3.1 Memory Layout with Different Schemes 55

3.2 Cache Conscious Layout for a Single Tree Structure 57

3.3 Comparison of Last Level (L2) Cache Misses and Execution Time for LL

and SLL layouts . 59

3.4 Comparison of Last Level (L2) Cache Misses and Execution Time for CC

and HYBRID Layouts . 60

3.5 Correlation between Last Level (L2) Cache Misses and Execution Time

(Different Layouts) . 61

3.6 B+-Tree (2 datasets) and Random Forest (3 datasets) on FERMI GPU:

Speedups of Different Versions Over Sequential Baselines 70

3.7 B+-Tree (2 datasets) and Random Forest (3 datasets) on FERMI GPU:

Speedups from SIMD Parallelization (Same Layout Used for Sequential

Execution) . 70

3.8 B+-Tree (2 datasets) and Random Forest (3 datasets) on SSE: Speedups of

Different Versions over Sequential Baselines 71

3.9 B+-Tree (2 datasets) and Random Forest (3 datasets) on SSE: Speedups

from SIMD Parallelization on (Same Layout Used for Sequential Execution) 71

3.10 Real and Predicted Execution Times with Different Layouts and Architec-

tures: B+ Tree Forest with Unbiased Traversal 74

3.11 Real and Predicted Execution Times with Different Layouts and Architec-

tures: Random Forest with Satellite Data set 75

xvii

3.12 Comparing Real Execution and Model Predicted Times for Each Level of

the Tree: LL and CC Layouts, B+-Tree on FERMI GPU 76

3.13 Comparing Real and Predicted Execution Times with Different Bias Lev-

els: B+-Tree on FERMI GPU . 77

3.14 Comparing Real and Predicted Execution Times with Different Bias Lev-

els: B+-Tree on FERMI GPU . 78

3.15 Comparing Real and Predicted Execution Times with Sparse Accesses . . . 79

4.1 The Code Examples for Two Classes of Irregular Applications 84

4.2 Example with Control Flow (a) sequential code (b) SIMD code (c) SIMD

code with mask type . 89

4.3 Irregular Reduction Edges Reorder . 90

4.4 Speedup of Pthread without SIMD (Pthread-novec), Pthread with auto-

SIMD (Pthread-vec), MIC SIMD with our framework (SIMD-API),

and hand-written SIMD (SIMD-manual): Euler, and MD with small

and large datasets each . 94

4.5 Scalability with Increasing Number of Threads: Pthread without vectoriza-

tion (Pthread-novec), Pthread with auto-vectorization (Pthread-vec),

SIMD with API (SIMD-API), and hand-written SIMD (SIMD-manual)

with Euler, and MD (large datasets) - Relative Speedups Over 1 Thread

Execution on Xeon Phi with no Vectorization 96

4.6 Benefits of MIMD+SIMD Execution in our Framework and MIMD-only

execution . 97

5.1 One-Dimensional Array Offload . 103

5.2 Naive Two-Dimensional Array Offload (significantly more complex than

one-dimensional case) . 104

xviii

5.3 (a) Performance of Matrix Addition with Non-Linearized vs. Linearized

Data Transfers, (b) Relationship between Number of Offload Statements

(for different array components) and Data Transfer Time. (For a fixed data

size, using fewer offload statements is beneficial, due to better DMA uti-

lization and smaller memory allocation and offload overhead.) 105

5.4 Two-Dimensional Array Offload using MYO (no explicit data transfers) . . 106

5.5 (a) Performance Comparison between MYO and Explicit Data Transfers

using Linearization for dgemm, (b) Total Data Transfer Size for both. (MYO

transfers less data but performs worse.) . 107

5.6 Different Linearization Schemes for Handling Data Transfers for Dynami-

cally Allocated Multi-Dimensional Arrays 109

5.7 Two-Dimensional Array Computation Offload (using complete linearization)110

5.8 Two-Dimensional Array Computation Offload (using complete lineariza-

tion with stride-bucket) . 113

5.9 Two-Dimensional Array Computation Offload (using partial linearization

with pointer reset) . 118

5.10 Vectorization Suppression Case I, abstracted from 27stencil: 3-D Array

Addition (after complete linearization) . 122

5.11 Vectorization Suppression Case II, from 330.art: Struct and Non-Unit Stride

Access (after complete linearization) . 123

5.12 Integrating Compile Time and Runtime Solutions: Simultaneous Use of

Explicit and Implicit Memory Management 127

5.13 Overall Solution Architecture . 128

5.14 Performance Comparisons for all Benchmarks: Optimized MYO, Com-

plete Linearization with Stride-Bucket, and Partial Linearization Compared

with Respect to (a) Execution Time and (b) Total Data Transfer Sizes; (c)

Execution Time Comparison between Multi-Core CPU, and Multi-Core

CPU+MIC for Large Input Data Sizes. The CPU-MIC Versions are Ob-

tained with our Partial Linearization . 131

xix

5.15 Optimized MYO vs. MYO: (a) Execution Time, (b) Total Data Transfer Size 134

5.16 Performance of Complete Linearization with and without Stride-Bucket

Optimization for Varying Input Data Sizes: (a) Execution Time, (b) Total

Data Transfer Size . 135

6.1 Python Code to Illustrate Translation Challenges 142

6.2 Overview of the Translation Framework 144

6.3 An Example to Illustrate Basic PRE: Before (left) and After (right) 146

6.4 Basic Intra-procedural PRE Data Flow Equations 147

6.5 The C-like Pseudo-code for K-means Application 150

6.6 The ICFG for K-means Application . 151

6.7 The Example of Using Linearization and Mapping Functions 161

6.8 K-means: Comparison of Performance of Different Versions (800 MB

dataset, k = 100, iter = 1) . 163

6.9 K-means: Comparison of Performance of Different Versions (800 MB

dataset, k = 100, iter = 10) . 164

6.10 PCA: Comparison of Performance of Different Versions (row = 1000,

column = 100, 000) . 165

6.11 Experiment Results for DGEMM . 167

6.12 Experiment Results for Tensor Multiplication 168

xx

List of Algorithms

1 Interpreter (byte_codes, task_queue) . 28

2 SeqInterpreter (byte_codes, input) . 31

3 SIMDInterpreter (byte_codes, input) . 33

4 CompleteLinearizationWithBucket (Multi_dim_var_set D) 114

5 PartialLinearizationPointerReset(Mul_dim_var_set D) 117

6 Integrat(Mul_dim_var_set D, Off_set C) 126

7 AnalyzeAll (procedure_set, linearize_set) 152

8 Analyze (pcurrent, pparent) . 153

9 ComputeLinearizeSize(Xs) . 158

10 LinearizeIt(Xs, size) . 159

11 ComputeIndex(unitSize[], unitOffset[][], myIndex[], position[][], i, levels) . 159

xxi

Chapter 1: Introduction

Our overall research work has been motivated by two facts emerging recently. On one

hand, starting from the last few years, it is no longer possible to improve computing speed

by simply increasing clock frequencies. As a result, various SIMD accelerators and many-

core architectures, like SSE, GPUs, and Intel Xeon Phi have become cost-effective means

for scaling performance. These parallel platforms offer us both coarse-grained (multi-

thread) level and fine-grained (instruction) level parallelism.

On the other hand, parallelizing applications involving dynamic data structures and ir-

regular memory access on these parallel platforms is not straightforward. Our work focuses

on three classes of such applications:

• Irregular Trees and Graphs Traversals like Decision Trees Traversal and Regular Ex-

pression Matching,

• Irregular Reductions like Molecular Dynamics and Euler,

• Applications with dynamic multi-dimension arrays, and linked lists written in C/C++

or some higher level languages like Python.

For parallelizing the first class of applications, there are two challenges: first, it is

difficult to explore parallelism, since normally such pointer-intensive data structures show

1

dynamic behavior, and traversal on them involves high control-flow dependency; second,

their poor data locality incurring high memory latency even for uni-processor makes them

barely benefit from the parallelism. The first challenge is more obvious for fine-grained

SIMD architectures, like SSE and GPUs due to the more strict, lockstep behavior of fine-

grained parallelism than coarse-grained parallelism; while the second one is crucial for both

levels of parallelism and various parallel architectures with different memory hierarchies.

Our first two efforts, Chapter 2 and Chapter 3, target on speeding up a class of irreg-

ular applications in traditional languages like C/C + + that involve independent traver-

sals of many instances of a pointer-based data structure on SIMD architectures, SSE, and

many-core coprocessors, GPUs. Examples of the class of applications we target include

prediction using a collection of decision trees [10], traversal of an indexing structure for

a number of simultaneous (but independent) queries [28], matching with regular expres-

sions [134], parsing XML documents [102], and frequent pattern mining [47], including

finding common subgraphs in a set of graphs [138]. These applications arise in domains as

diverse as machine learning, compilation, intrusion detection, web services, databases, and

data mining.

These applications traverse independent data structures for two reasons. First, applica-

tions can manipulate a large number of logically independent data structures. For example,

the forest of decision trees produced by a machine learner or the set of alternative patterns

used in an intrusion detection system such as Snort [118] represent independent computa-

tions that can be proceeded in parallel. Second, applications can traverse a single irregular

data structure, but do so with many independent inputs. The approach in our work handles

both cases. While applications of this type can easily be parallelized across multiple cores,

SIMD within each core can provide a multiplicative improvement in performance.

2

Our work develops an intermediate language for specifying such traversals, followed

by a run-time scheduler that maps traversals to SIMD units. However, different SIMD

architectures have different features, so a significant challenge to our previous work is

to automatically optimize applications for various architectures, i.e., we need to implement

performance portability. Moreover, one of the first architectural features programmers look

to when optimizing their applications is the memory hierarchy. Thus, we design a portable

optimization engine for accelerating irregular data traversal applications on various SIMD

architectures by emphasizing on improving the data locality and hiding memory latency.

Next, we explore parallelism for the second and the third classes of applications, irregu-

lar reductions, and dynamic allocated multi-dimension array and structures with multi-level

pointers on latest Intel Xeon Phi architecture in Chapter 4 and Chapter 5. For irregular re-

duction applications, we emphasize on the challenges causing by indirected array access,

such as random memory access, and write conflicts within the same SIMD register, and

for applications with dynamic multi-dimension arrays and multi-level pointers, we focus

on the challenge of automating and optimizing dynamic data transfers between CPU and

Xeon Phi.

Both of these efforts are to reduce the programmers’ burden of working with Xeon Phi,

while maintain the high performance of the code by a set of optimizations. The former de-

signs a set of APIs to leverage the hierarchical parallelism to explore both shared memory

MIMD and SIMD parallelization, while the latter designs and implements a compile-time

and runtime integrated source-code to source-code transformation framework to generate

the optimized data transfer related codes automatically.

3

Moreover, still within the scope of the third class of applications, dynamic allocated

data structures are also commonly used in very high-level languages to support many dy-

namic, flexible features to offer programmers high programming productivity. However,

usually, the performance of these dynamic data structures is very low due to their irregular

behavior, and it is impossible for them to support the use of coarse-grained and fine-grained

parallelism from existing multi-core and many-core libraries, like data-intensive applica-

tions library [63], and linear algebra application libraries [90, 104]. Because these libraries

expect parameters to be multi-dimensional arrays, and cannot be directly invoked when the

application is based on dynamic data structures.

To bridge the gap between performance and productivity for high level languages, our

last effort, Chapter 6, picks up Python, and develops a Python based compilation system

that can replace dynamic data structures with arrays, and invoke libraries for multi-core

and many-core architectures for specific types of computations. This work also generalizes

our idea of layout optimization used in previous works to a broader area, and designs an

Inter-Procedural PRE algorithm to reduce the data transformation overhead during the

optimization process.

In this Chapter, we first introduce the SIMD accelerator and many-core coprocessors,

especially the emerging Intel Xeon Phi many-core coprocessor architecture. Next, we

give an overview of our existing work including fine-grained SIMD traversals on irreg-

ular data structures on SSE and GPUs, efficiently parallelizing two irregular applications

on emerging Intel Xeon Phi architectures, automating and optimizing data transfers for

Xeon Phi, and compiling dynamic data structures in Python to use both coarse-grained and

fine-grained parallelism libraries.

4

1.1 Introduction to SIMD accelerators and Many-core coprocessors

This part introduces the parallel platforms used in this dissertation, SSE (Streaming

SIMD Extension), a typical SIMD accelerator, and GPUs and Intel Xeon Phi, two emerging

many-core coprocessors. Especially, we describe the Intel Xeon Phi in more detail, since

people are less familiar with this new many-core architecture.

1.1.1 SSE

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

128 bits
X4 X3 X2 X1

Y4 Y3 Y2 Y1

ALU

op

ALU

op

ALU

op

ALU

op

Y4 Y3 Y2 Y1

Z[1..4] = X[1..4] op Y[1..4]

SSE Registers

Figure 1.1: An Illustration of Using SSE Registers

SSE has been part of the x86 since 1999 and is widely used in a large variety of com-

putation fields [58, 38, 40, 119]. The latest version of SSE is 4.2. As shown in Figure 1.1,

SSE essentially includes a set of (normally 8) multi-lane registers that can support 4 32-bit

5

(total 128 bits) float operations at the same time 1. SSE offers programmers a set of intrin-

sics or instructions to process various arithmetic, logic and memory access operations. In

modern multi-core CPU architecture, each core has its own SSE unit, and both scalar unit

and SSE unit share the same memory hierarchy.

1.1.2 Many-core Coprocessors: Nvidia GPUs and Intel Xeon Phi

As we all know, many-core coprocessors can provide orders of magnitude better per-

formance and efficiency for parallel workloads as compared to multi-core CPUs, and are

being widely adopted as accelerators for high performance computing. An increasing num-

ber of top 500 supercomputers2 are now based on accelerators, like the Nvidia GPUs or the

x86-compatible Intel Xeon Phi (MIC) systems. Particularly, MIC is designed to leverage

existing x86 experience and benefit from familiar parallelization tools, libraries, and pro-

gramming models, including OpenMP [25], MPI [45], CilkPlus [9] and TBB [116].

GPUs

Comparing with SSE units, Nvidia GPUs architectures are more complex. Figure 1.2

and Figure 1.3 from Nvidia programming documents [105] illustrate the Nvidia Tesla GPU

architecture, and the basic idea of CUDA programming model designed for GPU program-

ming. The basic structure of Nvidia Fermi GPUs architecture is similar to Tesla, and the

most significant difference is that it has a L1/L2 cache hierarchy for tolerating irregular

accesses and improving the memory performance. In GPUs architecture, multiple low

frequency processors are organized into a few of SMs (Streaming Multiprocessor). Each

SM has its own small shared memory, constant, texture cache (and L1 cache for Fermi),

1To increase the computation power, the Intel Sandybridge processor doubles its vector length to 256 bits,

and the new instruction set is called AVX (Advanced Vector Extensions).

2Top 500 Supercomputers. http://www.top500.org.

6

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device Memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Figure 1.2: Nvidia Tesla GPUs Architecture

and device memory (and larger L2 cache for Fermi) is shared among all SMs. In CUDA

programming, tasks of each kernel are organized into a grid-block-thread hierarchy: each

kernel is a grid, which is partitioned into multiple blocks, and each block contains multiple

threads. The GPUs CUDA kernels and the CPU host code sections are executed inter-

leaved, so we call it a heterogeneous programming model. The mapping relationship of

CUDA programming and GPU device is as following: each kernel is corresponding to the

whole device, and each block is processed on a specific SM, and each thread is executed

by a processor.

7

Device

Grid 0

Block (2, 1) Block (1, 1)Block (0, 1)

Block (2, 0) Block (1, 0)Block (0, 0)

Host

C Program
Sequential
Execution

 Serial code

 Parallel kernel

 Kernel0<<<>>>()

 Serial code

 Parallel kernel

 Kernel1<<<>>>()

Host

Device

Grid 1

Block (1, 1)

Block (1, 0)

Block (1, 2)

Block (0, 1)

Block (0, 0)

Block (0, 2)

Figure 1.3: CUDA Programming Model

Xeon Phi

In the available MIC systems, there are 60 or 61 x86 cores organized with shared mem-

ory. These cores are low frequency in-order ones, and each supports as many as 4 hardware

threads. Additionally, there are 32 512-bit vector registers on each core for SIMD opera-

tions. The main memory sizes vary from 8 GB to 16 GB, and the memory is shared by all

cores. The L1 cache is 32 KB, entirely local to each core, whereas each core has a coherent

L2 cache, 512 KB, where cache for different cores are interconnected in a ring.

8

Instruction Decode

Scalar

Unit

Vector

Unit

Scalar

Register

Vector

Register

L1 I-Cache & D-Cache

Instruction Decode

Scalar

Unit

Vector

Unit

Scalar

Register

Vector

Register

L1 I-Cache & D-Cache

Instruction Decode

Scalar

Unit

Vector

Unit

Scalar

Register

Vector

Register

L1 I-Cache & D-Cache

Instruction Decode

Scalar

Unit

Vector

Unit

Scalar

Register

Vector

Register

L1 I-Cache & D-Cache

...

L2 Cache

S
p
e
c
ia
l
F
u
n
c
tio
n

M
e
m
o
ry
C
o
n
tro
lle
r

S
y
s
te
m
&
I/O

In
te
rfa
c
e

M
e
m
o
ry
C
o
n
tro
lle
r

...

Figure 1.4: The Illustration of Intel MIC Architecture

Our work focuses on three important features of Intel MIC architecture, which need to

be exploited for obtaining high performance:

Wide SIMD Registers and Vector Processing Units (VPU): VPU has been treated as

the most significant feature of Xeon Phi by many previous studies [84, 126, 110, 34]. The

reason is that the Intel Xeon Phi coprocessor has doubled the SIMD lane width compared

to Intel Xeon processor, i.e., 256-bit to 512-bit, which means that it is possible to process

16 (8) identical floating point (double precision) operations at the same time. In addition,

we have a new 512-bit SIMD instruction set called Intel Initial Many Core Instructions

(Intel IMCI), which has built-in gather and scatter operations that allow irregular memory

accesses, a hardware supported mask data type, and write-mask operations that allow oper-

ating on some specific elements within the same SIMD register. Even though all of these

9

new instructions could potentially be simulated by the programmers in the SIMD Stream-

ing Extension (SSE) model, explicit new instructions allow easier implementation of more

irregular parallelism. Note that SIMD instructions can be generated by the ICC compiler

through the auto-vectorization option, or the programmers could use IMCI instruction set

directly. The former needs low programming effort, though current compilation systems

have several limitations and do not always obtain high performance. In comparison, the

latter option can achieve the best performance, however, is tedious and error prone, and

creates non-portable code.

Large Number of Hyper-threads: Each Xeon Phi core allows up to 4 hyper-threads, in

another word, we can have as many as 240/244 hardware threads sharing the same memory

on Xeon Phi. This provides us with massive Multiple Instruction Multiple Data (MIMD)

parallelism with shared memory, which has not been common in the past.

Coherent L2 Cache: Intel Xeon Phi architecture uses coherent L2 Cache with ring inter-

connection. When a L2 cache miss occurs for a specific core, an address request is sent

to the ring. If the address is found in another core’s L2 cache, the corresponding data is

forwarded back along the ring. In the worst case, the entire process may take hundreds of

clock cycles. Thus, Xeon Phi reduces the number of L2 cache misses, but even an L2 cache

hit can be very expensive. Thus, data locality is crucial for the overall performance.

1.2 Dissertation Contributions

This section introduces the contributions of our research, including five components.

10

1.2.1 Fine-Grained Parallel Traversals of Irregular Data Structures

on SIMD Architectures

The irregular data structures targeted by our work have significant amount of fine-

grained parallelism, which makes it possible to parallelize them on SIMD architectures

like SSE and GPUs. However, effective parallelization of independent traversals of irreg-

ular data structures on a SIMD unit requires addressing multiple challenges. One such

challenge is related to the uneven amount of work each SIMD unit might have to perform

while traversing different structures. Another challenge is that these applications involve

branch operations, which cannot be parallelized on SIMD units. Memory latency while

traversing pointer-based data structures is another issue.

This work develops techniques to address these problems. Moreover, we offer a solu-

tion to programmers interested in developing SIMD parallelized implementations of these

applications, by developing an intermediate language and a run-time scheduler. The in-

termediate language exposes several types of operations, which can be used to specify the

traversal involved in the application. Several optimizations are implemented in the run-time

scheduler, including a stream compaction method, several layouts that reduce memory la-

tency (while also allowing branch operations to be replaced by arithmetic operations), and

a tiling scheme.

Overall, the contributions of this work are:

• Identification of an opportunity to exploit fine-grain data parallelism in important,

latency critical algorithms widely used in production software.

• An approach to exploiting fine-grained parallelism in the traversal of pointer-based

data structures, with a specific emphasis on trees and graphs.

11

• An illustration of the practicality of our approach by demonstrating significant single-

core speedups of two applications that use irregular data structures. Applying it to

two real random forest applications results in a single-core speedup of 9-17X on a

variety of data-sets. We also apply our technique to produce a single-core speedup

of nearly 5X in an existing regular expression engine.

The overall objective of this work is to handle the first challenge—fine-grained paral-

lelism further explained in Section 2.1.4. We provide a comprehensive study on the second

one—memory locality in next section.

1.2.2 A Portable Optimization Engine for Accelerating Irregular Data-

Traversal Applications on SIMD Architectures

For irregular data-traversal applications, memory locality is a critical factor for im-

proving the performance, which is further explained in Section 2.1.4. Previous work pre-

liminarily proposed a layout optimization strategy for SSE environment without any further

discussion. This work puts this topic into a more general background—performance porta-

bility, and tries to establish a theoretical analysis model to guide the programmers’ practice

on various SIMD architectures with distinct memory hierarchies.

Performance Portability: When developing performance-sensitive applications, program-

mers have to optimize for a diverse set of architectures and architectural features. These

choices make the development of portable high performance applications challenging. Op-

timizing an application on any one particular architecture is a challenging task—optimizing

that application for several architectures is a daunting, if not impossible, task. Because of

this complexity, programmers are unable to guarantee the performance of their applications

12

on the wide range of architectures on which their application will run. In other words, it is

difficult for programmers to guarantee an application’s performance portability.

Apparently, one of the first architectural features programmers look to when optimizing

their applications is the memory hierarchy, specifically, for our irregular applications. In

sequential applications, a programmer need only consider locality from the view-point of

a single thread (e.g. intra-thread locality). However, for modern SSE based processors,

multi-core, or SIMD architectures, the memory hierarchy is shared by multiple threads,

so locality, shared among different threads (inter-thread locality) can dominate an appli-

cation’s performance [94, 131]. Clearly, it would be desirable for a code generator to

automatically optimize an application’s locality for a given architecture, thereby removing

the burden of performance portability from the programmer. Unfortunately, in decades of

research on restructuring compilers, we as a community have not developed such a solution.

Rather than seeking a general solution to this hard problem, we demonstrate how to en-

able performance portability across a wide variety of SIMD architectures for our irregular

data traversal applications. We present an application-class specific optimization frame-

work that targets a variety of architectures that use SIMD parallelism. This includes an

x86 system with SSE instructions and two generations of NVIDIA GPUs. Each of these

architectures differs significantly in their memory hierarchies. Our optimization framework

includes a family of data layout optimizations that help achieve inter-thread spatial locality,

intra-thread spatial, or a combination of the two.

We find that the relative performance among different layouts depends upon an appli-

cation’s characteristics (e.g. whether all trees are processed with equal likelihood, or if

probability of taking all branches is the same or not), as well as architectural characteristics

(e.g. features of memory hierarchy and degree of SIMD parallelism). Thus, we develop

13

a detailed performance model that can help select an appropriate layout for a given ap-

plication/architecture combination. The key insight of our model—and why we are able

to accurately model real world applications running on diverse machines—is that, for the

applications in our restricted domain, the number of L2 cache misses turns out to be an

effective predictor of performance.

Overall, the contributions of this work are as follows:

• First, we describe three novel data layout optimizations that are designed to extract

intra and/or inter thread locality from applications that traverse a large number of

irregular data structures on SIMD hardware.

• Second, we demonstrate the efficacy of our data layout optimizations by showing

significant speedups of two real world applications on three diverse SIMD architec-

tures.

• Third, we introduce an analytic model that removes the burden of performance porta-

bility from the programmer by accurately modeling which of our data layout opti-

mizations to use on a particular architecture.

1.2.3 Efficiently Parallelizing Irregular Applications on Xeon Phi by

a Programming System

Use of SSE-like instruction sets has always been a hard problem, and it turns out that

such parallelism has not been consistently used for applications outside dense matrix or

imaging kernels. Moreover, there are significant programming differences between CUDA

and SSE-like instruction sets, since they target SIMT and SIMD models, respectively.

Specifically, while coalesced memory accesses are important for performance in SIMT

programming, parallelism is still available, whereas programmers need to explicitly create

14

aligned and contiguous accesses in the case of SSE or IMCI. Similarly, while branches

are automatically managed in SIMT, with masks internally implemented, programmers or

compilers must identify instructions executed by all threads with SSE/IMCI.

Effectively exploiting the power of a coprocessor like Xeon Phi requires that we exploit

both MIMD and SIMD parallelism. While the former can be done through Pthreads or

OpenMP, it is much harder to extract SIMD performance. This is because the restrictions

on the model make hand-parallelization very hard. At the same time, productions compilers

are unable to exploit SIMD parallelism for many of the cases.

This work focuses on the problem of application development on any system that sup-

ports both shared memory parallelism and SSE-like SIMD parallelism, with a specific em-

phasis on the Intel Xeon Phi system. We describe an API and a runtime system that helps

extract both shared memory and SIMD parallelism. One of the key ideas in our approach

is to exploit the information about underlying communication patterns, to both partition

and schedule the computation for MIMD parallelism, and reorganize the data for achieving

better SIMD parallelism. While our approach is general, we currently focus on irregular

reductions.

Overall, the contributions of this work are as follows:

• First, we provide an end-to-end application development system for the Xeon Phi

architecture, or more broadly, any system with both shared memory and SIMD par-

allelism.

• Second, our work can be viewed as providing a CUDA or OpenCL-like program-

ming API for SSE-like instructions, where the responsibility for optimizing irregular

accesses patterns or managing control flows is the responsibility of the underlying

library.

15

• Third, we evaluate the efficacy and efficiency of our system by two applications in-

volving irregular reduction communication patterns, Molecular Dynamic and Euler,

and achieve good speedup.

1.2.4 Automating and Optimizing Data Transfers for Many-core Co-

processors

Accelerating parallel computation using many-core coprocessors requires specification

of code regions that can be profitably offloaded to the coprocessor and executed as indepen-

dent tasks. These code regions have been specified by the developer using low-level APIs

(e.g., CUDA [106] and OpenCL [100]) till recently. The software available with Xeon

Phi, as well as the emerging directive-based models for GPU programming, are providing

much higher-level APIs for using accelerators. However, even with such high-level APIs,

there are many challenging issues. Particularly, orchestrating data transfers for multi-level

pointers using in/out or equivalent clauses is cumbersome and error-prone.

With the goal of further improving productivity of HPC programmers while also main-

taining performance, we focus on easing data transfer related efforts, considering both

compile-time and runtime solutions. While such data transfers for static arrays can be han-

dled by ICC compiler3 today, and solutions proposed in the literature [115, 46, 81, 62] can

handle dynamically allocated one-dimensional arrays, the open problem is handling dy-

namically allocated multi-dimensional arrays or other structures with multi-level pointers.

It turns out that the problem is quite complex, particularly because the choice of the

mechanism used for automatically inserting data transfer clauses impacts memory layouts

and access functions (subscripts) on the coprocessor. Because of nature of the accelerators

and complex interactions between the resulting source-code and the native compiler on the

3Intel C++ Compiler. http://www.intel.com/Compilers.

16

accelerator, the performance can be impacted in multiple ways. Overall, in order for the

solution to perform well:

• Redundant data transfers between the CPU and the accelerator should be eliminated

or minimized,

• Data transfer times should be reduced by utilizing Direct Memory Accesses (DMA),

• Memory allocation overheads on the accelerator (or even the host) should be kept

low, and

• Last but not the least, memory layout and access should allow for aggressive memory-

related compiler optimizations (e.g., vectorization and prefetching) from the native

compiler, as they are critical for obtaining performance from the accelerator.

We observe that the prior solutions [60, 81, 115] do not consider these factors together,

as they focus primarily on data transfer reduction. In particular, the effect of memory

layout [143, 19] on DMA, cache, and compiler optimizations have been largely overlooked.

This work describes an automated framework that uses both compile-time and runtime

solutions to address this problem. This system includes a simple but effective compile-time

solution, where we linearize the heap without having to modify the memory accesses (sub-

scripts), by using a pointer reset approach. The idea is to identify and parse all the malloc

statements for a given multi-dimensional array and generate code for obtaining the total

memory size (say s) for that multi-dimensional array. The malloc statements for the given

array are then replaced by a single malloc statement that allocates a memory chunk of size

s. Code is generated to correctly reset all the pointers of the array into this large chunk of

memory. This allows the memory accesses to stay unmodified. This method scores well on

17

all the four metrics mentioned above and maintains code readability. One underlying ob-

servation that motivates this approach is that most scientific, big data and HPC applications

(that can potentially benefit from a coprocessor) read data and allocate memory towards the

beginning of the program and then proceed to process it. Memory allocation statements as

well as memory access statements can be tracked, parsed and modified (if certain legality

conditions are satisfied).

For the cases where our compile-time approach cannot apply, we also explore runtime

solutions. The background is that a system like Xeon Phi also has shared memory im-

plementations available between the main processor and accelerator. We also investigate

and optimize the performance of the runtime memory management approach, by providing

certain improvements to the existing coherence protocol. The best compile-time solution

consistently performs better than the optimized runtime scheme, but is not as generally

applicable. In order to combine performance with generality, we describe a mechanism

for integrating the two disjoint approaches using a simple source-to-source transforma-

tion. The idea is to simultaneously and selectively insert implicit and explicit data transfer

clauses in the application at compile time.

We have implemented our compile-time solution as a transformation using the Apricot

framework [115], and evaluated it within the context of application execution on Xeon Phi

coprocessor. We use a test suite comprising benchmarks from different sources, which

involve dynamically allocated multi-level pointers. We show that our proposed compile-

time solution can perform 2.5x-5x faster than original runtime solution, and the CPU-MIC

code with our compile-time solution can achieve 1.5x-2.5x speedup comparing to the 16-

thread CPU version.

18

1.2.5 Compiling Dynamic Data Structures in Python to Enable the

Use of Multi-core and Many-core Libraries

Dynamic allocated data structures are not only used for traditional high performance

languages, but also used in many high level, high productivity languages like Python to

provide users high-level abstract utilities and relative flexible dynamic features. As pro-

grammer productivity is extremely important, there is a growing trend of applying these

high-level languages for high performance computing, since they are often simpler to learn

(especially, for programmers in certain domains), and result in much more concise code.

However, because of their interpreted nature and the use of high-level constructs, they also

often result in poor performance, besides being not able to exploit parallelism on multi-

cores and GPUs.

Clearly, it will be very desirable if translators can be built to automatically or semi-

automatically translate programs written in high-level languages for scalable execution on

multi-cores and/or GPUs. This work describes one such system. Our work is driven by

the growing popularity of Python, and the need for scaling numerical computations on

multi-cores and GPUs, using the existing libraries.

Overall, the contributions of this work are as follows:

• First, we present a Python based compilation system that invokes libraries for multi-

core and many-core architectures for specific types of computations. Because usually

these libraries only accept dense memory buffer rather than dynamic irregular data

structures like list in Python, our linearization and memory optimization strategies

can be applied for the data structure transformation process, which demonstrates

more generality of our previous work.

19

• Second, to enable such optimizations, we have developed a demand-driven inter-

procedural PRE algorithm, and a novel Homogeneity Checking algorithm to reduce

the layout optimization overhead.

• Third, we have evaluated our framework using two data mining and linear algebra

applications written in pure Python, and it demonstrates that by our translation and

optimization framework, we are able to generate code which is only 10−20% slower

than the hand-written C code that uses the same libraries.

1.3 Outline

The rest of this dissertation is organized as following: Chapter 2 introduces the details

of mapping fine-grained parallel traversals of irregular data structures on SIMD architec-

tures. Chapter 3 presents the portable data locality optimization engine for traversing ir-

regular data structures on a variety of SIMD architectures like NVIDIA GPUs with Tesla

and Fermi architectures, and Intel SSE architecture. Chapter 4 describes our solution of

efficiently parallelizing irregular reduction applications on Xeon Phi architecture. Chap-

ter 5 presents the integrated compile-time, runtime framework of automating and optimiz-

ing data transfers for many-core coprocessors, such as Xeon Phi. Chapter 6 introduces

the framework of compiling irregular data structures in Python down to multi-core and

many-core architectures, especially the inter-procedural PRE algorithm to reduce the data

structure transformation overhead. Chapter 7 describes some potential future work, and

Chapter 8 concludes this dissertation.

20

Chapter 2: Fine-Grained Parallel Traversals of Irregular Data

Structures on SIMD Architectures

Fine-grained data parallelism is becoming increasingly prevalent in mainstream pro-

cessors, such as the x86 and ARM, as the length of vector instructions is increasing4. The

most common fine-grained data-parallel hardware, the Steaming SIMD Extensions (SSE),

has been part of the x86 since 1999 and is widely used in graphics [58], image, video,

and signal processing [38], and scientific and engineering applications [40, 119]. As such

fine-grained data parallelism becomes a ubiquitous processor feature with increasing per-

formance, it is desirable to exploit this feature for irregular computations as well.

However, programs that rely on irregular, pointer-based data structures benefit little

from SIMD execution because of the mismatch between the strict, lockstep behavior of

SIMD parallelism and the dynamic, data-driven behavior of programs that manipulate ir-

regular data structures.

This Chapter develops techniques to address the challenges of mapping a class of non-

numeric, non-graphic applications, which perform computations while traversing many

independent, irregular data structures, to SIMD units. Such kind of mapping not addressed

in prior work is non-trivial and is the first challenge of fine-grained parallel irregular data

structure traversals on SIMD architectures.

4For example, the Intel Sandy-bridge processor doubled its vector length to 256 bits.

21

2.1 Anatomy of Three Irregular Programs

This section introduces three common algorithms that manipulate irregular data structures—

Random Forest, B+-Tree Forest and Regular Expressions that are used for evaluating our

existing work on SIMD architectures.

2.1.1 Random Forests

Random (decision) forests are a data mining technique used to classify an input—or a

set of features—into a fixed number of categories [10]. A random forest is a collection of

binary decision trees. To classify an input, each tree is traversed, comparing features of the

input against threshold values, and producing a result as its categorical membership for that

input.

To be more concrete, consider a random forest made of two simple trees, shown below.

Each tree can classify one input, made of three features (f0,f1, and f3), into one of four

classes (classa,classb,classc, and classd).

f0 ≤ 0.5

classa f1 ≤ 0.1

classc classa

f3 ≤ 0.1

f0 ≤ 0.9

classb classc

classd

Each node in the trees performs one of two actions. If a node is an internal node, it

compares one feature of the input against a constant threshold and branches accordingly to

a left or right child depending on the result of the comparison. If the node is a leaf node, it

simply stores the class label for that tree into a global counter.

22

11 56

3 5 11 47 85 90 99

R1 R2 R3 R4 R5 R6 R7

Figure 2.1: An Example of B+-Tree Structure

2.1.2 B+-Tree

B+-Tree is a popular indexing structure used in databases (e.g. for indexing) and data

servers (e.g. for file-systems) [23]. The basic B+-Tree operations are: for the internal node,

a comparison operation is performed between the input value and the key value; and for the

leaf node, a output operation is performed to generate the searched record.

Consider the simple B+-Tree example in Figure 2.1. For an input query with an integer

number as its key, we compare its key against the key values in an internal node and perform

a branch operation. This process is repeated until we arrive at the leaf node, where the

information about the searched record is output.

A single B+-Tree can be represented as a hashing function in conjunction to large a

number of independent sub-trees5. The hashing function represents the logic of the first n

levels of the tree, i.e. it is a mechanism by which we can quickly reference any one of the

2n sub-trees.

In a database or data server where a B+-tree is deployed, it is common to have a heavy

query work-load, with several independent inputs at any given time, which makes the ap-

plication suitable for exploiting parallelism. After the hashing function is applied to each

5http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp?topic=
%2Fcom.ibm.perf.doc%2Fids_prf_763.htm

23

input, there can be independent queries on different sub-trees. These are analogous to inde-

pendent traversal of different weak classifiers for a single input in random forests, with one

key difference - not all sub-trees might be concurrently processed at any given time. We

refer to this traversal pattern as sparse buckets accesses. Overall, this application is distinct

from random forest because parallelism is arising from processing of different inputs, and

yet, the issues in efficient SIMD execution are almost the same, as we elaborate below.

2.1.3 Regular Expression Matching

Regular expressions are a common way to match patterns against large bodies of text

or binary data. In our work, we use a non-deterministic finite automaton (NFA) to simulate

a regular expression, similar to Thompson’s original regular expression compiler [129].

To simulate an NFA, we walk–or traverse–a graph, moving node to node in the graph

depending on the type of action required at a node. Consider the NFA, or graph, for the

regular expression noted above:

s0 s1 s2 s3 s4 s5

a b b

ǫ

b a

In order to evaluate this regular expression, we traverse the NFA, starting at node s0.

If the traversal ever reaches node s5, the regular expression matches the input string. To

traverse from one node to another, we compare the input character to the character on that

node’s outgoing edge. If the input character matches the edge character, we follow that

edge to the next node and move forward one character in the input. If it is not a match, we

stop the traversal as the input string is not a match. If the edge character is ǫ, we traverse

the edge without advancing the input.

24

Traversing the graph has one added complication–nodes may have two edges. When

walking the graph, if our traversal comes to a node with two outgoing edges, we must

follow both edges. That is we try both paths at the same time, reading the input only once.

The result of the traversal is the union of both traversals. For example, suppose we are in

node s3, then due to the edge labeled ǫ, we start our multi-node traversal in node s1 and s3

simultaneously. If the next input is a ‘b’, both traversals advance. If the next input is an ‘a’,

the set of active traversals narrows down to a single traversal.

2.1.4 Challenges to Efficient Execution

These applications—and many like them that traverse irregular data structures—face

two significant challenges that limit efficient execution:

Fine Grained Parallelism: The programs we described above clearly have a large amount

of coarse-grained parallelism. For example, simultaneous traversals of a large number of

trees can be easily divided between several cores of a multi-core machine. However, these

programs also have a significant amount of fine-grained parallelism; e.g. every internal

node executes a compare. Exploiting fine-grained parallelism (e.g. via SIMD in SSE or

GPUs) is complementary to coarse-grained parallelism and can speed each core’s process-

ing of its portion of the set of nodes. However, mapping this fine-grained parallelism to

SIMD hardware is non-trivial.

Memory Locality: Programs that traverse a large number of irregular data structures

likely have no temporal reuse, and poor spatial locality. For example, if nodes of a tree are

allocated on the heap, i.e. using memory allocators like malloc, there is no assurance as to

where a node’s children are allocated with respect to the parent. Even if a programmer is

25

smart and linearizes their irregular data structure into a dense block of memory, high spatial

reuse may not occur. Assuming a balanced tree, there are 2n nodes at the level n of any

given tree, among which, only one node will be accessed during any traversal. Thus, once

we reach a level where the nodes at the level occupy more than one cache line, we will not

see any spatial reuse. As a consequence, it is common for a program that uses irregular

data structures to be stalled on memory, which, in turn, negates any possible benefits from

parallelism.

2.2 SIMD Traversal of Fine-Grained Tasks

We now focus on the problem of executing irregular applications, like regular expres-

sions or decision trees, on SIMD hardware. When these programs visit an internal node,

they optionally perform an operation on it, might also including evaluating an expression

to select the next node to visit. On visiting a leaf node, a different operation is performed

(e.g., storing the result), since there is no new node to be visited. We denote the opera-

tion(s) performed at a leaf node n as W(n) and the computations at the non-leaf node as

T (n).

As a concrete example, consider the decision trees in Section 2.1.1 and a typical se-

quential single decision tree traversal. Each node of this tree is either an internal node or a

leaf node. When we traverse to an internal node n, we compare feature values, and branch

to the left or right child, depending on the result. When we reach a leaf node n, we update

the ranking and terminate the traversal. Thus, for this application, the former is T (n) and

the latter is W(n).

26

2.2.1 High Level Approach to SIMD Execution

Now, suppose we want to traverse a set of trees on SIMD hardware. We can first execute

T (n) for all root nodes n, which gives us a set of successor nodes BS. Next, assuming all

tree traversals are of the same length, we can evaluate T (n) for all n in ns, and so on, until

we reach a leaf node. At a leaf node n, we evaluate W(n) for all trees.

However, in practice, and unlike a typical array based computation, the different traver-

sals likely have different lengths. Therefore, at a certain level, a mixture of T and W

computations will be needed. Thus, we must execute each operation type for each stage,

and mask the results of operations who’s types are not represented by the current operation.

What we are doing is essentially emulating MIMD with SIMD, a topic that has been stud-

ied in the past [48, 31, 8, 49]. However, none of this work has considered pointer-based

traversals.

The second problem is that SIMD execution requires that addressing children is branch-

less, otherwise we are unable to parallelize the T (n) expressions. In order to address this

problem, we design a layout generation process to organize data structure elements in the

memory in a systematic way. We can provide a uniform interface, so that the details of the

memory layout are transparent, but we must be able to address left and right children of a

node with arithmetic operations. Specifically, suppose node has zero, one, or two children.

If a node has two children, we store the left child contiguous to the right in memory. This

organization works well for SIMD addressing as we can use a simple arithmetic operation

to address the left and right children of a node. We require all T (n) expressions return a 0

to branch to the left child and a −1 to branch right. Thus, for a given node n, if the ns field

stores the location of the left child, the next node to visit is ns − T (n). In effect, this turns

the addressing of children from a control dependence into a data dependence.

27

Formalizing this, we can put our approach together as an general method (Algorithm 1).

Algorithm 1 Interpreter (byte_codes, task_queue)

1: result = 0

2: ⊲ Initialize task_queue by adding root level tasks

3: task_queue = Initialize(roots)

4: for n ∈ task_queue by SIMD-Width do

5: ⊲ Process traversal operations in SIMD

6: ns = T (bytecodes, n)

7: ⊲ Identify finished traversals

8: isLeaf = findIsLeaf(ns)

9: ⊲ Strip out finished traversals

10: ns = streamcompact(ns,isLeaf)

11: task_queue.push_back(ns)

12: ⊲ Process W operations according to isLeaf
13: result = W(bytecodes, isLeaf)

14: end for

15: return result

Besides the solutions to the two key problems we listed earlier, there are a couple of

additional issues that we addressed in this algorithm. In some applications, it is necessary to

dynamically fork, or start, new fine-grained tasks at a particular step. This operation needs

to be (i) efficient and (ii) parallelizable in SIMD. For example, in our regular expression

engine, we create a new fine-grained task whenever we traverse an ǫ node in a NFA. To fork

a task, we introduce a fork instruction that starts a child fine-grained task at the location of

its left child and continues the parent task at the location of the right child.

Further, because not all tasks finish at the same time, we need to remove tasks from

processing when they reach a leaf node. Like above, removing tasks must be efficient

and not require complicated control-flow. To efficiently remove tasks from processing, we

use a data parallel technique called stream compaction [18]. We discuss details of this

optimization in the next section.

28

Bytecode Arg Type Description

match None W(n) Found a match; record position;

terminate task

nomatch None W(n) Found no match; terminate task

store float W(n) Store the arg part of current

bytecode to results

cmp char/float T (n) Advance PC according to the

comparison result

dot None T (n) Advance PC by 1 on any input; if

input is null, set PC to nomatch

jmp char T (n) Set PC to argument.

fork char T (n) Fork a thread: advance parent

PC by 1 and set child PC to arg.

Table 2.1: Bytecodes Supported by our Interpreter and their Semantics

2.2.2 A General Solution for Multiple Applications

SIMD parallelization of each individual application following the methodology we de-

scribed above can be extremely hard. The programmers need to pay attention to a number

of details, and can easily write unoptimized and/or even incorrect code. To help develop-

ment of applications, we have developed an intermediate language and a run-time scheduler

or interpreter.

Our solution can be viewed as a virtual machine, where instructions from an intermedi-

ate language or bytecodes are executed on SIMD units. The bytecodes we currently support

are listed in Table 2.1. Each bytecode is one of the two types: T (n) and W(n), represent-

ing non-leaf and leaf operations, respectively. Any application that can be implemented

using this operation can be mapped to SIMD hardware by our interpreter.

To show the generality of our approach, we have implemented both the decision forest

and regular expression matching applications using our interpreter. Table 2.2 shows the

29

Nodes Type Bytecode Sequence

Internal cmp a;

Leaf store

Table 2.2: Random Forest Using the Bytecodes

Regular Expression Bytecode Sequence

C(a) cmp a;

C(.) dot;

e1e2 C(e1); C(e2);

e1|e2 fork L2; C(e1); jmp L3; L2: C(e2); L3: ...;

e? fork L2; C(e); L2: ...;

e∗ L1: fork L2; C(e); jmp L1; L2: ...;

e+ L1: C(e); fork L1;

Table 2.3: NFA Regex Using the Bytecode

translation from a tree structure to our Bytecodes from a subset of bytecodes we lised in

Table 2.1. For SIMD execution for NFA regular expressions, the specific method we use

is along the lines of Cox’s NFA engine [24], which in turn is based on Thompson’s work

[129]. This approach has an asymptotic complexity of O(nm) where n is the number of

fine-grained tasks and m is the size of the input string. This is far better than a naive NFA

interpreter, which can at worst run in O(n2). Table 2.3 shows how the implementation

handles different cases, using the bytecode from Table 2.1.

Now, returning to how our interpreter works, we summarize the sequential and SIMD

implementations of our virtual machine in Algorithms 2 and 3, respectively. Algorithm 2

interprets the bytecodes of all trees/graphs level by level sequentially. In each level, it

fetches bytecodes indexed by the task queue and processes either a T (n) operation or a

30

Algorithm 2 SeqInterpreter (byte_codes, input)

1: ⊲ Initialize the result accumulator and task queue

2: result = 0 {*Accumulator for results*}

3: vector<> clist = Initialize(roots) {*Current list of PCs*}

4: while input ! = NULL do

5: ⊲ If necessary, advance the input pointer

6: input + = AppShift

7: vector<> nlist = Initialize(NULL) {*Next list of PCs*}

8: while (!clist.empty()) do

9: ⊲ Get the bytecode indexed by clist

10: pc = clist.pop_back() {*Pop a PC to execute*}

11: op = byte_codes[pc]

12: ⊲ Process T (n) and W(n) operations

13: if op.type == Bytecode :: cmp then

14: nextPC = cmp(input, op.arg)

15: nlist.push_back(nextPC)

16: else if op.type == Bytecode :: dot then

17: nlist.push_back(pc + 1)

18: else if op.type == Bytecode :: jmp then

19: clist.push_back(op.arg)

20: else if op.type == Bytecode :: fork then

21: clist.push_back(pc + 1)

22: clist.push_back(op.arg)

23: else if op.type == Bytecode :: match then

24: result += 1

25: else if op.type == Bytecode :: nomatch then

26: result += 0

27: else if op.type == Bytecode :: store then

28: result += op.arg
29: ⊲ Jump to return statement

30: end if

31: end while

32: swap(clist, nlist)
33: end while

34: return result

31

W(n) operation for each tree/graph according to the type of the bytecode. Considering a

more general situation that different portions of input may be required for different byte-

codes dynamically, and the input pointer may be advanced as line 6 of Algorithm 2, such as

Regular Expression application, we maintain two task queues (lists), i.e. clist and nlist, in

which, clist is to handle the current portion of input, and nlist is to handle the next portion.

Especially for applications like Random Forest, the required input index is pre-decided by

bytecodes, and we do not need to move the input pointer, so clist and nlist can be simply

merged as one task queue. After each iteration, we update either clist or nlist according

to the bytecodes, especially, T (n) operations generate either one or two (task expansion)

new tasks, and W(n) operations generate zero tasks.

The SIMD interpreter described in Algorithm 3 is a SIMD parallel version of Algo-

rithms 2, and a more detailed implementation of the overall method introduced in Algo-

rithm 1. The basic logic of the SIMD execution part (line 14 to line 40) is as follows.

We fetch multiple bytecodes indexed by the task queue elements according to the width

of SIMD lanes, and then load identical parts of multiple bytecodes into the same SIMD

register, such as highBits part identifying the type of bytecodes, and args part storing the

address of next PC or output value. We next calculate various flags from types of bytecodes

according to the highest bits, to be able to mask invalid results. Finally, we process both

T (n) and W(n) operations for all SIMD tasks, and strip out the invalid results by the byte-

code type flags calculated before. In the last stage, a stream compaction operation is used

to remove the finished tasks, and, thus, to compact the task queues.

32

Algorithm 3 SIMDInterpreter (byte_codes, input)
1: ⊲ Initialize the result accumulator and task queue

2: __m128 results = _mm_setzero_ps()

3: results_index = 0

4: clist[] = Initialize(roots)

5: clist_index = Initialize(roots)

6: while (input ! = NULL) do

7: input += AppShift

8: nlist[] = Initialize(NULL)

9: nlist_index = 0

10: while (clist_index > 0) do

11: ⊲ Copy clist for task creations

12: tmplist = Initialize(clist)
13: tmplist_index = clist
14: for (i = 0; i < clist_length; i += SIMDWidth) do

15: ⊲ Get bytecodes indexed by clist in parallel

16: __m128i PCIndexes = SIMDLoadPCIndexes(clist, i)
17: __m128i ops = SIMDLoadCodes(byte_codes, PCIndexes)

18: ⊲ Get different parts of bytecodes parallel

19: __m128i args = SIMDLoadArgs(ops) {*Args part*}

20: __m128i highBits = SIMDLoadHiBits(ops){*High bits*}

21: ⊲ Decide types of ops in current SIMD lane by High bits

22: __m128i isDot = SIMDcmp(ops, _mm_set1_epix(1))

23: __m128i isJmp = SIMDcmp(highBits, jmpF lag)

24: __m128i isFork = SIMDcmp(highBits, forkF lag)

25: __m128i isMatch = SIMDcmp(ops, _mm_setzero_si128())

26: __m128i isStore = SIMDcmp(highBits, storeF lag)

27: ⊲ Process T (n) operations and prepare new task queues

28: ⊲ 1. Execute the compare operation

29: __m128i cmpResults = SIMDcmp(input, args)

30: ⊲ 2. Get addresses of nextPCs by types of operations

31: __m128i address = SIMDcmp(highBits, ops)

32: ⊲ 3. Mask out the invalid nextPCs by isFork and isJmp

33: __m128i nextAddress = SIMDcmp(isFork, isJmp, address)

34: ⊲ 4. Strip out finished nlist tasks, store rests to the proper position, advance nlist_index

35: nlist_index += streamCompaction(cmpResults, isDot, nlist, nlist_index)

36: ⊲ 5. Similar operation on tmplist

37: tmplist_index += streamCompaction(isJmp, isFork, nextAddress, tmplist,
tmplist_index)

38: ⊲ Process W(n) operations in parallel

39: results_index += streamCompaction(isMatch/isStore, results, results_index)

40: end for

41: swap(tmplist, clist)
42: clist_index = tmplist_index
43: end while

44: swap(clist, nlist)
45: clist_index = nlist_index
46: end while

47: return results

33

2.3 Optimizations for Execution Efficiency

We now describe several optimizations that turn out to be critical for achieving efficient

execution.

2.3.1 Light-Weight Stream Compaction

shuffle

R = [a2, b2, d2, 0]

R = [a2, b2, 0, d2]

get next buffer

TQ = [a1, b1, c1, d1, e1, f1, g1, h1]

shuffle

R = [h2, 0, 0, 0]

R = [0, 0, 0, h2]

get next buffer

store

TQ = [a2, b2, d2, 0, e1, f1, g1, h1]

store

TQ = [a2, b2, d2, h2, 0, 0, 0, 0]

Evaluate first 4 Tasks

Iteration1:

Evaluate next 4 Tasks

Iteration 2:

Task Queue for Level-1 Evaluation

Task Queue for Level-2 Evaluation

Figure 2.2: An Example of Stream Compaction for SIMD Efficiency

When different SIMD units are processing paths of different length, stream compaction

is an important optimization to ensure SIMD efficiency. The basic idea is as follows. Sup-

pose, we start off by needing to process 16 tree traversals concurrently. If the SIMD width

is 4, processing the root level requires 4 iterations. Following that, suppose the list of nodes

to be processed next is stored in an array of length 16, with a value of 0 denoting that the

traversal is over. As an example, assuming that 5 traversals have been completed, whereas

34

the other 11 traversals are still active, a simple execution mechanism may require 4 itera-

tions to process these 11 traversals, as 4 consecutive values from the array are scheduled in

one iteration. A more advanced strategy might be to compact the non-zeroes in the array,

and use only 3 iterations to process the 11 non-zero entries. This is the idea of stream

compaction that has been implemented in our framework.

We now explain our implementation with the help of an example, shown in Figure 2.2.

In this example, at first we have 8 tasks in the initial task queue, and the SIMD lane width

allows processing 4 tasks concurrently. Tasks c1, e1, f1 and g1 are leaf nodes, and after the

first iteration of evaluation, we get one 0 in the corresponding position of c1. Without stream

compaction, a bubble task left in the SIMD lane undermines the utilization of parallelism.

So, we utilize a shuffle operation to move the completed bubble tasks to the end of the

SIMD lane, store the reordered tasks into the beginning position of the new task queue

(store_position initialized as 0), and change store_position to 3. A similar operation is

applied for the second iteration of evaluation, and the new generated tasks are stored into

store_position (3), and the new store_position is increased to 4. If our application does

not require task creation, we may use only one task queue to hold both the old and new

tasks, since the number of new generated tasks is always smaller than or equal to the old

ones, and it is impossible for the new generated tasks to overlap the unhandled old ones.

However, for an application that involves task creation, we need to use two task queues to

hold old tasks and new ones respectively, and we swap them at the end of the evaluation of

the same level of tasks.

Stream compaction can clearly improve the performance of our method by reducing

the number of SIMD evaluation iterations of deeper levels with finished bubble tasks. For

35

example, in Figure 2.2, without stream compaction, two iterations are required for level-

2 evaluation, while with it, only one iteration is needed. Moreover, an interesting aspect

of our implementation is that we can remove tasks from processing without complicated

control flow (line 10 in Algorithm 1). Thus, we maintain parallel efficiency with only a

small scheduling overhead.

2.3.2 Reducing Memory Latency with Intelligent Data Layouts

Effective utilization of fine-grained SIMD parallelism requires that the application not

be memory-bound. The naive implementation of the two applications described earlier, as

well as other pointer-based applications, can be easily limited by the latency of the memory

subsystem. For example, if every node of a tree or a graph is allocated using a library like

malloc, there is no guarantee of spatial (or temporal) reuse. To address this problem, we

introduce several optimized layouts.

Depth First and Breadth First: A Depth First or Breadth First layout linearizes nodes

of a tree based on the order they are visited in a depth first or breadth first traversal (e.g.

DF or BF in Figure 3.1). However, it turns out that these layouts are not particularly

helpful for improving SIMD performance. To illustrate this, we use the notion of loading

distance. Loading distance gives an intuition as to the amount of data locality among a

group of parallel tasks. Specifically, the loading distance is the average distance between

the memory locations accessed at the same time, by concurrent threads. Clearly, as the

loading distance increases, the possibility of benefiting from spatial reuse or prefetching

is reduced. In DF or BF, the average loading distance between any two neighboring lanes

is the number of nodes in the first of the two trees. Moreover, on the average, the same

36

DF:

BF:

LL:

SLL:

DLL:

0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

0 1 2 3 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3 1 1

0 1 2 3 0 0 1 1 2 2 3 3 2 2 3 3 0 0 1 1 1 1

0 1 2 3 0 0 1 1 2 2 3 3 2 2 3 3 2 2 0 0 1 1

2 2

2 2

2 2

2 2

1 1

Tree 0 Tree 1 Tree 2 Tree 3

Tree 0 Tree 1 Tree 2 Tree 3

Tree 0 Tree 1 Tree 2 Tree 3

Root Level 1 Level 2 Level 3

Root Level 1 Level 2 Level 3

Root Level 1
Tree 0

Rest

Level 3

Left

0

0 0

0 0

1

1 1

1 1

1 1

2

2 2

2 2

3

3 3

3 3

2 2

Tree 1

Rest

Level 2

Left

Figure 2.3: Memory Layout with Different Schemes

applies to concurrent evaluation at any level. In the worst case, it implies that each of the

four concurrent accesses is a cache-miss.

Level by Level: The prior two layouts linearizes an entire tree before linearizing the next.

We next introduce a layout that interleaves nodes across trees, level by level (shown as LL

in Figure 3.1). We co-locate a node’s left and right children next to each other in memory.

This allows us to use a single pointer to reference both child nodes, thus reducing the size

to store the set of irregular data structures.

If we have a complete and balanced binary tree, the loading distance is 2l where l

corresponds to the level of the tree. If the depth of each tree is k, then the loading distance

varies between 1 and 2k. In comparison, the loading distance for the breadth first and depth

first layouts are nearly 2k+1. Thus, on the average, the loading distance is reduced, though

37

more so for the initial levels of the tree than the lower levels. We expect to benefit from

spatial locality or the regular strided access pattern (e.g. for prefetching) while traversing

through the initial levels of the trees.

Sorted Level by Level: While the LL scheme above has several advantages, it does not

utilize any possible bias in the traversal pattern. As stated above, there can be a greater

likelihood of visiting one child above the other, and if this bias is known in advance, the

more likely child can always be made the left child. The next layout we introduce is called

Sorted Level by Level (SLL), and exploits such a bias to decrease the loading distance by

a factor of up to two. An example of this layout is shown as the array SLL in Figure 3.1.

In this layout, we divide the nodes of each tree at each level as left children and right

children sets. We allocate the left children together, followed by all right children. By

this arrangement, we are expecting a better loading distance within each level when the

traversal has a bias.

Group 6

Group 4

Group 3

Group 2

Group 1

Group 5

Group 7

Figure 2.4: Depth First Level by Level Layout for a Single Tree

38

Depth First Level by Level: The idea of exploiting bias in the SLL scheme can be taken

even further through another scheme, which we refer to as the Depth-first Level by Level

or DLL scheme. An example of this layout is shown in Figure 3.1 as DLL. In this layout,

we also put left child and right child next to each other. So, for the root and the first levels,

it is the same as the LL and SLL layouts. However, from the second level onwards, we

focus on exploiting the left bias. At the second level, we allocate the left portions of each

tree next to each other, which is the same as SLL. However, next, we skip the right part of

the second level, and continue to linearize the left part of each tree at the third level. We

repeat this process until we finish the left-most parts of all the trees, and then we move to

the right part of the second level for each tree. In order to illustrate this idea more clearly,

we use another example, with a single but deeper tree (Figure 2.4). The numbers in nodes

represent the linearization order in memory, if we only have this single tree. The dotted

lines are used to organize the nodes into several groups. If we have multiple trees, we will

put the groups with the same id of each tree together. Within each group, the order of the

nodes is in the Depth-First manner, like the order we have used within this single tree.

2.3.3 Tiling of Trees

In our discussion of the last three layouts, we have assumed that the nodes from all the

trees are interleaved. Since only a small number of trees are processed at the same time, it

may be more reasonable to interleave nodes from a subset of trees. This is possible through

what we refer to as (tiling). If we choose a tile size of N , we interleave all nodes from

the first N trees using LL, SLL, or DLL approach, and then repeat the process for each

consecutive set of N trees. The tile size can be chosen to obtain the best performance. We

will study the impact of tile sizes on performance later.

39

2.4 Experimental Evaluation

In this section, we evaluate the efficacy of our SIMD interpreter on two applications

introduced in Section 2.1—Random Forest and Regular Expressions.

2.4.1 Methods

We had the following two goals in our experiments. First, we want to evaluate the

overall speedups obtained on two applications using our general interpretation approach.

Second, we want to quantify the benefits obtained from the different optimizations we

introduced in the previous section.

Our experiments are conducted on a machine with Intel Xeon E5420 CPU (2.5GHz

frequency) with Streaming SIMD Extension 4 (SSE-4). All applications are compiled with

the Intel ICC (Intel Parallel Composer 2011) compiler to fully utilize the SSE unit. For all

of our experiments, we run the program 30 times; speedup numbers include the mean and

95% confidence interval of the mean.

2.4.2 Overall Speedups from SIMD Parallelization

Random Forests

We compare our method of evaluation against the popular open source numerical anal-

ysis and data processing library, ALGLIB, and a random forest implementation that is used

in a large Microsoft product. While comparing against ALGLIB, we use four datasets from

UCI Machine Learning Repository[39]—Poker, Shuttle, Abalone, and Satellite. While

comparing against the Microsoft product, we use production data for that product. In both

datasets (UCI and Microsoft), we used the respective libraries to train random forests. We

40

DateSet #Tree #Ave_Node Path_Leng Ave_Path_Leng Bias

Poker 1280 249 4 - 13 7.3 0.51

Shuttle 1280 217 4 - 10 7.5 0.55

Abalone 1280 333 5 - 12 8.0 0.52

Satellite 1280 353 4 - 12 8.2 0.55

Microsoft 3372 239 1 - 45 11.34 0.8

Table 2.4: Summary of Datasets for Random Forest

poker shuttle abalone satellite microsoft

0

5

10

15

20

S
p

e
e

d
u

p
 o

ve
r

A
L

G
L

IB
 /

 M
ic

ro
s
ft Baseline

SEQ+DF

SSE+SLL

SSE+LL

SSE+DLL

Figure 2.5: Speedup with Our Approach (over Baseline Implementations) - Random Forest

then transform those trees into our SIMD implementation. Table 3.2 provides a set of

descriptive information about the forests we built from these datasets.

The random forests created from the Poker and Abalone dataset result in traversals

without any significant bias, those from Shuttle and Satellite have a slight left bias, while

the Microsoft dataset has a severe left bias. Lastly, the length of the paths from roots to leaf

nodes varies considerably for all datasets (i.e. the trees are not balanced).

Using the SIMD interpreter described earlier, we traverse 4 trees in parallel (one for

each lane of the SIMD unit). In Figure 2.5, a bar gives the speedup (y-axis) of our approach

41

poker shuttle abalone satellite microsoft

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
p

e
e

d
u

p
 o

ve
r

s
e

q
u

e
n

ti
a

l

SLL

LL

DLL

Figure 2.6: SSE Speedups with Different Data Layouts - Random Forest

over ALGLIB and Microsoft, respectively for each of our five datasets. Each dataset has

five bars, one bar for each of random forest implementation. The baseline (darkest bar

per dataset) is the code that ships with ALGLIB or Microsoft, respectively. The SEQ+DF

bar refers to a sequential interpreter evaluated on a depth first layout of the random forest

nodes. The other three bars per dataset refer to the SIMD interpreter run on different data

layouts. We do not show the performance of SSE + Depth First and Breadth First versions,

as they quickly become memory bound and do not allow much benefit from SSE units.

From Figure 2.5, we can see that by our transformed dense layouts and SIMD opti-

mized interpreter, we can gain more than 10 times speedup over the baseline implementa-

tions on all 5 datasets. We include the SEQ+DF implementation because we are interested

in showing how much speedup we get from SIMD after linearization; on the UCI datasets

SIMD increases performance by a factor of 3, while on the Microsoft dataset SIMD in-

creases performance by a factor of more than 2.

To understand the performance impact of our SIMD interpreter we compare the run-

time of a sequential interpreter against a SIMD one, holding the layout constant in this

42

comparison. We show the results of this experiment in Figure 2.6. A bar on this graph

shows the speedup (y-axis) of our SIMD interpreter over the sequential interpreter on the

same layout (SLL, LL, and DLL) for each dataset (x-axis). The speedups from SIMD (with

4 SIMD lanes) range between 2 and 2.8.

Regular Expression Matching

We now investigate the performance of our SIMD interpreter on regular expression

matching. For this application, we use a simple level-by-level (LL) layout because the

graphs generated by our regular expressions small fit easily in L1 so memory optimizations

are not as important as in the random forests application.

We compare our approach to GNU grep, which is chosen for two reasons. First, like

our regular expression engine, it counts matches and matches regular expressions from the

POSIX Extended Regular Expression syntax. Second, GNU grep is known to be fast.6

We search the King James Bible for up to 10 different regular expressions. Each regular

expression follows the pattern .∗ab, where the characters a and b are unique for each regular

expression. To match N regular expressions, we combine them using the choice operator.

Note that because we can pack instructions into a byte, our SIMD interpreter can traverse

up to 16 graphs in parallel for this application.

Figure 2.7 shows the speedup of our approach. A bar on this graph (x,y) gives the

speedup over GNU grep (y), varying the number of regular expressions, or fine-grained

tasks, executed. GNU grep at 1.0 is the baseline. It is very fast for the first two regular

expressions, as it uses Boyer-Moore to perform a sub-linear search over the input string.

6In a recent post to the freebsd mailing list, entitled “Why GNU grep is Fast”, the author of GNU grep

describes why his implementation is fast; GNU grep uses the Boyer-Moore[98] algorithm for sub-linear

search. It also uses a DFA based graph traversal once it finds a position in the input string to match against

text.

43

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

of parallel regular expressions

S
p
e
e
d
u
p
 (

ti
m

e
 g

re
p
 /
 t
im

e
 X

) grep

sequential

simd

Figure 2.7: Speedup of the SIMD interpreter over GNU grep - Regular Expressions

However, after 3 or more regular expressions, GNU grep cannot use Boyer-Moore as

the resulting regular expression gets too complicated. After 3 parallel regular expressions,

the sequential interpreter is 1.7X faster than GNU grep. This is due to the regular level-

by-level access pattern of our interpreter. However, the speedup for the SIMD interpreter

linearly increases as we add fine-grained tasks. The SIMD interpreter is anywhere from 3X

to 5X faster when searching for three or more parallel regular expressions.

2.4.3 Benefits from Optimizations

The speedups we reported above are made possible due to a number of optimizations

we have implemented. Using one of the two applications (random forest), we now quantify

the gains from each of the optimizations.

Improvements from Stream Compaction

Figure 2.8 shows the comparison of execution times among the SIMD code with and

without stream compaction, for each of the five datasets. The results show that for datasets

44

Poker Shuttle Abalone Satellite Microsoft
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

 W/OCompact Compact

Figure 2.8: Speedup Improvements from Stream Compaction - Random Forest Using 5

Datasets

with a smaller variation in path lengths, such as Poker and Shuttle, the stream compaction

method gives around 30% speedup over the unoptimized version. For the dataset that has

a larger variation in path lengths, i.e. the Microsoft dataset, stream compaction gives more

than 70% speedup.

To further study the reasons for these speedup, in Figure 2.9, we show the workload re-

duction by the stream compaction method, using two representative datasets, Poker and Mi-

crosoft. Specifically, the Poker represents the case with a smaller variation in path lengths,

whereas, Microsoft involves a much larger variation in path lengths. x-axis here is the eval-

uation level, and the y-axis is the cumulative number of SIMD evaluation iterations, i.e.,

the workload on the SIMD lanes. We can see that for Poker dataset, our stream compaction

method is able to reduce around 40% of the workload, with most gains seen from levels 8

through 12. For the Microsoft dataset, the benefits are seen even at earlier levels of the tree,

and overall, add up to 80% of the number of iterations needed. By comparing the workload

45

0 4 8 12 16 20 24 28 32 36 40 44 48

0

1x10
8

2x10
8

3x10
8

4x10
8

5x10
8

 Poker_W/O_Compact

 Poker_Compact

 Microsoft_W/O_Compact

 Microsoft_Compact

C
u
m

u
la

ti
v
e
 S

IM
D

 E
v
a
lu

a
ti
o
n
 I
te

ra
ti
o
n
s

Evaluation Levels

Figure 2.9: Reduction in Workload from Stream Compaction: Poker and Microsoft

Datasets

reduction (80% and 40%) and the execution time reduction (70% and 30%), it appears that

nearly a 10% scheduling overhead is introduced by our stream compaction method.

Detailed Examination of Benefits from Optimized Layouts

In this section, we further study the performance impact of our intelligent layouts. As

shown in Figure 2.6, by our intelligent layouts, we can gain 2.0-2.8 times speedup. How-

ever, the speedups from depth-first layout were only between 1.2 and 1.5. This shows that

our layouts provide better locality, and therefore, reduce the impact of memory latency.

In order to study the underlying reason as to how our intelligent layouts hide memory

latency, we conduct a profiling experiment. We create 1000 balanced, unbiased trees with

a varying number of nodes per tree (changing the depth of each tree from 1 up to 13).

Now, using different layouts, Figure 2.10 examines the percent of time the backend of the

microprocessor is stalled. We can see that the microprocessors are often stalled. The plot

has five lines, one for each of our layouts; a point on this graph (x,y) gives the amount of

46

2e+04 5e+04 2e+05 5e+05 2e+06 5e+06

50

55

60

65

70

75

size of treee (bytes)

p
e
rc

e
n
t
b
a
c
k
e
n
d
 s

ta
lle

d

BF

DF

LL

SLL

DLL

Figure 2.10: Percent of Time Backend is Stalled (Function of the Tree Size, for Different

Layouts)

time the backend is stalled (y) as we change the size of the tree (reported as the number of

bytes it takes in memory (x)). The DF and BF layouts spend about 70% of the time stalled

on memory references, irrespective of tree size, since these layouts lack spatial locality.

In contrast, even when the size of trees is larger than the L2 cache size on our processor

(8MB), the LL layout is able to keep the processor working about 40% of the time, since the

LL layout has predictable memory system pattern, and as a result, the hardware prefetchers

are able to predict memory access so that there are fewer L2 data cache misses.

In both benchmarks, the SLL and DLL layouts do not perform as well as the LL layout;

this is expected as SLL and DLL are optimized for biased layouts. So we redid these exper-

iments but with 80% left bias (not shown due to space). As a result we see SLL and DLL

are significantly better than LL (percent the backend is stalled drops to 54%). Especially,

with severe biased and imbalanced tree access, DLL shows much better performance than

both LL and SLL.

47

5 10 20 50 100 200 500 1000

1.0

1.2

1.4

1.6

1.8

2.0

size of tile

ru
n
ti
m

e
 (

n
o
rm

a
liz

e
d
 t

o
 m

in
)

SLL

LL

DLL

Figure 2.11: Benefits of Tiling (Poker Dataset)

If we compare the three level-by-level layouts in Figure 2.5 we see that in biased

datasets (i.e. Shuttle, Satellite, and Microsoft), SLL and DLL both show better performance

than the LL layout. The improvement in performance with SLL and DLL is consistent with

what we discussed above. The benefit of DLL is further confirmed by the results from the

Microsoft test case, where there is most imbalance and bias. The DLL version now has the

best performance, outperforming SLL by about 15%, and LL by nearly 25%. For the cases

with only a moderate bias, i.e. Shuttle and Satellite, SLL and DLL are both 5% better than

LL.

Impact of Tiling

In this section we evaluate the impact of the tile size on performance. A point (x,y) on

Figure 2.11 shows the execution time (y-axis), normalized to the minimum execution time

for all tile sizes, as we change the number of trees per tile (x-axis). We show three lines,

one line per level-by-level layout. We use only the Poker dataset as the results generalize

to other datasets. We can see that when there is no tiling (i.e. 1 tree per tile) or when the

48

8 16 32 64 128 256 512 1024

0

2000000

4000000

6000000

8000000

10000000

E
x
e
c
u
ti
o
n
 T

im
e
 (

u
s
e
c
)

Tiling Size (#Trees in Each Bag)

 0 1 2 3

 4 5 6

Figure 2.12: Execution Time with Changing Tree Levels and Tiling Sizes - SSE + DLL on

Poker

tile has only a small number of trees, the performance is up to a factor of 2.0 worse over

the cases when between 50 and 500 trees are put in a single bag or a tile.

In order to explain this behavior, we carefully observed the relationship between the

evaluation time for the different tree levels, as a function of tile sizes. We investigated the

run time as a function of tile size for the DLL layout on the Poker dataset (Figure 2.12).

A point on this graph (x,y) shows execution time in milliseconds (y-axis) as a function of

tile size (x-axis). Each line provides the amount of time required to execute all trees up to

a certain depth (inclusive running time). For example, the line corresponding to 0 implies

that we only evaluate the root nodes, 1 implies that we evaluate the root nodes and the

nodes in the first level, and so on.

At the lower levels, the performance improves slightly as we increase the number of

trees in the tile. This is because the set of memory addresses accessed follow a regular

pattern when we process the same level for a larger number of distinct trees. The same

49

regularity is not seen when we start processing other levels of the trees. Such regularity,

achieved with a larger tile size, helps achieve better prefetching, and hence, better perfor-

mance. At the initial levels of the tree traversal, there is no loss of performance as we

continue to increase the tile size, though there are not too many gains either after a size of

64.

With lower levels of the tree, and with DLL layout, there is also a reduction in perfor-

mance when the tile size becomes very large. This is because the possibility of exploit-

ing spatial locality across consecutive accesses to nodes of the same tree decreases with

increasing tile size. Recall from our earlier discussion that main advantage of DLL is ex-

ploiting such locality, for biased traversals on imbalanced trees. This advantage is lost with

a very large tile size. In comparison, there is hardly any change in performance for SLL

and LL layouts, as we continue to increase the tile size.

2.5 Related Work

Earlier work had used very sophisticated compiler analysis to automatically determine

parallelism in pointer-based programs [44]. More recently, the Galois project has exten-

sively considered parallelization of irregular applications [77, 93]. Their focus is coarse-

grained or MIMD parallelism, while our focus is SIMD execution.

There are also many efforts focusing on manual optimization of this class of applica-

tions on SIMD and vector units. Key recent efforts include the work by Sewall et al. [124]

and Kim et al. [70]. This work considers simultaneously processing multiple inputs on

a single data structure. We are focusing on processing one input point across multiple

pointer-based data structures, and focus on a more general interpretation system.

50

Execution of tree and graph traversal algorithms on SIMD (mostly GPU) has been a

popular topic in recent years. As GPGPUs were emerging, Harish and Narayannan [50]

designed a set of algorithms to map graph algorithms to the GPU architecture. More re-

cently, many others have worked on this problem with many efforts focusing on breadth-

first traversals [88, 1, 55, 96], which is a key kernel in many applications, and others fo-

cusing on single source shortest path or other interesting graph algorithms [29, 127]. Our

work is distinct in several ways. First, we consider traversals over a collection of trees,

which leads to a different set of challenges for memory locality. Second, our focus is on

performance portability, which hasn’t been the topic of prior studies.

More closely related to the class of applications we study in our work, tree forest appli-

cations like decision trees and suffix trees have also been studied on GPUs [125, 123, 130].

Especially, Sharp [125] has parallelized decision tree and forest traversal on GPUs. The

work is based on using a GPU’s texture memory and does not apply to the SSE units we

have considered. Moreover, none of them have carefully studied the effect of different

memory organizations architecture, i.e. they usually implement one, specific layout. In ad-

dition, this prior work does not use any form of analytical modeling to achieve performance

portability. Similarly, regular expression traversal has been implemented on GPUs [134]

and Cell processor [122]. Cascarano et al. [13] also designed an NFA based regular ex-

pression engine focusing on GPUs architecture, which has been further improved by Zu et

al. [146]. Our work is distinct in considering SSE parallelism and locality issues related to

modern uni-processors. Prior to the interest in SIMD or many-core execution, many efforts

focused on vectorization of pointer-based applications. Lars et al. [79] and Junichiro et

al. [69] vectorized tree traversals, but considered only a single tree.

51

Another class of irregular applications involve sparse matrices and/or indirection arrays.

SIMD and GPU parallelization and optimization of these applications has been studied

in recent years. For example, Kim and Han [72] propose a code generation method to

vectorize indirection of array-based loops and Zhang et al. [140] design a set of strategies

to optimize such irregular applications on the GPUs architecture.

Processing of MIMD tasks on SIMD machines has received considerable attention in

the past. For example, Hanxleden and Kennedy [48] developed loop transformation tech-

niques (focused on array based programs) to achieve this goal. Prins and Palmer [112]

had a similar focus, but targeted vectorization. Dietz and Cohen described a more general

scheme [31]. Blelloch et al.[8] and Hardwick[49] have focused on exploiting nested data

parallelism, similar in spirit to our use of data parallelism to handle irregular applications.

Our work has considered specific challenges arising for pointer-based traversals, which

have not been considered in the past. We have also developed optimizations that are criti-

cal for performance on today’s processors (e.g. locality, as more applications have become

memory bound over time).

2.6 Summary

This work shows how to extract SIMD parallelism from applications that traverse ir-

regular data structures such as trees and graphs. As SIMD execution units become more

common and capable in the near future, it becomes increasingly pressing to find general

techniques to exploit the power of this hardware in new and broader contexts. This work

describes one such approach, which is to traverse and compute on multiple, independent,

irregular data structures in parallel using a targeted virtual machine running on a SIMD

52

vector processor. By scheduling operations from the virtual machine and implementing a

number of optimizations, we have shown substantial speedups from two applications.

53

Chapter 3: A Portable Data Locality Optimization Engine to

Accelerate Irregular Data Traversals on Various SIMD Architectures

The second challenge of fine-grained parallel irregular data structures traversals on

SIMD architectures is to improve the memory locality. Our work not only considers the

memory locality of irregular traversals on a specific SIMD architecture, but also puts this

topic into the overall background of performance portability, and considers the automatic

ways to improve the memory locality across multiple SIMD architectures with distinct

memory hierarchies.

In this Chapter, we first comprehensively study the intelligent data layouts presented

in Chapter 2 from another perspective—inter-thread data locality and intra-thread data lo-

cality; and based on this study, we next propose a cache analysis model for automatically

selecting memory layout on various SIMD architectures according to their respective con-

figurations; and in the end, we evaluate our model by two irregular traversal applications

mentioned in Section 2.1.

3.1 Intelligent Data Layouts

A naive implementation of the two applications, as well as other pointer-based applica-

tions, can be easily limited by the latency of the memory subsystem. For example, if every

node of a tree or a graph is allocated using a library like malloc, there will likely be no

54

DF:

BF:

LL:

SLL:

CC:

0

0 0

0 0

1

1 1

1 1

1 1

2

2 2

2 2

3

3 3

3 3

0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

0 1 2 3 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3 1 1

0 1 2 3 0 0 1 1 2 2 3 3 0 0 2 2 1 1 3 3 1 1

0 1 2 3 0 0 0 1 2 2 2 3 0 1 1 1 2 3 3 3 2 1

2 2

2 2

2 2

2 2

2 2

2 1

Tree 0 Tree 1 Tree 2 Tree 3

Tree 0 Tree 1 Tree 2 Tree 3

Tree 0 Tree 1 Tree 2 Tree 3

Root Level 1 Level 2 Level 3

Root Level 1 Level 2 Level 3

Root
Level 1&2

Left

Level 1&2

Right
Rest

Figure 3.1: Memory Layout with Different Schemes

spatial reuse, in addition to the fact that there is no temporal reuse in the application. Thus,

improving memory efficiency is critical toward obtaining benefits from SIMD parallelize.

In this section we present a number of layouts that not only linearize pointer-based ir-

regular data structures into dense arrays, but improve spatial locality as well. The goals

here include co-locating nodes (in the same cache line) that are likely to be accessed con-

currently by different threads (inter-thread locality) and/or co-locating threads that are ac-

cessed in successive steps by the same thread (intra-thread spatial locality).

First, we note that linearization also compresses a data structure. For example, a simple

depth first or breadth first layout linearizes nodes of a tree based on the order they are visited

in a depth first or breadth first traversal (e.g. DF or BF in Figure 3.1). By linearizing in

55

DF or BF layout, we can reduce the size of the irregular data structures; instead of two

pointers, we only require a single pointer for each node in both linearized arrays.

However, both DF and BF linearize each tree independently of other trees and can-

not improve inter-thread locality. While discussing various layouts, we use the notion of

loading distance to measure inter-thread data locality. Specifically, the loading distance is

the average distance between memory locations accessed at the same time, by consecutive

threads. Clearly, as the loading distance increases, inter-thread data locality decreases. In

DF or BF, the average loading distance between any two neighboring lanes is the number

of nodes in the first of the two trees.

3.1.1 Improving Inter-Thread Locality

To improve inter-thread locality, we introduce a layout that interleaves nodes across

trees (level by level, shown as LL in Figure 3.1). To be concrete, we first lay out the root

nodes—the first tree’s root node is followed by the second tree’s root node, followed by the

third, and so on. Then, we move on the the next level. We co-locate a node’s left and right

children next to each other in memory. This allows us to use a single pointer to reference

both child nodes, thus reducing the size to store the set of irregular data structures.

Inter-thread locality improvements through the use of this method is easy to see. For

example, at the root level, nodes have large spatial locality; when we access the first tree’s

root node, we pull in the second tree’s root node. If we have a complete and balanced

binary tree, the loading distance is 2l where l corresponds to the depth of the tree. If the

depth of each tree is k, then the loading distance varies between 1 and 2k. In comparison,

the loading distance for the breadth first and depth first layouts are nearly 2k+1. Thus, on

56

Figure 3.2: Cache Conscious Layout for a Single Tree Structure

the average, the loading distance is reduced, though more so for the initial levels of the tree

than the lower levels.

While the LL scheme above has several advantages, it does not utilize any possible bias

in the traversal pattern. In many applications, there can be a greater likelihood of visiting

one child above the other, and if this bias is known in advance, the more likely child can

always be made the left child.

The next layout we introduce is called Sorted Level by Level (SLL), and exploits such

a bias to decrease the loading distance by a factor of up to two. An example of this layout

is shown as the array SLL in Figure 3.1. In this layout, we divide the nodes of each tree

at each level as left children and right children sets. We allocate the left children together,

followed by all right children. When a tree is biased, we realize a reduced loading distance

for each level of the tree.

57

3.1.2 Improving Intra-Thread Locality

Improve cache performance of pointer-traversing applications has been studied in the

context of single-threaded programs [21, 114], with the main outcome being a Cache Con-

scious (CC) data layout. In the CC layout, we partition a single tree into blocks according

to the size of L1 or L2 cache line. For example, in Figure 3.2, if the cache line size is 16

Bytes, and each tree node takes 4 Bytes, we can put 3 nodes together into a single block(e.g.

the dotted triangles). In each block, when the parent node is fetched into the cache, a cache

hit occurs whether the left or the right child is accessed next, leading to spatial reuse.

However, for multi-threaded or SIMD memory accesses, traditional CC layout does not

work well, as it completely ignores inter-thread spatial reuse. If we have multiple trees

organized with the CC layout, the loading distance for each level is still the entire tree. In

our work, we slightly modify the traditional CC layout by organizing all root nodes next

to each other by LL layout, since it is obvious to improve the memory performance on

SIMD architecture. We also apply SLL strategy to organize the cache conscious blocks

into separated left and right groups. We show our CC layout in Figure 3.1 and use this

version in our experiments.

3.1.3 Hybrid Layout

From our discussion above, we can observe that while processing of the earlier levels

of the tree gives opportunity for significant inter-thread spatial reuse, the loading distance

increases beyond the size of a cache line after a certain level, and only intra-thread lo-

cality can be exploited. Based on this observation, we design a hybrid layout schema to

combine the benefit of inter-thread data locality of SLL for top levels, and the benefit of

58

0 1 2 3 4 5 6 7 8

0.00E+000

2.00E+007

4.00E+007

6.00E+007

8.00E+007

1.00E+008

1.20E+008

 LL_L2

 SLL_L2

 LL_EXE

 SLL_EXE

Evaluation Levels

L
2
 C

a
c
h
e
 M

is
s
e
s

0

5000

10000

15000

20000

25000

30000

35000

40000

E
x
e
c
u
ti
o
n
 T

im
e
(u

s
e
c
)

Figure 3.3: Comparison of Last Level (L2) Cache Misses and Execution Time for LL and

SLL layouts

intra-thread data locality of CC layout for deeper levels. The hybrid layout is parameter-

ized by a switching parameter, which denotes the level at we shift from SLL layout to CC

layout.

To further validate our reasoning about relative performance of difference layouts and

the motivation behind the hybrid layout, we conducted several experiments. We take the

the B+ Tree application on Fermi architecture as an example to examine the cache behavior

of different layouts. The last level (L2) cache misses and real execution times of different

layouts are shown in Figure 3.3 and Figure 3.4. Profiling data is collected using CUDA

Visual Profiler 4.1. Solid lines show the L2 cache misses, and dotted lines show the actual

execution time of various versions. By comparing Figure 3.3 and Figure 3.4, we can see

that for top levels, the last level cache misses of LL and SLL layouts are lower than those

with the CC layout. However, they increase rapidly, and starting from a certain level, the

CC layout outperforms LL and SLL layouts. Further, we show the L2 cache misses and

59

0 1 2 3 4 5 6 7 8

0.00E+000

2.00E+007

4.00E+007

6.00E+007

8.00E+007

1.00E+008

1.20E+008

 CC_L2

 HYBRID2_L2

 CC_EXE

 HYBRID2_EXE

Evaluation Levels

L
2
 C

a
c
h
e
 M

is
s
e
s

0

5000

10000

15000

20000

25000

30000

35000

40000

 E
x
e
c
u
ti
o
n
 T

im
e
 (

u
s
e
c
)

Figure 3.4: Comparison of Last Level (L2) Cache Misses and Execution Time for CC and

HYBRID Layouts

execution time of the hybrid layout in Figure 3.4. We can see that the overall performance

of HYBRID layout is better than both SLL and CC layouts.

3.2 Cache Analysis Model for Automatic Selection of Layout

For a given application and architecture, selecting the best layout from among the ones

we introduced in the previous section is a challenging problem, yet automating the selection

is critical for performance portability. Application parameters like the number of bytes

needed for one node of the tree, possible bias in traversing one child of the tree over others,

and whether all trees are accessed with equal probability or not, can all impact the choice of

the layout to use. Similarly, architectural characteristics, like the size of a cache line, cache

miss penalties, and degree of SIMD parallelism can impact how one layout may result in

better performance over another.

In general, modeling computer systems and predicting performance of a given applica-

tion on a given architecture is very hard. However, by focusing on a restricted domain, we

60

0.00E+000 4.00E+007 8.00E+007 1.20E+008

0

5000

10000

15000

20000

25000

30000

35000

40000

E
x
e
c
u
ti
o
n
 T

im
e
 (

u
s
e
c
)

L2 Cache Misses

 LL_EXE

 SLL_EXE

 CC_EXE

 HYBRID2_EXE

Figure 3.5: Correlation between Last Level (L2) Cache Misses and Execution Time (Dif-

ferent Layouts)

can simplify the problem. For our target class of applications, the number of L2 (and L1)

cache misses is an effective predictor of execution time. Figure 3.5 shows the relationship

between L2 cache misses and execution times, with the use of different layouts. We can

see a very high correlation, even across different layouts. More detailed profiling data (not

included here) further shows that L1 cache misses can also play an important role. Based

on these observations, our model captures L1 and L2 cache misses.

To understand the key insight behind our model, suppose that the tree nodes are orga-

nized by the LL layout. As we traverse through a number of trees, for the root (zeroth)

level, one load from main memory is sufficient to bring in many trees (as many as fit in

a cache line). Thus, the loading efficiency is 1. For the first level of the tree, we will use

only 50% of the elements we have loaded, i.e. the loading efficiency is 1/2. Similarly, for

the second level, the efficiency is 1/4. If only 4 tree nodes can be stored in one cache line,

61

Param Type Explanation Value

N App No. of Levels of Each Tree B+ Tree N = 9
B App # of trees to evaluate 32

T1 Arch L1 cache access latency Assume 1 clock cycle

T2 Arch L2 cache access latency (L1 cache miss penalty) Assume T2 = 4T1

TM Arch Memory access latency (L2 cache miss penalty) Assume TM = 8T1

L Both L1 and L2 cache line size, in # of tree nodes; Node_size = 8 Bytes, GPU: L

= 128/8 = 16, SSE: L = 64/8
= 8

G Both In CC layout, the # of levels of nodes can be held

by one cache block. G = log
2
L

GPU: G = log
2
16 = 4, SSE: G =

log
2
8 = 3

x User Switch Level, i.e., from this level, we start to use

the CC layout

Table 3.1: Model Parameters

the loading efficiency remains 1/4 for subsequent levels. However, a different choice of

layout, any bias (e.g. to left or right children), can all complicate the calculations of cache

misses.

3.2.1 Parameters and Assumptions

Parameters: The parameters used in this model are explained in Table 3.1. The GPU here

implies Fermi, the Tesla-10 series architecture which does not have L1 or L2 cache will be

explained separately later. L is the cache line size in terms of the number of tree nodes, and

we load L nodes into L1/L2 cache in each access. G is a parameter used for the CC layout.

Recall that in the CC layout, we partition a single tree into blocks with L nodes per block

in a triangular fashion. G, which is also log2 L, indicates the number of levels of nodes that

fit in each block. For example, if L = 16, we group G = log2 (16) = 4 levels of nodes

into a block. The parameter G has another significance for the LL layout. Considering root

62

as the level 0, G is the level at which the loading efficiency decreases to 1/L, and cannot

reduce any further.

Assumptions: All data is in main memory initially and both L1 and L2 cache are empty.

The tree data is too big to fit into either L1 or L2 cache, or even a combination of shared

memory (on GPUs) and the cache. There is no temporal reuse while executing application

once. We also assume that the tree is perfectly balanced. Furthermore, the detailed calcula-

tions assume a binary tree, though only a trivial modification is needed to capture a general

k-ary tree.

Initially, we focus on the hybrid layout, i.e. we use either the LL or SLL layouts to

exploit inter-thread data locality for upper levels of the tree, and use CC layout to explore

intra-thread data locality for the lower levels, switching at level x. Assuming that there is

no bias in accessing left/right child and all trees are accessed with the same probability, our

objective will be to find the proper switch level, x.

3.2.2 Basic Model for Balanced Accesses

Our first observation is that while using the hybrid layout with LL at initial levels, the

switch to the CC layout must be made latest by the level G. This is because there will not

be any spatial reuse with LL layout level G onward, i.e. only one node from a cache line

will be read.

The memory access times for processing B trees, as a function of the switch level x, is:

T (x) = (T1 + T2 + TM) ×
B

L
× (2x − 1) + [T1 × (N − x) + ⌈

(N − x)

G
⌉ × (T2 + TM)] × B (3.1)

The two terms above capture the memory access times for up to the level x − 1 and

levels x through N , respectively. For the part of the trees that are organized using LL

63

layout, we have a total of 2x − 1 nodes for each tree, or B × (2x − 1) nodes for B trees

we are processing, which correspond to B/L × (2x − 1) cache lines. While using the CC

layout, recall that G levels fit in one cache line, which means that there is a G times reuse

of a single cache line. Thus, the number of cache misses for processing the last N − x

levels is ⌈ (N−x)
G

⌉.

In order to get the value of x where this term is minimized, we take a derivative, result-

ing in

T ′(x) = (T1 + T2 + TM) ×
2x ln 2 × B

L
− [T1 +

1

G
× (T2 + TM)] × B (3.2)

For T ′(x) in Equation (3.2) to be zero, we need

x = log2

L(T1 + 1

G
× (T2 + TM))

ln 2 × (T1 + T2 + TM)
(3.3)

Using SLL for Upper Levels We now show how the analysis above can be extended to

the SLL layout. Recall that in SLL layout, we store the left and right parts of the trees

separately. Thus, depending upon the traversal, it may be possible to better exploit inter-

thread data locality for more levels. Our model formally captures this through a deferring

factor, which we empirically determine in an architecture-independent fashion. Using λ

to denote such an empirically determined deferring factor, we modify the execution time

expression for LL as follows:

T (x) = (T1 + T2 + TM) ×
B

L
× (2x−λ − 1 + λ) + [T1 × (N − x) + ⌈

(N − x)

G
⌉ × (T2 + TM)] × B

(3.4)

Similarly, by taking the derivative of T in terms of x, and checking when it becomes

zero, we have

64

x = log
2

L(T1 + 1

G
× (T2 + TM))

ln 2 × (T1 + T2 + TM)
+ λ (3.5)

Equation (3.5) shows λ also affects the split level. By analysis of performance with

datasets that have bias, we have found that λ = 1 is quite effective so we use this value in

all of our experiments.

3.2.3 Capturing Biased Accesses

In many cases, probability of accessing different children of any node is different. With-

out loss of generality, we assume that the child that is more likely to be accessed is orga-

nized to the left.

We introduce a bias metric β to indicate the percentage of inputs falling into the left

most path of all trees. Then, if T1(x) (defined shortly), is the time spent when an input

involves all left-most paths and if T2(x) is the time spent for all other inputs, we have

T (x) = T2(x) × (1 − β) + T1(x) × β (3.6)

T2 can be calculated using Equation (3.4). For calculating T1, we perform the fol-

lowing analysis. If all queries fall into the left most path of each tree, the SLL layout is

preferred and then the loading time of a bag of trees is:

T (x) = (T1 + T2 + TM) ×
B

L
× (1 + 2(x − 1)) + [T1 × (N − x) + ⌈

(N − x)

G
⌉ × (T2 + TM)] × B

(3.7)

An analysis of the above expression shows that when x = N , T1(x) is the minimum.

We choose x to find the minimum value, where the weighted sum of T1(x) and T2(x) is

65

minimized. Intuitively, we can see if there is more bias, we can better exploit inter thread

locality. Thus, either a SLL layout or a hybrid layout with SLL at the top several levels is

optimal.

β is an architecture independent parameter, which depends on the application, and more

particularly, the dataset. To obtain the value of β, we employed the following strategy.

First, we randomly sample 5% of the input data. We process these inputs and calculate the

probability of reaching each leaf node (denoted as Pi for the leaf node i). We then estimate

β as the sum of the probability of reaching the K left-most leaf nodes, i.e, β =
∑K

i=1 Pi.

3.2.4 Impact of Sparse Buckets Accesses

As we discussed previously, in an application like B+-Tree Forest, each tree can have

an imbalanced number of inputs in that tree’s bucket. This situation, which we refer to as

sparse buckets accesses, can change the relative performance if we use different layouts.

Let us revisit Equation (3.1) and see how to modify it to handle this particular situation.

If the probability of accessing any particular tree is high, each of the blocks at the upper

level still need to be loaded into memory. However, at the lower levels, when we are using

the CC layout, not all blocks will be loaded. Thus, we can simply apply a scaling factor θ,

θ < 1, to the second part of Equation (3.1). Analyzing when this expression is minimized,

we now get the value of x as log2
L(T1+

1
G
×(T2+TM))×θ

ln 2× (T1+T2+TM)
. Thus, it is preferable to focus on

intra-thread spatial reuse starting with even earlier levels.

To summarize, θ is an dataset dependent parameter, which we can estimate by randomly

sampling from said dataset.

66

3.2.5 Modeling a System Without L1/L2 Cache

Our discussion so far has assumed presence of an L1 and L2 cache. An architecture

like that of the Tesla 10-series GPU does not have L1 or L2 cache, though it does have

support for coalesced accesses, i.e. simultaneous access to consecutive memory locations

by different threads are faster than random accesses.

Our model can also be applied to such an architecture with small modifications. Par-

ticularly, we set G = 1, and L is used to show the coalesced access block size. By ap-

plying similar calculations to Equation (3.1) and Equation (3.2), we get T ′(x) = 0 when

x > log2 L (logL is the last level where it is possible to utilize coalesced accesses for

LL layout). This implies that we can only utilize inter-thread data locality for such an ar-

chitecture, and our hybrid layout does not provide any further benefits for deeper levels.

Furthermore, with SLL layout, it is possible to further exploit the inter-thread data locality

for a few additional levels.

3.3 Experimental Results

In this section we describe our experimental results. We had the following goals in our

experiments: 1) examining the speedups obtained using SIMD parallelism for our target

class of applications, 2) understanding the relative performance with different layouts, and

3) validating the analytical model we have developed.

Platforms We conduct our experiments on the following three machines: 1) C2050

GPU with the Fermi architecture, connected to an Intel Xeon E5630 CPU (2.53GHz fre-

quency), 2) Quadro FX 5800 GPU with the Tesla architecture, connected to Quad-Core

AMD Opteron(tm) Processor 2380 (2.49GHz frequency), and 3) Intel Xeon E5420 CPU

67

(2.5GHz frequency) with Streaming SIMD Extension 4 (SSE-4). Sequential and CUDA

codes are compiled by g++ and nvcc, respectively, with O3 optimizations, whereas SSE

codes are compiled with Intel ICC (Intel Parallel Composer 2011) compiler to fully utilize

the SSE unit. We run all programs for 30 times, and speedup numbers include the mean and

95% confidence interval of the mean. For CUDA versions, the execution time difference

across different runs is very small, and therefore, we omit the error bars.

Methods For the Random Forest application, we used trees and datasets from two dif-

ferent sources. The first is a popular open source numerical analysis and data processing

library, ALGLIB, with which we used four datasets distributed by the UCI Machine Learn-

ing Repository — Poker, Shuttle, Abalone, and Satellite. The second is an internal random

forest created for a large Microsoft product which has its own associated datasets. For the

B+-Tree application, our evaluation was based on the experiments reported in the litera-

ture [137]. Based on this study, we establish a tree forest with different degrees of left

bias input datasets: unbiased (50% bias), 62.5% bias, 75% bias and 87.5% bias. Table 3.2

summarizes the basic information of tree forests used for both our B+-Tree and Random

Forest applications.

For both Tesla 10 and Fermi architectures, we used the available shared memory as a

buffer to hold input features and evaluation task queues. For the Fermi architecture, we

used 48 KB shared memory (and thus, a 16 KB L1 cache), to hold both the evaluation

buffer and also some of the top level nodes of the trees.

Baselines In both applications, we use a sequential, pointer-based CPU implementation

as a baseline. We wrote our own sequential B+-tree baseline and in the Random Forest

68

DateSet #Tree #Ave_Node Path_Leng Ave_Path_Leng Bias

B+-Tree 3584 513 8 - 11 9.0 various

Poker 3584 249 4 - 10 7.3 0.51

Shuttle 3584 217 4 - 10 7.5 0.55

Abalone 3584 333 5 - 12 8.0 0.52

Satellite 3584 353 4 - 12 8.2 0.55

Microsoft 3372 239 1 - 45 11.34 0.8

Table 3.2: Characteristics of Datasets Used in Our Experiments

application, we use either the ALGLIB original sequential implementation or the the Mi-

crosoft sequential implementation. To focus on speedups obtained using SIMD parallelism,

we also created locality optimized sequential versions. This version uses a linearized lay-

out, with a depth-first traversal, and use of bagging or tiling to organize B trees together

into a single bag. This version is referred to as DF_Seq in our description. The value of B

that leads to the best performance was empirically determined and used in our sequential

version.

3.3.1 Speedups and Performance with Different Layouts

In this section we demonstrate the efficacy of our different layouts; in particular we

demonstrate that our layouts are able (i) significantly increase the performance of these

irregular applications and (ii) enable the use of SIMD architecture for this class of applica-

tion.

B+-Tree

We evaluated the B+-Tree application on both the Fermi GPU and the SSE architecture.

Results from two datasets, the unbiased traversal and the 87.5% are reported here. In

Figure 3.6, we show the speedups of different versions over the sequential baseline on

Fermi GPU architecture. We see that using SIMD execution we gain around 25X to 36X

69

Unbiased 87.5Biased Poker Shuttle Microsoft

0

10

20

30

40

50

60

70

80

90

S
p
e
e
d
u
p
s
 O

v
e
r

B
a
s
e
lin

e

 Baseline

 DF_Seq

 LL

 SLL

 CC

 HYBRID

Figure 3.6: B+-Tree (2 datasets) and Random Forest (3 datasets) on FERMI GPU:

Speedups of Different Versions Over Sequential Baselines

Unbiased 87.5Biased Poker Shuttle Microsoft

0

2

4

6

8

10

12

14

16

18

S
p
e
e
d
u
p
s
 f
ro

m
 S

IM
D

 P
a
ra

lle
lis

m

 LL

 SLL

 CC

 HYBRID

Figure 3.7: B+-Tree (2 datasets) and Random Forest (3 datasets) on FERMI GPU:

Speedups from SIMD Parallelization (Same Layout Used for Sequential Execution)

70

Unbiased 87.5Biased Poker Shuttle Microsoft

0

2

4

6

8

10

12

14

S
p
e
e
d
u
p
s
 O

v
e
r

B
a
s
e
lin

e

 Baseline

 DF_Seq

 LL

 SLL

 CC

 HYBRID

Figure 3.8: B+-Tree (2 datasets) and Random Forest (3 datasets) on SSE: Speedups of

Different Versions over Sequential Baselines

Unbiased 87.5Biased Poker Shuttle Microsoft

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p
s
 f
ro

m
 S

IM
D

 P
a
ra

lle
lis

m

 LL SLL

 CC HYBRID

Figure 3.9: B+-Tree (2 datasets) and Random Forest (3 datasets) on SSE: Speedups from

SIMD Parallelization on (Same Layout Used for Sequential Execution)

71

speedup over the sequential baseline for the unbiased traversal, and 15X to 29X speedup

for the biased traversal. In order to separate the speedup from GPU’s parallelism from

linearizion of the structures, in Figure 3.7, we show the speedup of CUDA versions over the

sequential version with the same layout. For unbiased traversal, the Fermi GPU architecture

enables 9X to 13X speedup, while for biased traversal, 6X to 11X speedups are seen.

Considering the irregular nature of these applications, we consider these speedups to be

substantial, and the use of GPUs toward accelerating this application is justified.

From Figure 3.6, we also see that SLL and HYBRID are better than LL and CC. For

unbiased traversal, HYBRID layout shows the best performance, since it allows benefits

from inter-thread spatial reuse at earlier levels, and intra-thread spatial reuse at later levels.

For biased traversal, SLL layout allows benefits from inter-thread reuse for a deeper levels

as well, and has the best speedups. It should all be noted that for the 87.5% bias case, the

switch level used is not optimized for bias, which cause the HYBRID layout to perform

worse. Overall, up to a factor 2X difference in performance can be seen from the choice of

layout from among the four layouts we have developed.

The same experiments were repeated on the SSE architecture, and the results are shown

in Figure 3.8 and Figure 3.9. Similar trends can be seen, and the only difference is that the

optimization of memory layouts brings relatively smaller benefits on SSE than on the Fermi

GPU. There are two reasons for this: 1) the SIMD lane width of SSE is much narrower,

i.e., only 4-way parallelism is possible, and thus, the data requirements in each cycle are

modest, 2) the modern CPU memory hierarchy is more advanced than GPU, with better

prefetching as well as prediction strategies, which make it possible to avoid some of the

cache misses.

72

Random Forest

We also conducted similar experiments on the ALGLIB and Microsoft Random Forests.

Due to the space limitation, we only show the results from two datasets for ALGLIB Ran-

dom Forests: Poker and Shuttle, as the trends from Abalone and Satellite almost exactly

match the trends for these two.

In Figure 3.6 and Figure 3.8, we show the speedups of different versions over the

baseline on GPU and SSE, whereas in Figure 3.7 and Figure 3.9, we show the speedup of

GPU and SSE versions over corresponding best sequential versions. The speedups are very

similar to those we obtained from B+-tree. One notable difference is that the Microsoft

Random Forest shows only 8X speedup from the GPU. This is because in the dataset used,

the input feature vector is very large (2648 float numbers), and shared memory cannot

be used in the same fashion as in the UCI datasets. Among different layouts, the best

performance is obtained from HYBRID for Poker and Shuttle, and SLL for Microsoft.

Considering that Poker and Shuttle almost unbiased and Microsoft has a significant bias,

these results are consistent with what we saw with the two datasets of B+-tree.

3.3.2 Model Validation

Our model is accurate and thus enables performance portability for this class of appli-

cation on SIMD hardware. In this section we demonstrate our model’s accuracy on a wide

variety of SIMD architectures. Our model, as described in the previous section, only cal-

culates the memory access times. For a more direct comparison with real execution times,

the predicted values were normalized to execution times by using linear regression with a

small number of sample values.

73

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

L
L

S
L
L

C
C

H
Y

B
R

ID L
L

S
L
L

C
C

H
Y

B
R

ID L
L

S
L
L

C
C

H
Y

B
R

ID

Fermi Tesla SSE

N
o

rm
a

li
z
e

d
 P

re
d

ic
te

d
 T

im
e

N
o

rm
a

il
iz

e
d

 E
x
e

c
u

ti
o

n
 T

im
e

Figure 3.10: Real and Predicted Execution Times with Different Layouts and Architectures:

B+ Tree Forest with Unbiased Traversal

Choosing Layouts on Different Architectures

Our analytical model is designed to support automatic optimization, with the goal of

performance portability across different architectures. Thus, to evaluate its effectiveness,

we first examine its ability to choose best layout for 2 different applications on three differ-

ent architectures. In Figure 3.10 and Figure 3.11, we compare observed and predicted ex-

ecution time with four different layouts on two GPU architectures — Fermi (Tesla C2050)

(with L1/L2 caches) and Tesla (Quadro FX5800) (without caches), and the SSE architec-

ture with a sophisticated cache hierarchy. The left and the right y-axes correspond to mea-

sured and model predicted execution times. The (solid) bars report measured performance,

whereas the dotted line shows the model predicted times.

Figure 3.10 reports results from the B+-Tree application, using a dataset where there

is no bias. We can see that for all three architectures, our model is able to predict the

layout that will result in the lowest execution time. Moreover, we can even predict the

74

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

L
L

S
L
L

C
C

H
Y

B
R

ID L
L

S
L
L

C
C

H
Y

B
R

ID L
L

S
L
L

C
C

H
Y

B
R

ID

Fermi Tesla SSE

N
o

rm
a

liz
e

d
 P

re
d

ic
te

d
 T

im
e

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Figure 3.11: Real and Predicted Execution Times with Different Layouts and Architectures:

Random Forest with Satellite Data set

relative execution times for the four layouts on all architectures. Particularly noteworthy

is that the relative performance trends are very different for Fermi and Tesla, yet, they can

be captured by our model. On Fermi architecture, the HYBRID layout results in the best

performance, around 35%, 25%, and 10% faster than LL, SLL, and CC, respectively. On

the Tesla architecture without cache hierarchy, SLL layout shows the best performance,

while CC shows the worst, since we cannot exploit any intra-thread locality here. The

trends on SSE are quite similar to those on Fermi, though the relative differences between

different layouts are much smaller. This is because of support for aggressive prefetching

and limited degree of parallelism, both of which reduce the performance impact due to

spatial reuse.

We can see that our model does not always predict the precise execution time. This is

because we are using a simple model, which just captures memory access times. Factors

related to degree of parallelism in the application are not captured. However, our simple

75

0 1 2 3 4 5 6 7 8

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

 LL

 CC

 LL_Predict

 CC_Predict

Evaluation Lelves

R
e
a
l
E

x
e
c
u
ti
o
n
 T

im
e
 (

u
s
e
c
)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

P
re

d
ic

te
d
 L

o
a
d
in

g
 T

im
e
 (

u
s
e
c
)

Figure 3.12: Comparing Real Execution and Model Predicted Times for Each Level of the

Tree: LL and CC Layouts, B+-Tree on FERMI GPU

model is able to achieve our goal of predicting the relative performance with different

layouts.

We repeat the same experiment on the Random Forest application, using the ALGLIB

library tree with the Satellite dataset from the UCI repository. The results are shown in

Figure 3.10, which show similar trends. Again, our model is able to predict which layout

will result in the best performance in each case.

To further examine the efficacy of the analytical model, we carefully studied how it pre-

dicts the evaluation time for different levels of trees. The results are shown in Figure 3.12.

The x-axis is the evaluation level of the tree, and the left and the right y-axes are the mea-

sured and the predicted times, respectively. Note that in all double-y-axis figures of this

section, the solid lines correspond to the left y-axis, and the dotted lines correspond to the

right y-axis. We have compared two contrasting layouts: LL and CC, For LL, both mea-

sured and the model predicted times show an exponential increased, followed by a linear

76

1 2 3 4 5 6 7 8

10000

15000

20000

25000

30000

35000

40000

45000

 Unbiased

 100Biased

 Unbiased_Predict

 100Biased_Predict

Switch Level

R
e
a
l
E

x
e
c
u
ti
o
n
 T

im
e
 (

u
s
e
c
)

10000

15000

20000

25000

30000

35000

40000

45000

P
re

d
ic

te
d
 L

o
a
d
in

g
 T

im
e
 (

u
s
e
c
)

Figure 3.13: Comparing Real and Predicted Execution Times with Different Bias Levels:

B+-Tree on FERMI GPU

behavior. The model predicted times follow the shape of the curve of the measured times,

even though there are differences in the absolute values. Again, with the CC layout, the

predicted execution time curve matches the shape of the curve of the measured execution

times, and both show stage-increasing behavior. Similarly, the level at which the CC starts

outperforming LL (level 4) can be correctly predicted by our model.

Handling Application Characteristics

Besides performance portability across different architectures, another goal of our ana-

lytical model is to be able to choose appropriate layout for applications that have different

characteristics. We now show how the model is able to predict performance when there can

be bias in traversal or sparse accesses.

An important factor that impacts the relative performance of different layouts is the bias

degree of the traversal in each tree. Particularly, SLL layout can be more effective when

77

1 2 3 4 5 6 7 8

10000

15000

20000

25000

30000

35000

40000

45000

 62.5Biased

 87.5Biased

 62.5Biased_Predict

 87.5Biased_Predict

Switch Level

R
e
a
l
E

x
e
c
u
ti
o
n
 T

im
e
 (

u
s
e
c
)

10000

15000

20000

25000

30000

35000

40000

45000

P
re

d
ic

te
d
 L

o
a
d
in

g
 T

im
e
 (

u
s
e
c
)

Figure 3.14: Comparing Real and Predicted Execution Times with Different Bias Levels:

B+-Tree on FERMI GPU

there is a bias, and similarly, in using the HYBRID layout, it helps to switch at a deeper

level when there is a bias. We now examine how our prediction model can help choose

the appropriate layout, reporting the results in Figure 3.13 and Figure 3.14, looking at

unbiased case and three different levels of bias. We consider the HYBRID layout, and

vary the switch level, i.e. the level at which we start using the CC layout. Again, we can

see that the shape of curves for the real and predicted times match well. The performance

obtained at the switch level predicted by the model is either the best, or very close to the

best performance observed experimentally.

Another important application factor is the sparsity level, i.e. the probability that any

given tree will not be accessed during one execution. We have again compared the observed

and predicted times. In Figure 3.15, we show the cases with sparsity levels varying from

0% to 75%. Again, we use the HYBRID layout and vary the switch level. Again, by

78

1 2 3 4 5 6 7 8

5000

10000

15000

20000

25000

30000

35000

40000

45000

 0 Miss

 25 Miss

 50 Miss

 75 Miss

 0 Miss_Predict

 25 Miss_Predict

 50 Miss_Predict

 75 Miss_Predict

Switch Level

R
e
a
l
E

x
e
c
u
ti
o
n
 T

im
e
 (

u
s
e
c
)

5000

10000

15000

20000

25000

30000

35000

40000

45000

P
re

d
ic

te
d
 L

o
a
d
in

g
 T

im
e
 (

u
s
e
c
)

Figure 3.15: Comparing Real and Predicted Execution Times with Sparse Accesses

comparing the measured and predicted times, we see that the corresponding curves match

very well, and the switch level leading to the best performance can be correctly predicted.

3.4 Related Work

This section compares our work with related research efforts from other groups.

3.4.1 Improving Data Locality of Irregular Data Structures

Improving memory locality of irregular data structures has also been studied in the

past. Lattner et al. [80] proposed an automatic pool allocation method to manage the data

structure layout in the heap to optimize the pointer intensive programs. Spek et al. [133,

132] developed a way to transform the recursive pointer-based data structure and related

loops to the array-based data structure and counted loop structure that can be optimized by

traditional methods.

79

There is significant research about linearization and reorganization of data and opera-

tions to reduce the cache misses or memory latency. Luk and Mowry [87] invented a Lin-

earization method somewhat similar to our linearization method to support data prefetch-

ing. Ding and Kennedy [32] proposed a set of algorithms, including locality grouping and

dynamic data packing, to improve the cache performance. Strout et al. [128] designed a

compile-time framework to compose run-time data and iteration reordering transformation.

Zhong et al. [144] proposed a structure splitting and array regrouping strategy based on the

concept of Whole Program Reference Affinity. Mannarswamy et al. [91] presented a Re-

gion Based Structure Layout transformation method to reorganize the linked list-based data

structures to increase the cache line utilization.

Chilimbi et al. [21] developed a set of cache conscious structures, and Rao and Ross [114]

proposed a cache conscious B-tree structure. This early work considered sequential (single

thread) execution, but does form the basis for the one of the layouts we will consider while

optimizing for SIMD execution. Kim et al. [70] have designed an architecture-sensitive

binary search tree for both CPUs and GPUs. They do not consider the processing of multi-

ple trees concurrently, and thus face a distinct set of data locality issues. In a recent effort,

Jo and Kulkarni [64, 65] design a tiling-like transformation to improve the performance

of irregular data structure traversal. Their primary focus is on temporal reuse, which is

complimentary to our work on spatial locality.

3.4.2 Exploring Inter-thread Data Locality in Multi-threaded Envi-

ronment and Cache Modeling

There have also been many efforts on exploiting inter-thread data locality in multi-

threaded environment. In this area, Meng et al. [94] have designed a symbiotic affinity

scheduling (SAS) algorithm to maximize the cache locality of the threads on the same

80

core, Che et al. [20] propose an API, Dymaxion, to help programmers to reorganize the

data to achieve better data locality in a heterogeneous environment, Zhang et al. [141]

propose a method to transform programs in a cache-sharing-aware manner to improve the

performance, whereas Jang et al. [61] provide a set of techniques to transform the data

according to different memory access patterns to improve the performance on both AMD

and NVIDIA GPUs. Considering performance fairness in multiprocessor environment,

Zhou et al. [145] design a mechanism to share the cache among concurrent applications.

Ding et al. [33] propose a runtime library, User Level Cache Control, for programmers to

explicitly manage and optimize the last level cache for data sets in multi-threaded programs.

More recently, Unkule et al. [131] present a software framework to analyze and restructure

the GPU kernels to explore inter-thread data locality. The distinct aspect of our work are: 1)

we are focusing on improving inter-thread spatial reuse across concurrent threads from the

same application, whereas most of the above work considers capacity and conflict misses

from different applications, and 2) our focus is on detailed analytical modeling of one

application with the goal of performance portability.

Cache behavior modeling and analysis is widely used as part of restructuring compilers

that focus on scientific (array-based) programs. Earlier work in this area includes those

from Porterfield [111] and McKinley [92]. More recently, Cascaval and Padua [14] pro-

posed a machine independent model to estimate cache misses during compile time based

on stack algorithms. Zhong et al. [144] developed a model based on Whole Program Ref-

erence Affinity. Our work is distinct in considering a different class of applications, and

combining intra-thread reuse with inter-thread reuse for SIMD.

81

3.5 Summary

Optimizing an application on any one particular architecture is a challenging task—

optimizing that application for several architectures is a daunting, if not impossible, task.

In other words, it is difficult for programmers to guarantee an application’s performance

portability.

For SIMD architectures, the memory hierarchy is often the bottleneck to peak perfor-

mance. In this work we introduce data layout optimizations for a common class of memory

bound applications designed to balance intra thread and inter thread spatial locality. Fur-

ther, to remove the burden on a programmer from deciding which data layout to choose for

which SIMD architecture, we develop an accurate model that enables performance porta-

bility for these applications, and extensively validate it across different applications and

architectures. Though our work has been in context of a specific class of applications,

the main underlying idea of analytically choosing and/or combining intra-thread and inter-

thread locality is broadly applicable, especially, as multi-core and many-core architectures

become more popular.

82

Chapter 4: Efficiently Parallelizing Irregular Applications on Xeon

Phi by a Programming System

As we mentioned before, Intel Xeon Phi is an emerging many-core coprocessor archi-

tecture providing us both MIMD and SIMD parallelism, while parallelizing applications

involving irregular memory access on such kind of architecture efficiently is still an open

problem.

In this Chapter, we present a programming system to address this problem by exploring

both MIMD and SIMD parallelism. Specially, we focus on applications involving irregu-

lar reduction communication patterns, such as Molecular Dynamics and Euler, in which,

indexed array access causes many challenges, such as non-continuous memory access, and

writing conflicts. Our framework leverages a novel runtime data reordering scheme to ad-

dress these challenges.

4.1 Overview of our Approach

This section presents some background information about irregular reduction applica-

tion, and provides an overview of our overall solution.

83

/*Indexed Array Accesses Molecular Dynamics*/

P1(m), P2(m), L(n)

for (t = 0; t < time; ++t) {

for (i = 0; i < n; ++i) {

d = P1(L(i)) P2(L(i));

force = power(d, -5) power(d, -6);

P1(L(i)) += force;

P2(L(i)) += -force;

}

}

/*Pointer-Chasing Accesses Random Forest*/

float Search(float features[]) {

float feature = features[this->featureIndex];

...

if (feature <= this->threshold)

return this->left->Search(features);

else

return this->right->Search(features);

}

Figure 4.1: The Code Examples for Two Classes of Irregular Applications

4.1.1 Irregular Reduction Application

A typical application involving irregular reduction communication pattern, Molecular

Dynamics, is shown in the left-hand side of Figure 4.1. In this example, the two arrays

P1 and P2 are not indexed directly by the iterator variables, i.e., they are not affine array

access. Different from the pointer-chasing irregularity in Random Forest as shown in the

right-hand side of Figure 4.1, the irregularity of this application is coming from the fact

that these indexes cannot be known during the compilation time, and are normally not

continuous values. Constraint by this kind of irregularity, both spatial and temporal locality

for such kind of applications is poor, even for uni-processor machines.

In irregular reduction applications, indexed array accesses commonly arise, to repre-

sent more complicated relationships between data, which are more efficient than pointers.

For example, in Molecular Dynamics applications in Figure 4.1, the indexed array stores

the edge information, and the in-directed reference indicates the relationship between the

points and edges, i.e., iterating on the edges to update on the information of associated

points. Another typical irregular reduction application is Euler [26], which is a Computa-

tional Fluid Dynamics application similar to Molecular Dynamics.

84

As we mentioned above, for these applications, the indexes cannot be obtained only

according to the compilation information as affine array access, while a run-time reorder

algorithm should be developed instead to improve their memory performance.

4.1.2 Challenges and Opportunities

There are two levels of parallelism that one can seek on the Xeon Phi: MIMD paral-

lelism supported by large number of hyper-threads, and SIMD parallelism provided by the

wide VPU. There are challenges associated with each of them, as well as opportunities to

exploit information from specific communication patterns.

MIMD Parallelization Issues

A Xeon Phi can be viewed as a SMP machine, in which all the cores not only share the

same memory address, but also a coherent cache space. Thus, the traditional MIMD paral-

lelization methods, like OpenMP, can also be applied with the support of the Intel compiler.

Yet, there are many opportunities for exploiting information about specific communication

patterns.

Particularly, applications with different communication patterns usually have different

requirements on task partitioning and scheduling. Specially, for irregular reductions, a

technique like the reduction space partitioning [56] can be used to avoid conflicts between

the threads. Moreover, dynamic, fine-grained, scheduling could achieve better performance

over static scheduling by achieving better load balance.

Communication pattern specific information can also help in other ways. Data reorga-

nization is one of the optimizations to support vectorization, but data reordering can also

provide better cache locality for irregular reductions. These optimizations are normally not

performed by a more general framework, such as an OpenMP implementation.

85

SIMD Parallelization Issues

In SIMD execution, one memory access operation can load (store) multiple data ele-

ments simultaneously from (to) the memory. However, there are strict restrictions on how

and when such operations can be applied.

Unaligned/Non-unit Stride Accesses: For using SIMD parallelism, the start of the read

or write memory address has to be 64 bytes aligned on Xeon Phi. But, it is very difficult

to satisfy this requirement for irregular reduction application. In addition, different SIMD

lanes can only access continuous memory address. Thus, accesses of elements from an

array of structures or data accessed through indirection arrays cannot exploit SIMD paral-

lelism directly.

Control Flow Dependencies: At any time, all the SIMD lanes have to execute the same

instructions on different data elements. However, in the different branches of an if-else

clause, different lanes may execute different instructions, which is not supported by SIMD.

This kind of control flow arises very commonly in generalized reduction and irregular re-

ductions.

Data Dependencies and Conflicts: When different SIMD lanes try to write to the same

location, the behavior is undefined, as there is no locking operation. In the case of both

generalized reductions and irregular reductions, such write conflicts arise. Thus, how to

solve the data dependencies and conflicts for SIMD effectively and efficiently is another

challenge.

4.2 API and Runtime Support on Xeon Phi

To parallelize irregular reduction applications on Xeon Phi, we design and implement

a set of APIs and a runtime support carefully described in Article [57]. As we mentioned

86

above, the runtime support focuses on two aspects, MIMD parallelization, and SIMD par-

allelization. In this section, we present a detailed example written in such kind of API, and

explain the basic idea of data reorganization, a key optimization, for irregular reduction

applications.

4.2.1 Sample Kernel

1 void kernel (int *edge[2], float *edgeData, float *velocity, float *update, int index)

{

2 //step 1 Load node data according to edge data

3 vint v_n0.load(edge[0]+index);

4 vint v_n1.load(edge[1]+index);

5

6 vfloat v_edgeData_0.load(edgeData, index, 4);

7 vfloat v_edgeData_1.load(edgeData+1, index, 4);

8 vfloat v_edgeData_2.load(edgeData+2, index, 4);

9

10 vfloat v_velocity_n0_0.load(velocity, n0, 4);

11 vfloat v_velocity_n0_1.load(velocity+1, n0, 4);

12 vfloat v_velocity_n0_2.load(velocity+2, n0, 4);

13

14 vfloat v_velocity_n1_0.load(velocity, n1, 4);

15 vfloat v_velocity_n1_1.load(velocity+1, n1, 4);

16 vfloat v_velocity_n1_2.load(velocity+2, n1, 4);

17 //step 2 Compute the force

18 vfloat v_a0 = (v_edgeData_0 * v_velocity_n0_0 + v_edgeData_1 * v_velocity_n0_1

+ v_edgeData_2 * v_velocity_n0_2) / 3.0;

19 vfloat v_a1 = (v_edgeData_0 * v_velocity_n1_0 + v_edgeData_1 * v_velocity_n1_1

+ v_edgeData_2 * v_velocity_n1_2) / 3.0;

20

21 vfloat v_r0 = v_a0 * v_velocity_n0_0 + v_a1 * v_velocity_n1_0 + v_edgeData_0;

22 vfloat v_r1 = v_a0 * v_velocity_n0_1 + v_a1 * v_velocity_n1_1 + v_edgeData_1;

23 vfloat v_r2 = v_a0 * v_velocity_n0_2 + v_a1 * v_velocity_n1_2 + v_edgeData_2;

24

25 //step 3 Reduction if the node is within current partition

26 mask m0 = (v_n0 >= v_part_low) && (v_n0 < v_part_high);

27 update.reduction(4, v_n0, 0, v_r0, m0);

28 update.reduction(4, v_n0, 1, v_r1, m0);

29 update.reduction(4, v_n0, 2, v_r2, m0);

30

31 mask m1 = (v_n1 >= v_part_low) && (v_n1 < v_part_high);

32 update.reduction(4, v_n1, 0, v_r0, m1);

33 update.reduction(4, v_n1, 1, v_r1, m1);

34 update.reduction(4, v_n1, 2, v_r2, m1);

35 }

In the sample kernel above, we show the code snippet of a classic irregular reduction

application, Euler. There are three steps in this application kernels. In step 1, we need

to load the nodes pairs according to the edges, which involves indirection array based ac-

cesses. In the original MIC SIMD intrinsics, it can only be implemented by the built-in

87

gather operations. With our proposed API, the load operation can also support indirect ac-

cesses by providing the index and the scale information. In the step 2, the vectorized force

computation with our API is almost the same to the original sequential one. Step 3 is the

irregular reduction stage, when we reduce (add operation) the computed force to the nodes

pair within the current partition to avoid duplicated updates. Step 3 involves two impor-

tant features of our API, involving handling of control flow and reduction, i.e., doing the

reduction if some conditions are satisfied. To support such kind of reduction, we provide

our own mask reduction function call as shown in the sample kernel above. In the mask

reduction functions, we need to resolve the write conflict issue, which is addressed by our

data reordering mechanism we will introduce in next section.

To summarize, in our API, the code with arithmetic operations is almost as same as the

original (serial) code. The reduction in our API is provided through a function interface,

which allows us to vectorize these codes, whereas most compile-time solutions fail to do

this. The most complicated part of our API is handling of control flow, where branches

are replaced by mask operations. However, we note that existing vectorizing compilers do

not handle control flow at all (as we will show through experimental results), and manual

vectorization in presence of control flow is very complicated (please see an example in

Figure 4.2).

4.2.2 Data Reorganization

SIMD operations on Xeon Phis (or any SSE-like instruction set) can only be applied if

there are continuous and aligned memory access. Many applications have non-unit stride

and unaligned or even random memory accesses. Such kind of accesses impede compiler

88

if(a < b) a + = b;

else a − = b;

(a) A Statement with Control Flow

__mm128i mask1 = _mm_cmplt_epi32(a, b);

__mm128i mask0 = _mm_andnot_si128(mask1,

_mm_set1_epi32(0xffffffff));

__mm128i res = _mm_and_si128(_mm_add_epi32(a, b), mask1);

__mm128i oldval = _mm_and_si128(a, mask0);

a = _mm_or_si128(res, oldval);

res = _mm_and_si128(_mm_sub_epi32(a, b), mask0);

oldval = _mm_and_si128(a, mask1);

a = _mm_or_si128(res, oldval);

(b) SIMD Parallel Code for Example in (a)

__mmask16 mask1 = _mm512_cmplt_epi32(a, b);

__mmask16 mask0 = _mm512_cmpge_epi32(a, b);

a = _mm512_mask_add_epi32(a, mask1, a, b);

a = _mm512_mask_sub_epi32(a, mask0, a, b);

(c) SIMD Code with Mask Type

Figure 4.2: Example with Control Flow (a) sequential code (b) SIMD code (c) SIMD code

with mask type

89

0

1 2

5 4
3

0 1

1 2

3 4

0 2

1 5

4 5

0 3

2 3

Assume SIMD Width = 4

Random Order

Step I

Increase

Data Locality

0 1

0 2

0 3

0 5

1 2

1 5

2 3

2 4

Sorted Order

Step II Explore

Regularity

0 1

1 2

2 3

3 4

0 3

0 5

4 5

Round-Robin Order

0 5

2 4

3 4

4 5

0 2

1 5

2 4

Regular Irregular

Step III

Resolve

Reduction Conflict

0 3

4 5

Final Order

0 2

1 5

2 4

Regular Irregular

0 1

1 2

2 3

3 4

0 5

Split into 2

SIMD groups

Figure 4.3: Irregular Reduction Edges Reorder

vectorization. In our framework, we exploit the knowledge about underlying communica-

tion patterns to reorganize the data and facilitate SIMD parallelization.

Irregular Reductions: In an irregular reduction kernel, indirect data references can cause

very random memory accesses. If we want to vectorize these operations, a large number

of gather and scatter operations must be invoked. There are many existing efforts trying

to solve or alleviate this problem from different perspectives. Kim and Han [72] design an

algorithm to replace unnecessary gather and scatter operations by scalar operations. Wu et

al. [136] try to resolve a very similar problem, coalesced memory access, within the context

of the GPU architecture. Focusing on inter-iteration parallelism on an irregular reduction

for a SSE-like instruction set, we address this problem by a novel computation (edges data)

reordering method, which we describe below.

90

Our method is explained with the help of an example shown in Figure 4.3. First, the

motivation for our method is as follows. The gather and scatter operations incur a very long

latency when the data locality is poor, because each gather and scatter operation works at

the unit of the entire cache line. For example, when the required data is split across multiple

cache lines, we need multiple gather operations to load them. So, the first objective of the

our data reorganization method is to reorder the edge data, and increase data locality. To

achieve this objective, based on the partitioning algorithm that is used for task partitioning

at the MIMD level, we further reorder the edge data according to their first nodes (Step I in

Figure 4.3). As a result, at least for one of the end-points of the edge, data is likely to be

in the same cache line.

The second objective is to replace gather and scatter operations by normal SIMD load

and store operations to the extent possible. To achieve this objective, we partition the

edges into regular partitions and irregular partitions, as explained below. First, we further

reorder the edges data (Step II in Figure 4.3), so that the edges are ordered in a round-robin

manner according to their first nodes, and we have a consecutive set of first node for the set

of edges that will be processed in one SIMD step (a regular partition). Now, clearly, given

a set of edges, we cannot ensure that we can simply reorganize them as a set of regular

partitions. A set of edges that will be processed in one SIMD step but whose first nodes

do not form a consecutive set is an irregular partition. Thus, we will likely have a set of

regular partitions and irregular partitions. After this, we can further apply AoS to SoA to

duplicate all the first nodes of edges in the regular partition. In such case, we can apply

normal SIMD load and store operations for the first nodes of edges in the regular partition,

and only apply gather and scatter operations for the remaining nodes.

91

The third objective is to resolve write conflicts within the same SIMD register for the

second nodes of edges in a regular partition and for all the nodes in an irregular partition.

Note that this issue arises for generalized reductions as well. The problem is that unless

we are careful, different SIMD lanes may update the same element of the SIMD register,

causing a race condition. A larger SIMD width increases this possibility, and moreover, in-

direct accesses can make it hard to avoid such situations. In order to resolve this problem,

we have two options: a) serialized reduction; and b) further data/computation reorder. For

serialized reduction, we provides a way to automatically serialize all the reduction opera-

tions to eliminate the possible conflicts. Alternatively, we can further reorder the elements

into blocks according to the SIMD width, even introducing bubble elements. For irregular

reductions, we can further reorder the edges (computation order) as shown in Step III of

Figure 4.3, by which, we can make sure there is no write conflict within the same SIMD

register.

4.3 Evaluation

In this section, we evaluate our framework using two irregular reduction applications.

The objectives of our experiments were: 1) Comparing the performance of applications

developed using framework, over hand-written parallel versions (using Pthreads), and eval-

uating the SIMD parallelization in our framework, over the ICC compiler generated SIMD

code, 2) Quantifying the overheads of our runtime framework, by comparing performance

against the hand-written SIMD code for SIMD parallelization, 3) Comparing the perfor-

mance of MIMD parallelization from our framework against OpenMP, another high-level

framework, and further evaluating the SIMD parallelization by our framework against what

is achieved by ICC compiler with OpenMP directives. All experiments were conducted on

92

a Xeon Phi SE10P card, which has 61 cores each running at 1.1 GHz, with four hyper-

threads per core, along with a 32 MB L2 cache and 8 GB GDDR5 memory. The compiler

that we used is Intel ICC compiler 13.1.0. All benchmarks are compiled with -O3 optimiza-

tion. Compiler vectorization is turned on and off by -vec and -no-vec options, respectively.

All experiments were running in the Native Model with the -mmic option.

4.3.1 Benchmarks

Molecular Dynamics (MD) is an irregular reduction kernel used to study the struc-

tural, equilibrium, and dynamic properties of molecules. The simulation iterates over all

the edges, and updates the attributes associate with the two end nodes. The small dataset

used in the experiments has 16K nodes and 2M edges, while the large one has 256K nodes

and 32M edges. Euler is another irregular reduction kernel based on Computational Fluid

Dynamics (CFD) that takes description of the connectivity of a mesh and calculates quan-

tities like velocities ate each mesh point. The small dataset used in our experiments has

182K nodes and 1.13M edges, while the large one has 1.4M nodes and 8.9M edges.

4.3.2 Speedups from Our Framework

Our first set of experiments focused on comparing the SIMD parallelization with our

framework against compiler generated SIMD code (auto-vectorization), and hand-written

SIMD code. Compiler SIMD parallelization was applied on Pthreads code, so as to also al-

low shared memory parallelization. Pthreads-based shared memory parallel versions used

similar style (and thus obtain similar performance) as the shared memory parallelization

supported by our framework, though the programmer effort is much smaller with our frame-

work. In Figure 4.4, we compared the best performance between the pthread versions with

and without compiler vectorization, and the vectorization versions with hand-coding and

93

!"#$%&'()## !"#$%&#)%*$

!
"
#$
%&
'(
)
$
$
*
"
)

+

+,-

.,+

.,-

/01
%$)
2&3
45
$6

/01
%$)
2&5
$6

789
:&
;<
8

789
:&
9)
3"
)#

/01
%$)
2&3
45
$6

/01
%$)
2&5
$6

789
:&
;<
8

789
:&
9)
3"
)#

!"#$%&'' !"#'&()*

!
"
#$
%
&
'
'
(
)
&

+

+,-

.,+

.,-

/,+

/,-

012
(*&
3#4
56
*7

012
(*&
3#6
*7

89!
"#
:;
9

89!
"#
!&
4<
&'

012
(*&
3#4
56
*7

012
(*&
3#6
*7

89!
"#
:;
9

89!
"#
!&
4<
&'

Figure 4.4: Speedup of Pthread without SIMD (Pthread-novec), Pthread with auto-

SIMD (Pthread-vec), MIC SIMD with our framework (SIMD-API), and hand-written

SIMD (SIMD-manual): Euler, and MD with small and large datasets each

94

our API, for small and large datasets described earlier. The performance, shown in Fig-

ure 4.4, is the one with the number of threads that leads to the best performance (which

maybe different across versions). The numbers reported are relative speedups, with base-

line of Pthreads version without vectorization.

For irregular reductions, the production compiler cannot vectorize a loop with indirection-

based memory access at all. In our framework, we use data reordering together with a re-

duction in the use of gather and scatter operations to vectorize such kind of loops, which

turns out to be effective when the datasets are large. We achieve 1.5 and 2.5 times speedup

over the pthread versions for Euler and MD, respectively. For small datasets, the perfor-

mance of the best SIMD-API version is comparable to the pthread versions. However, the

best configuration with SIMD-API involves fewer threads (60 instead of 244). In other

words, for the smaller datasets, enough parallelism is not available to exploit both MIMD

and SIMD features. Comparing to the best SIMD-manual versions, SIMD-API incurs

neglectable overheads.

4.3.3 Overall Scalability

In Figure 4.5, we compare the scalability of pthread-novec, pthread-vec,

SIMD-API, and SIMD-Manual with an increasing number of threads. Execution with a

single thread and no vectorization on Xeon Phi is used as the baseline, and thus, we are eval-

uating the combined benefits of shared memory parallelization (61 cores), hardware multi-

threading (4 threads per core) and SIMD units. The performance scales well for all the

versions. SIMD-API outperforms both pthread-vec and pthread-novec in most

cases, consistent with what we reported earlier. SIMD-API achieves better relative per-

formance when the number of threads is small. For instance, when the number of threads

95

!"#$%&'()*+%,-

!"#$%&'(+%,

./01(0&)2&3

./01(4!/
!
"
#$
%&
#'
%(
$
)*
+
,
$
$
-
"
,
*.
/
$
%*
.
0
$
*1
.
%$

2

32

422

432

56%$'-*7"89$%

4 : ; < 4= >: ;2 32 =4 =; 4:: 4:< :;; :3= >23

!"#$%&'()*+%,-

!"#$%&'(+%,

./01(0&)2&3

./01(4!/

!
"
#$
%
&'
(
)*
+
,
(
(
-
.
,
*/
0
(
&*
/
1
(
*2
/
&(

3

43

533

543

633

643

78&(%-*9.:;(&

5 6 < = 5> ?6 <3 43 >5 >< 566 56= 6<< 64> ?34

Figure 4.5: Scalability with Increasing Number of Threads: Pthread without vectoriza-

tion (Pthread-novec), Pthread with auto-vectorization (Pthread-vec), SIMD with

API (SIMD-API), and hand-written SIMD (SIMD-manual) with Euler, and MD (large

datasets) - Relative Speedups Over 1 Thread Execution on Xeon Phi with no Vectorization

96

is one, SIMD-API is 20 times better than the Pthreads-novec version. With small

datasets, as the number of threads increases, the vectorization advantage with SIMD-API

becomes restricted due to limited amount of overall work. The overall speedups obtained

range between 160 and 250, depending upon the application. Thus, we can see that our

framework is effective in allowing application developers to exploit the Xeon Phi chip.

4.3.4 Comparison with OpenMP

!"#$%&'(#) %*%+,-*%+ !"#$%&'$.(#) %*%+

-
"
#
#
/
0
"

1

2

3

4

50
6#7 %+ 50

6#7 %+

Figure 4.6: Benefits of MIMD+SIMD Execution in our Framework and MIMD-only exe-

cution

Our last set of experiments had two distinct goals. First, we wanted to examine how

SIMD parallelization with our framework compares against SIMD parallelization performed

by the ICC compiler with OpenMP directives. Second, because both OpenMP and the

MIMD API in our framework provide a high-level model for developing shared memory

applications, we wanted to examine if our framework offers any performance advantages,

possibly because it exploits the knowledge of the underlying communication patterns.

97

In Figure 4.6, we compared our MIMD parallel framework with and without SIMD

parallelization to the OpenMP MIMD parallelization with and without the compiler vec-

torization. Comparing MIMD+SIMD to OpenMP-vec, more than 3 and 6 times speedup is

achieved in Euler and MD respectively, due to the better SIMD parallelization and efficient

MIMD parallelism. Now, focusing just on MIMD parallelization, our parallel framework

still obtains better performance compared to OpenMP. Overall, combining both MIMD and

SIMD parallelization, our framework is better for both applications. As discussed through-

out this Chapter, these advantages come from a number of factors, e.g., our framework

can vectorize an irregular kernel with indirection-based memory accesses, while OpenMP

compiler cannot, and pattern-aware MIMD partitioning and scheduling can avoid locking

overheads.

4.4 Related Work

Intel SSE has been a part of the x86 since 1999, and there have been many efforts to

automatically accelerate various applications using these instructions. For vectorizing sten-

cils, memory alignment is a key problem, which was addressed by Eichenberger et al. [36]

and Nuzman et al. [103] with data reorganization methods. More Recently, Henretty et

al. [51] propose a system that involved improving data locality and utilizing short-vector

SIMD optimizations, and Kong et al. [76] designed a Polyhedral compiler to perform loop

transformation, optimization and vectorization for imperfectly nested loops.

Vectorizing irregular applications on SSE has also gained considerable interest in recent

years. Kim and Han [72] propose a compiler method to generate efficient SIMD code for

irregular kernels containing indirection based memory accesses. However, their work is

on Cell SPU, with much shorter SIMD unit compared to the Xeon Phi and their method

98

primarily focuses on intra-iteration vectorization. We focus on aggressive inter-iteration

parallelism, consistent with presence of wide SIMD lanes. There are also efforts on hand-

optimizing irregular applications on SSE and other vector units [124, 70].

Some of the GPU compilation efforts have a similar favor, because SIMT is closely

related to SIMD. This includes work on parallelizing stencil applications on GPUs [27, 95,

101, 54]. For irregular applications on GPU, the coalesced memory access problem has

also been addressed [136, 140]. However, because of the differences in the architectures

(e.g. lack of atomic stores), our data reorganization methods are different. Overall, as com-

pared to the existing work on SIMD compilation, the key distinctive aspects of our work

are: 1) handling branches in a general way, 2) exploiting features in the IMCI instruction

set, 3) using knowledge of communication patterns for runtime data reorganization, and

4) use of an overloaded function approach, which is unlike all previous efforts on SIMD

parallelization, and can simplify the compiler code generation in the future.

There are also many efforts to parallelize various applications (classes) on Xeon Phi,

which includes the work of Liu et al. [84] on Sparse Matrix-Vector Multiplication, Penny-

cook et al. [110] on parallelizing a Molecular Dynamic application, and Lu et al. [86] on

optimizing the MapReduce framework. We have, to the best of our knowledge, offered the

first general and end-to-end system for exploiting both MIMD and SIMD parallelism on

the Xeon Phis.

4.5 Summary

This work has presented and evaluated a framework for irregular reduction application

parallelization on the Xeon Phi coprocessors. Two distinct aspects of our work are 1)

use of the knowledge of underlying patterns to perform job partitioning and scheduling in

99

MIMD setting and data reorganization for SIMD parallelization, and 2) a very different

approach for SIMD code execution, based on the implementation of overloaded functions,

with runtime management of masks. Overall, we perform SIMD parallelization in presence

of control flow, irregular accesses, and reductions, unlike previous work with SSE-like

instruction sets. Moreover, our work can also be seen as providing a CUDA-like language

(and its implementation) for using SSE-like instruction sets.

100

Chapter 5: Automating and Optimizing Data Transfers for Many-core

Coprocessors

An important issue for using Xeon Phi as coprocessors is to transfer data between CPU

host and Xeon Phi efficiently. For bit-wise copyable data structures such as one dimen-

sional array, we can simply use some existing high level APIs, such as LEO (Language

Extension for Offload). However, for dynamic multi-dimensional arrays, and other irreg-

ular, multi-level pointer data structures, such as link lists, trees, and graphs, there is no

existing easy-programming solution with high performance.

This Chapter presents an automated framework that uses both compile-time and run-

time solutions to address this problem. Specially, our compile-time solutions are for dy-

namic multi-dimensional arrays, while our optimized runtime solution is for other more

complicated irregular data structures, such as linked list, trees, graphs, and so on.

5.1 Motivation and Problem Definition

As we stated previously, our target is the high-level APIs for exploiting architectures.

Table 5.1 summarizes these APIs, which allow the developer to mark code regions in the

application from which offloadable tasks can be generated by the compiler. These APIs are

all intended to improve developer productivity and simplify code maintenance, by hiding

101

offload synchronization data transfer data reuse

LEO #pragma offload <signal,wait> <in,out,inout> nocopy

OpenAcc #pragma acc kernels <async,wait> <copy,copyin,copyout> present

OpenHMPP #pragma hmpp codelet <asynchronous,synchronize> args[item].io=<in,out,inout> args[item].noupdate=true

OmpSs #pragma omp task <input,output,taskwait> <copy_in,copy_out> by default

OpenMPC #pragma cuda gpurun OpenMP <nowait> <c2gmemtr,g2cmemtr> <nog2cmemtr,noc2gmemtr>

Table 5.1: Key Directives in Common Directive-based Languages for Accelerator Pro-

gramming

many details of data transfers and data allocation on the accelerators. As a specific exam-

ple we consider LEO (Language Extension for Offload), which supports the coprocessor

offload interface (COI), and is the primary annotation language to be used on the Xeon Phi

systems. COI provides #pragma offload directive for marking offloadable code regions.

This is similar to OpenAcc’s #pragma acc kernels7. The compiler generates invocations

to runtime libraries that support data and computation offload. By default, execution on the

CPU is suspended when such a code region is encountered, continued on the coprocessor

and then resumed on the CPU after the offloaded code region has executed to comple-

tion. Special synchronization primitives (e.g., signal/wait) can be used for enabling

asynchronous offload (Table 5.1).

Our focus is on data transfers between the CPU and the accelerator. Even while us-

ing one of the high-level APIs, the developer has to orchestrate data transfers between

the CPU and coprocessor. This can be done using in/out/inout clauses for LEO or

copyin/copyout for OpenAcc, or similar constructs from other directive-based lan-

guages, as shown in Table 5.1. However, it turns out that there is still a substantial com-

plexity for the user when dynamically allocated multi-dimensional arrays or other data

structures based on multi-level pointers are involved.

7OpenACC: Directives for Accelerators. http://www.openacc-standard.org/

102

1: int *A, *B;

2: A = (int *) malloc(n ∗ sizeof(int));

3: B = (int *) malloc(n ∗ sizeof(int));

4: #pragma offload target(mic) in(B:length(n)) out(A:length(n))

5: {
6: #pragma omp parallel for private(i)

7: for (i = 0; i < n; ++i) {

8: A[i] = a * B[i];

9: ...

10: }

11:}
Figure 5.1: One-Dimensional Array Offload

Figure 5.1 and Figure 5.2 show examples for handling one-dimensional and multi-

dimensional arrays, respectively, with one of the high-level languages. In the case of a

single-dimensional array, only one contiguous memory region needs to be transferred. For

multi-dimensional arrays, on the other hand, numerous array components scattered over

memory may have to be handled. Note that this complexity arises because of the way

that C-versions of most existing scientific applications today allocate memory. Since the

goal of the programmer is to simplify array accesses for main computational loops in the

code, an N dimensional array is allocated by allocating one-dimensional arrays inside an

N − 1 dimensional loop (similar to the example in Figure 5.2). In some other applica-

tions, including the Multi-Grid (MG) benchmark from NAS Parallel suite, arrays are not

rectangular, which further adds to the complexity.

Recall that in Section 1, we had stated four requirements while addressing the problem,

which included needs for fully utilizing DMA, and reducing memory allocation overheads.

To motivate their impact, we present certain experimental observations. Consider the code

103

1: #define ALLOC alloc_if(1) free_if(0) //allocate data

2: #define REUSE alloc_if(0) free_if(0) //keep data persistent

3: #define FREE alloc_if(0) free_if(1) //free data

4: int **A, **B;

5: int size[m]; ...

6: /* allocate pointers on CPU */

7: A = (int **) malloc(m ∗ sizeof(int *));

8: B = (int **) malloc(m ∗ sizeof(int *));

9: for (i = 0; i < m; ++i){
10: A[i] = (int *) malloc(size[i] * sizeof(int));

11: B[i] = (int *) malloc(size[i] * sizeof(int));

12:}
13:/* allocate pointers on coprocessor */

14:#pragma offload target(mic) nocopy(A:length(m) ALLOC)

15: nocopy(B:length(m) ALLOC)

16:{}
17:/* allocate pointers and copy data in */

18:for (i = 0; i < m; ++i){
19: #pragma offload target(mic) in(A[i]:length(size[i])

20: ALLOC) in(B[i]:length(size[i]) ALLOC)

21: {}

22:}
23:#pragma offload target(mic) nocopy(A:length(m) REUSE)

24: nocopy(B:length(m) REUSE)

25:{
26: /* computation kernel/offloadable code region */

27: #pragma omp parallel for private(i, j)

28: for (i = 0; i < m; ++i) {

29: for (j = 0; j < size[i]; ++j) {

30: A[i][j] = a ∗ B[i][j];

31: ...

32: }

33: }

34:}
35:/* copy data out */

36:for (i = 0; i < m; ++i){
37: #pragma offload target(mic) out(A[i]:length(size[i])

38: FREE) nocopy(B[i]:length(size[i]) FREE)

39: {}

40:}
Figure 5.2: Naive Two-Dimensional Array Offload (significantly more complex than one-

dimensional case)

104

 0

 0.5

 1

 1.5

 2

 2.5

 3

4*8*8
8*8*8

8*16*16

16*16*16

S
p

e
e

d
u

p
Matrix Size

Non-linearized
Linearized

(a)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

1MB
16MB

256MB

S
p
e
e
d
u
p
 /

 s
lo

w
d

o
w

n

Data Size

num_offload: 1
num_offload: 16
num_offload: 256

(b)

Figure 5.3: (a) Performance of Matrix Addition with Non-Linearized vs. Linearized Data

Transfers, (b) Relationship between Number of Offload Statements (for different array

components) and Data Transfer Time. (For a fixed data size, using fewer offload state-

ments is beneficial, due to better DMA utilization and smaller memory allocation and of-

fload overhead.)

snippet in Figure 5.2. Each of the memory regions is allocated and transferred indepen-

dently, using a separate offload statement (in a for loop). Automating this is not hard,

once the malloc statements, memory accesses and offload code regions have been tracked.

This is similar to what CGCM [60] does, which is the state-of-the-art compiler-based com-

munication management system for GPUs. However, this approach leads to high memory

allocation overheads as well as DMA suppression (since multiple small memory regions

105

are transferred separately). Particularly, Figure 5.3(a) compares the performance of this

approach with one where data is linearized and transferred using a single offload statement,

for a matrix addition micro-benchmark. Figure 5.3(b) shows the impact of number of of-

fload statements on data transfer time. The results are shown for various array sizes. For a

fixed array size, using fewer offload statements results in better DMA utilization and lower

offload and memory allocation overhead.

1: int _Cilk_shared **A;

2: int _Cilk_shared **B;

3: /* computation kernel */

4: _Cilk_shared void kernel(){

5: #pragma omp parallel for private(i, j)

6: for (i = 0; i < m; ++i) {

7: for (j = 0; j < size[i]; ++j) {

8: A[i][j] = a ∗ B[i][j];

9: ...

10: }

11: }

12:}
13:void main(){

14: /* allocate and initialize arrays A and B */

15: ...

16: _Cilk_offload kernel();

17: ...

18:}
Figure 5.4: Two-Dimensional Array Offload using MYO (no explicit data transfers)

In addition to the explicit data specification model (COI), LEO also supports an im-

plicit data transfer model and corresponding runtime mechanism (called MYO [120]) to

automate data transfers between CPU and coprocessor. Any data element marked by the

106

_Cilk_shared clause is automatically synced between the two processors. In the im-

plicit model, the offloadable code regions are marked using _Cilk_offload. Figure 5.4

shows a simple example. MYO resembles state-of-the-art memory management solutions

for GPU (Dymand [59] and AMM [108]), which all implement runtime data coherence

mechanisms and create the illusion of virtual shared memory between the CPU and copro-

cessor.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0.5K*0.5K 1K*1K 2K*2K 3K*3K

S
p

e
e

d
u

p

Matrix Size

MYO
Explicit

(a)

 0

 50

 100

 150

 200

 250

 300

0.5K*0.5K

1K*1K
2K*2K

3K*3K

D
a

ta
 T

ra
n

s
fe

r
S

iz
e

(M
B

)

MYO
Explicit

(b)

Figure 5.5: (a) Performance Comparison between MYO and Explicit Data Transfers using

Linearization for dgemm, (b) Total Data Transfer Size for both. (MYO transfers less data

but performs worse.)

107

We evaluate MYO with respect to a number of benchmarks and find that explicit data

transfer specification using in/out clauses outperforms MYO by upto 3x (Figure 5.5

shows an example for matrix multiplication). To further understand the performance, we

investigate the bottlenecks of the runtime memory management scheme and find that the

mechanism that keeps tracking of dirty pages for minimizing redundant data transfers ends

up imposing huge overheads. Noting that runtime mechanism can be more general and

applicable for applications where all memory allocations cannot be statically tracked, it

will clearly be desirable to try and optimize the existing runtime method.

5.2 Compile-time Automation of Data Transfers

Array linearization is commonly used to minimize the number of pointer indirections

(and load instructions) for static arrays. For example, a two-dimensional array A[i][j]

would be accessed as A[i ∗ N + j] instead of (A[i])[j], where N is the stride for i. The

memory layout is not changed, only the memory accesses are linearized. This approach

can be extended to facilitate efficient transfer of dynamically allocated multi-dimensional

arrays between CPU and coprocessor, by linearizing the memory layout in addition to the

memory accesses for dynamically. We introduce this approach, point out its limitations and

propose efficient alternatives. We refer to the default implementation of this approach as

complete linearization and discuss it next.

5.2.1 Complete Linearization

In complete linearization, all malloc statements for a given multi-dimensional array are

replaced by a single malloc statement in the application source code. Instead of allocating

108

Linearization

Function Fdata

Pointer-Reset

Function Fpointer

Linearized

Original

Mapping

Function M

Linearization

Function F

int ** a

a[i][j]

int * a a[i*S + j]

int ** b

b[i][j]

int * b

X=(i<K)?(i*S1):(K*S1+(i-K)*S2)

Stride

S = 5

Bucket 1 Stride

S1 = 3

(a) Complete Linearization (b) Stride-Bucket Optimization

Original

Linearized

Bucket 2 Stride

S2 = 5

Mapping

Function M

Linearization

Function F

Original

int ** c Linearizedint ** c

c[i][j] c[i][j]

(c) Partial Linearization with Pointer Reset

Bucket

Boundary

K = 2

15 elements 11 elements

10 elements

b[X + j]

Figure 5.6: Different Linearization Schemes for Handling Data Transfers for Dynamically

Allocated Multi-Dimensional Arrays

multiple small chunks of memory for the different array components, a single contigu-

ous chunk of memory is allocated. Accordingly, the memory accesses are linearized as

well, as shown in Figure 5.7. In essence, the complete linearization method transforms a

dynamically allocated multi-dimensional array into a one-dimensional array, as shown in

Figure 5.6 (a).

Algorithm To formally state the underlying compile-time transformation: let Dm be the

data layout for a multi-dimensional array in the original code, let Am be a memory access,

let Ds be the data layout for the array in the transformed code and let As be a memory

access, our goal is to implement two functions: (i) F : Dm → Ds and (ii) M : Am → As.

109

1: int *A, *B;

2: int size[m];//size array for the second dimension

3: /* collect length info from malloc stmts */

4: /* and calculate stride for each dimension */

5: A_s1 = B_s1 = 0;

6: for(i = 0; i < m; ++i) {

7: A_s1 = max(A_s1, size[i]);

8: B_s1 = max(B_s1, size[i]);

9: }
10:A_len = A_s1 ∗ m;

11:B_len = B_s1 ∗ m;

12:/* allocate linearized data on CPU */

13:A = (int *) malloc(A_len ∗ sizeof(int));

14:B = (int *) malloc(B_len ∗ sizeof(int));

15:/* copy and allocate linearized data on coprocessor */

16:#pragma offload target(mic) in(B:length(B_len))

17: inout(A:length(A_len))

18:{
19: /* computation kernel */

20: #pragma omp parallel for private(i, j)

21: for (i = 0; i < m; ++i) {

22: for (j = 0; j < size[i]; ++j) {

23: /* modified memory access */

24: A[i∗A_s1 + j] = a ∗ B[i∗B_s1 + j];

25: ...

26: }

27: }

28:}
Figure 5.7: Two-Dimensional Array Computation Offload (using complete linearization)

110

Let sz0, sz1,..,szk be the size of the elements in a given dimension. The malloc state-

ment corresponding to element i in the original source code would be malloc(szi ∗ sizeof

(datatype)). For a dimension with equal-sized elements the stride value would be s = sz0

= sz1,.., = szk. For a dimension with variable-size elements (as in Figure 5.6 (a)), the stride

value would be chosen as s = max(sz0, sz1, .., szk). For dimension di let the stride be si

and the number of elements of the first dimension be m. For an n-dimensional array, the

total memory size would be total = m ∗ s1 ∗ s2.. ∗ sn−1 and the corresponding malloc

statement in the transformed source code would be malloc(total ∗ sizeof(datatype)).

Let A be an n-dimensional array. Memory access A[m1][m2]..[mn] in the original

source code is transformed into A[m1 ∗ s1 ∗ s2..sn−1 + m2 ∗ s2 ∗ s3..sn−1.. + mn].

After applying functions F and M , corresponding offload statements and data transfer

clauses are inserted as shown in Figure 5.7.

Pros and Cons As compared to allocating each row and column of the multi-dimensional

structure separately, there are four distinct benefits of this approach: (i) since multiple mal-

loc statements are replaced by a single statement, memory allocation overhead is reduced

on both the CPU and coprocessor side, (ii) the overall data locality is improved because of

contiguity, (iii) DMA utilization is maximized, since one large chunk of memory is trans-

ferred instead of multiple small chunks, and (iv) only one offload statement is required for

data transfer.

This method has three main drawbacks. First, all memory accesses have to be identified,

analyzed and modified using function M . Strong alias analysis is required. The mapping

can potentially be complex and thus a source of bugs in the generated code, not to mention

the loss of readability.

111

Second, since the subscripts are made complex, important compiler optimizations get

suppressed in many cases. Optimizations like auto-vectorization and prefetching are sen-

sitive to compiler’s ability to recognize the memory access pattern. As we show later,

losing important compiler optimizations (especially vectorization) can lead to significant

performance loss on Intel MIC.

Third, for multi-dimensional arrays that have variable sized rows or columns, there is a

trade-off between the linearized data size and the complexity of functions F and M . If we

use uniform (maximum) length for each row or column, functions F and M are simplified,

but redundant data transfers are introduced, as shown in Figure 5.6 (a). If variable stride

values are used for each row/column, no redundant data transfers take place, but the com-

plexity of F and M increases substantially. The stride values need to be stored in a table,

transferred to the coprocessor and looked up during memory access. For example, instead

of mapping A[i][j] to A[i ∗ s1 + j], it has to be mapped to A[i ∗ stride_lookup(i)+ j]. This

results in increased data transfer overheads and suppression of compiler optimizations. The

use of uniform (maximum) stride typically performs better than a stride-lookup approach.

To address the third drawback, we have designed an optimization to reduce the amount

of redundant data transfers, without significantly increasing the complexity of functions F

and M .

Stride-bucket Optimization

This optimization strives for a balance between the complexity of linearization and the

amount of data transfer. The basic idea is to partition the multi-dimensional array into a

finite number of buckets along the first dimension. Across these buckets, different stride

values are used, whereas within each bucket, only one stride value is used. The current

design uses two buckets, as described next.

112

1: int *A, *B;

2: int size[m];//size array for the second dimension

3: /* collect len info from malloc stmts, find bucket bound k */

4: /* A_s1: bucket 1 stride of A; A_s2: bucket 2 stride of A */

5: /* B_s1: bucket 1 stride of B; B_s2: bucket 2 stride of B */

6: A_s1 = B_s1 = A_s2 = B_s2 = 0;

7: /* determine stride values A_s1, A_s2, B_s1, B_s2 */

8: for (i = 0; i < k; ++i){
9: A_s1 = max(A_s1, size[i]);

10: B_s1 = max(B_s1, size[i]);

11:}
12:for (i = k; i < m; ++i){
13: A_s2 = max(A_s2, size[i]);

14: B_s2 = max(B_s2, size[i]);

15:}
16:A_len = A_s1∗k + A_s2∗(m−k);
17:B_len = B_s1∗k + B_s2∗(m−k);
18:/* allocate Linearized Data */

19:A = (int *) malloc(A_len ∗ sizeof(int));

20:B = (int *) malloc(B_len ∗ sizeof(int));

21:/* allocate and copy linearized data */

22:#pragma offload target(mic) in(B:length(B_len))

23: inout(A:length(A_len))

24:{
25: /* computation kernel */

26: #pragma omp parallel for private(i, j)

27: for (i = 0; i < m; ++i) {

28: int A_x = (i<k) ? (A_s1∗i) : (A_s1∗k + (i−k)∗A_s2);
29: int B_x = (i<k) ? (B_s1∗i) : (B_s1∗k + (i−k)∗B_s2);
30: for (j = 0; j < size[i]; ++j) {

31: /* modified memory access */

32: A[A_x + j] = a ∗ B[B_x + j];

33: ...

34: }

35: }

36:}
Figure 5.8: Two-Dimensional Array Computation Offload (using complete linearization

with stride-bucket)

113

Algorithm 4 CompleteLinearizationWithBucket (Multi_dim_var_set D)

1: for each multi-dim var A ∈ D do

2: if A used in an offload region and satisfies legality checks then

3: Dsub.append(A)

4: end if

5: end for

6: for each multi-dim var A ∈ Dsub do

7: /*Linearization Function F()*/

8: for (i = 1; i < total dimensions n; ++i) do

9: ⊲ Parse malloc-sites for A, establish size table szi[0..li] for each dimension i

10: end for

11: /*---Apply Stride-Bucket Opt for the first dim---*/

12: sp1_table[0] = sp2_table[l1] = 0
13: /*---Bucket boundary calculation ---*/

14: /*--- bucket boundary: m, bucket strides: sp1, sp2 ---*/

15: for (i = 0; i < l1; ++i) do

16: sp1_table[i + 1] = max(∀k=i
k=0sz1[k])

17: sp2_table[l1 − i] = max(∀k=l1
k=l1−isz1[k])

18: end for

19: min_size = MAX
20: for (i = 0; i <= l1; ++i) do

21: size = sp1_table[i] ∗ i + sp2_table[i] ∗ (l1 − i)
22: if size < min_size then

23: m = i, min_size = size
24: sp1 = sp1_table[i], sp2 = sp2_table[i]
25: end if

26: end for

27: /*---Calculate total data size---*/

28: total = min_size
29: for (i = 2; i < total dimensions n; ++i) do

30: si = max(∀k=li
k=0 szi[k]); total = total ∗ si

31: end for

32: ⊲ Delete old malloc-sites

33: ⊲ Insert linear-alloc: A = malloc(total ∗ sizeof(type))

34: /*Mapping Function M()*/

35: for each memory access A[m1][m2]..[mn] do

36: Ax = (m1 < m)?(sp1 ∗ m1) : (sp1 ∗ m + sp2 ∗ (m1 − m))
37: ⊲ Change access-site to A[Ax ∗ s2 ∗ ..sn−1 + m2 ∗ s2 ∗ ..sn−1 + ...mn]

38: end for

39: /*---Generate offload code for coprocessor---*/

40: for each offload region R do

41: if A is used by R then

42: ⊲ Generate data transfer and offload clauses for coprocessor

43: end if

44: end for

45: end for

114

Let sz0, sz1,..,szl be the size of elements in the first dimension. It is partitioned

into two buckets P1 and P2, containing m and l − m elements respectively. For P1,

the stride value sP1 = max(sz0, sz1, .., szm). Similarly for P2, the stride value sP2 =

max(szm+1, szm+2, .., szl). The element m serves as the bucket boundary. It is picked

such that the amount of redundant data allocation (henceforth holes) is minimized, as de-

scribed next.

Let i be the bucket boundary. Stride value for first bucket sP1 = max(sz0, sz1, .., szi),

stride value for second bucket sP2 = max (szi+1, szi+2, .., szl). The size of the array would

be size = sP1 ∗ i + sP2 ∗ (l − i). Element m is picked as the bucket boundary, such that

size is minimized for m. This algorithm runs in O(l) time (shown in Algo. 4).

Functions F and M are suitably tailored for the stride-bucket optimization. Figure 5.6(b)

shows an example for a two-dimensional array– the bucket boundary is 2, the two stride

values are 3 and 5 respectively. As compared to the the memory layout in Figure 5.6(a), the

new memory layout in Figure 5.6(b) is around two-thirds the size. The mapping function

M now contains a branch operation– the stride is determined based on which of the two

buckets the element belongs to (as shown in Figure 5.8). If the bucket boundary is k, the

stride for the first bucket is s1 and the stride for the second bucket is s2, element A[i][j]

would be accessed as A[index+ j], where index = (i < k)?(i∗s1) : (k ∗s1 +(i−k)∗s2).

5.2.2 Partial Linearization with Pointer Reset

Complete linearization method suffers from three main drawbacks, as mentioned ear-

lier. The first and second drawbacks arise from modification of memory accesses (i.e.,

function M). The third drawback arises from the use of uniform strides during memory

115

allocation (i.e, function F), which allows simplification of M but imposes data transfer

overheads, since holes are included in the memory layout.

We note that all three drawbacks can be eliminated if: (i) memory accesses do not have

to be modified, and (ii) a single contiguous chunk of memory can be allocated for the entire

multi-dimensional array without any holes in it.

Algorithm Our partial linearization approach is based on two simple observations. First,

only the last dimension of a multi-dimensional array contains actual data, all the other

dimensions only contain pointer addresses to get to this data. Therefore, if the data in

the last dimension is linearized, i.e, allocated as a single contiguous chunk of memory

and transferred to the coprocessor, the memory allocation and setting up of pointers can

be done separately on both CPU and the coprocessor. Second, pointer structure of the

multi-dimensional array can be reconstructed on the coprocessor side by simply replicating

CPU-side code. The pointer sizes do not have to be transferred.

There is no mapping function M in this approach, since memory accesses are not mod-

ified. Data layout transformation function F is split into two component functions Fdata

and Fpointer, as described next.

The method (shown in Algo. 5) comprises three main steps. In the first step, the function

Fdata is applied, i.e, malloc statements for a given multi-dimensional array A are parsed and

code is generated for computing the total data size (total_sz) of the array by adding up the

size of each element in the last dimension. A malloc statement is generated to allocate

a memory chunk dataA of total_sz. Figure 5.9 shows an example for a two-dimensional

array– the original code structure for malloc statements is leveraged for generating the code

for calculating total_sz.

116

Algorithm 5 PartialLinearizationPointerReset(Mul_dim_var_set D)

1: for each multi-dim var A ∈ D do

2: if A used by an offload region and satisfies legality checks then

3: Dsub.append(A)

4: end if

5: end for

6: for each multi-dim var A ∈ Dsub do

7: /*Linearization Function Fdata()*/

8: ⊲ Parse malloc stmts of A
9: /*---Calculate total data size---*/

10: ⊲ Replicate the malloc stmts for last dimension

11: total_sz = 0
12: for each replicated malloc stmt:

A[m1]..[mn] = malloc(sizei∗sizeof(type)) do

13: ⊲ Replace it by: total_sz += sizei

14: end for

15: ⊲ Insert linear-alloc: dataA = malloc(total_sz * sizeof(type))

16: /*Pointer-Reset Function Fpointer()*/

17: /*---Allocate and reset pointers---*/

18: pda = dataA

19: for each original malloc-site for last dimension:

A[m1]..[mn] = malloc(sizei∗sizeof(type)) do

20: ⊲ Replace it by:

A[m1][m2]..[mn] = pda, pda += sizei

21: end for

22: /*---Generate offload code for coprocessor---*/

23: ⊲ Generate dataA malloc clause on coprocessor

24: ⊲ Replicate Fpointer() code on coprocessor

25: for each offload region R do

26: if A is used by R then

27: ⊲ Generate data transfer and offload clauses for coprocessor

28: end if

29: end for

30: ⊲ Apply data reuse and hoisting opt for dataA

31: end for

117

1: #define ALLOC alloc_if(1) free_if(0) //allocate data

2: #define REUSE alloc_if(0) free_if(0) //keep data persistent

3: #define FREE alloc_if(0) free_if(1) //free data

4: int **A, **B;

5: int size[m];//size array

6: /* calc total data size from malloc stmts for last dim */

7: for (i = 0; i < m; ++i)
8: total_sz_A += size[i]; total_sz_B += size[i];

9: /* allocate linearized data on CPU */

10:int *data_A = (int *) malloc(total_sz_A ∗ sizeof(int));

11:int *data_B = (int *) malloc(total_sz_B ∗ sizeof(int));

12:/* allocate and reset pointers */

13:A = (int **) malloc(m ∗ sizeof(int *));

14:B = (int **) malloc(m ∗ sizeof(int *));

15:int *pda = data_A; int *pdb = data_B;

16:for (i = 0; i < m; ++i)
17: A[i] = pda; pda += size[i]; B[i] = pdb; pdb += size[i];

18:/* allocate linearized data on coprocessor */

19:#pragma offload target(mic) nocopy(data_A:length(total_sz_A)

20: ALLOC) nocopy(data_B:length(total_sz_B) ALLOC)

21:{}
22:/* allocate and set pointers on coprocessor */

23:#pragma offload target(mic) nocopy(A:length(m) ALLOC)

24: nocopy(B:length(m) ALLOC)

25:{
26: int *pda = data_A; int *pdb = data_B;

27: for (i = 0; i < m; ++i){
28: A[i] = pda; pda += size[i];

29: B[i] = pdb; pdb += size[i];

30: }

31:}
32:/* copy data in/out */

33:#pragma offload target(mic) inout(data_A:length(total_sz_A)

34: REUSE) in(data_B:length(total_sz_B) REUSE)

35:{
36: /* computation kernel */

37: #pragma omp parallel for private(i, j)

38: for (i = 0; i < m; ++i)
39: for (j = 0; j < size[i]; ++j)
40: A[i][j] = a ∗ B[i][j]; ...

41:}
Figure 5.9: Two-Dimensional Array Computation Offload (using partial linearization with

pointer reset)

118

In the second step, the function Fpointer is applied, i.e., malloc statements for the last di-

mension are replaced by assignment statements, in order to set up the pointers into the con-

tiguous chunk of memory allocated in the first step. As shown in Figure 5.9, the statement

A[i] = (int∗)malloc(sizei ∗ sizeof(int)) is replaced by A[i] = pda, pda = pda + sizei,

where pda is a moving pointer. It is initialized to the starting address of dataA (i.e, A[0])

and incremented with every pointer assignment. Figure 5.6(c) illustrates the data layout

transformation for a two-dimensional array.

In the third step, offload statements and data transfer clauses are generated for transfer-

ring the memory chunk dataA to the coprocessor and back. The code for pointer allocation

and construction (i.e, Fpointer) is replicated on the coprocessor side. Therefore, no stride

information needs to be transferred.

As another note, placement of memory allocation statements and data transfer clauses

in the code is important for performance. In our implementation, we hoist malloc state-

ments, offload statements and data transfer clauses as far up the call graph as possible. By

hoisting statements outside loops and up the call graph, redundant execution is minimized

and memory reuse (across multiple offloads) is enabled.

Legality Checks: A compiler can apply partial linearization with pointer reset only if

certain conditions are met. We summarize these conditions in Table 5.2 and explain them

here. The first condition, referred to as the Homogeneity Check, ensures that the elements

in the multi-dimensional array are of the same size. For example, if the code is in C +

+, we may have the polymorphism issue. An existing data flow analysis reported in the

literature [117] is used for this purpose.

The second condition is single malloc site check, where the goal is ensure that there is

no memory reallocation or conditional memory allocation. These possibilities make our

119

Case Name Description

I Homogeneous Multi-dimensional array must be homogeneous, i.e.,

allocations must be with elements of the same type/size

II Single Malloc Site A pointer must have only one malloc stmt associated,

i.e., no conditional allocation or reallocation

III Escaping Pointers Pointers to allocated sections must not escape

the current scope

Table 5.2: Legality Check Cases

transformation more complicated (if at all applicable), and we prefer not to apply them in

our implementation. For performing this check, malloc statements and memory accesses

are tracked using use-def chains for arrays/pointers that are used in offloadable code re-

gions, as identified by liveness analysis module within Apricot [115]. We collect all malloc

sites for a specific multi-dimensional array, and check whether any pointer is represented

multiple times.

The third condition is Escaping Pointers Check. A pointer used to allocate a lower-

dimensional section of the array must not escape the current context, because if it does, it

becomes extremely hard to track possible reallocation. This check is implemented using

alias analysis.

These legality conditions are checked by our source-to-source compiler for each array.

If an array fails to satisfy one or more conditions, it is annotated as such and handled by

the runtime memory management system, as described in Section 5.3.1. For most scientific

computing benchmarks, these legality conditions hold and our proposed approach can be

applied.

Discussion: With the partial linearization approach, the memory accesses do not have to

be analyzed or modified. This significantly reduces the complexity of the analysis and

120

the resulting source code. The chances of introducing bugs during the transformation are

minimized and code readability is maintained. Since original subscripts are retained, the

compiler can choose to linearize the array subscripts as and when it deems fit. As a result,

compiler optimizations remain unaffected, which is the key to performance.

There are no redundant data transfers or holes. Only one contiguous chunk of memory

is allocated and transferred resulting in good data locality and full utilization of DMA.

As compared to the complete linearization, partial linearization has one drawback– it

introduces code execution overhead on the coprocessor for pointer reconstruction. Our

experiments show that this overhead is easily offset by the gains. This is a hybrid approach

that combines simplicity with performance.

5.2.3 Interaction with Compiler Optimizations

Our source-to-source translator (or another comparable system) depends upon the na-

tive compiler (ICC in the case of Xeon Phi) for accelerator for obtaining performance. Our

experiments have shown that the various optimizations performed by the native compiler

can have a far more significant impact on the overall performance than the overheads of

data transfer and other operations associated with the offload. As we have stated through-

out, one of the critical considerations in automating handling of data transfers is preserving

optimizations that would normally be performed by the compiler.

In Intel MIC (Xeon Phi), the SIMD width of each core is 512-bit, which means up to

16 floating point operations can be executed in one cycle on each of its 60 cores. This

makes vectorization crucial for performance. Also, with increasing parallelism, memory

accesses can become the bottleneck, and therefore, software prefetching is very important.

Loop optimizations such as distribution, tiling, and interchange can also significantly im-

pact performance, especially when they enable additional vectorization or prefetching. A

121

1: int ***A, ***B;

2: /* allocate and initialize arrays A and B */

3: ...
4: #pragma omp parallel for private(i, j, k)

5: for (i = 0; i < M; ++i){
6: for (j = 0; j < N; ++j){
7: for (k = 0; k < X; ++k){
8: C[i∗Cs2 ∗ Cs1 + j ∗ Cs1 + k]
9: = A[i ∗ As2 ∗ As1 + j ∗ As1 + k]
10: + B[i ∗ Bs2 ∗ Bs1 + j ∗ Bs1 + k];
11: ...

12: }

13: }

14:}
Figure 5.10: Vectorization Suppression Case I, abstracted from 27stencil: 3-D Array Ad-

dition (after complete linearization)

key advantage of partial linearization is that original subscripts are not modified, whereas,

complete linearization introduces more complex subscripts. While theoretically a compiler

should be able to handle complex linearized subscripts, in practice, product compilers often

fall short, due to aliasing, pointer arithmetic and complex interactions between the different

optimizations. We have verified this for the latest version of ICC as of writing this paper,

as we now show through a couple of examples.

Figure 5.10 shows an example with three-dimensional arrays inside an OpenMP loop.

From the optimization reports, we see that for the version with non-linearized subscripts,

data dependencies are correctly resolved and the innermost loop is vectorized. While for

the linearized version, auto-vectorization does not kick in due to false data dependence.

We observe the same behavior for the example in Figure 5.11 involving a structure and

non-unit stride. For the example in Figure 5.10, software prefetching does not kick in. For

122

the corresponding version with non-linearized subscripts, 4 cache lines are prefetched for

the outer-most loop and 24 lines are prefetched for the inner-most loop. We continue this

discussion in Section 5.4.

1: typedef struct{double W, X, Y;} point;

2: point *p = (point *) malloc(M ∗ N ∗ sizeof(point));

3: #pragma omp parallel for

4: for (i = 0; i < M; ++i){
5: for (j = 0; j < N; ++j){
6: p[i ∗ N + j].W = i + j + 0.1;
7: p[i ∗ N + j].X = i + j + 0.2;
8: p[i ∗ N + j].Y = i + j + 0.3;
9: }

10:}
11:double sum = 0.0;

12:#pragma omp parallel for reduction(+:sum)
13:for (i = 0; i < M; ++i){
14: for (j = 0; j < N; ++j){
15: sum + = p[i ∗ N + j].W ∗ p[i ∗ N + j].X
16: ∗ p[i ∗ N + j].Y;
17: }

18:}
Figure 5.11: Vectorization Suppression Case II, from 330.art: Struct and Non-Unit Stride

Access (after complete linearization)

5.3 Runtime Memory Management

As we discussed in the previous section, an optimization like partial linearization may

not apply in some cases, if all pointers cannot be properly resolved. Thus, as an enhance-

ment to the static approach, we present both a runtime approach, and an integrated static

and runtime approach.

123

Xeon Phi currently supports an implicit data transfer model and corresponding runtime

mechanism (called MYO) to automate data transfers between CPU and coprocessor. MYO

stands for Mine Yours Ours and provides a virtual shared memory abstraction for the CPU

and coprocessor. Any data element annotated with _Cilk_shared is allocated in a mem-

ory region reserved for MYO, which is automatically synchronized between the CPU and

coprocessor. The memory region starts at the same virtual address on both the CPU and

coprocessor. This creates the illusion of a shared memory. Particularly, MYO allows seam-

less sharing of complex pointers and data structures, where no data marshaling is required,

and address pointers in the virtual shared memory region are valid on both CPU and the

coprocessor. MYO uses the release consistency [43] protocol for handling data transfers,

where memory updates are kept completely local till a release point. At release point all

prior stores are guaranteed to be globally visible. At an acquire point, all stores that are

globally visible are synced up with local memory. The minimum unit of synchronization

is an arena, and each data element is explicitly assigned to an arena.

As part of our system, we modify the coherence mechanism in MYO, such that the dirty

pages are not tracked. The motivation for this was a set of experiments, which revealed that

the mechanism used for keeping track of dirty bits imposes huge overheads, as every read

and write operation has to be monitored. Particularly, if two arenas A and B are allocated

in the virtual shared memory region, and there are no writes to arena B on the coprocessor

side, only data associated with arena A will be communicated from coprocessor to CPU

at release point, if the original coherence mechanism is used. In the modified coherence

mechanism, both arenas will be synchronized, but overheads of tracking the operations are

avoided. This simple modification results in significant performance improvement, despite

an increase in the amount of data transferred. This is because an increase in the amount

124

of data transferred does not necessarily imply increase in execution time, because DMA

allows overlap of computation with communication.

As a case where this scheme will apply, we consider the following analysis. Let us

assume that data of size s1 is allocated in the virtual shared memory region and data of

size s2 (≤ s1) is written to. The original coherence mechanism may perform better than

the new one, if the ratio s2/s1 is very small. However, the ideal solution would be to use

a hybrid approach– depending on the properties of the data structures and the data flow in

the program, selective tracking may be enabled. Such a solution is presented next.

5.3.1 Combined Static and Runtime Approach

The motivation for this combination method is the need for improving the generality of

the static method, and the performance of the method based entirely on runtime tracking.

The basic idea is as following: if the offloaded data structure passes the legality check, our

source-to-source compiler generates the data transfer code for the corresponding offload

regions automatically as an optimization. Otherwise, the data structure is marked as shared

data structure (_Cilk_shared), and the offload region is marked as shared offload re-

gion (_Cilk_offload) by default. All the shared structures and offload regions will be

managed by our optimized MYO runtime library automatically. The formal algorithm is

shown in Algo. 6, and we can explain it below.

Given a C program (potentially annotated with OpenMP), the pre-processor identifies

the set of data variables D that need to be copied into and out of the coprocessor using

liveness analysis [115, 46], assuming that all offloadable code regions C have already been

identified. All variables in D are declared to the shared. Now, using currently imple-

mentation, MYO can automate data transfers for all the variables in D and the application

125

Algorithm 6 Integrat(Mul_dim_var_set D, Off_set C)

1: for each multi-dim var Mul_V ar ∈ D do

2: ⊲ Insert _Cilk_shared before Mul_V ar decl

3: end for

4: for each offload region Off_Reg ∈ C do

5: ⊲ Insert _Cilk_offload before Off_Reg
6: end for

7: ⊲ Linearize the possible vars, store into Dsub

8: Dsub = Compiler_Decider(D)

9: for each multi-dim var Mul_V ar ∈ Dsub do

10: ⊲ Replace _Cilk_shared by _explicit_transfer
11: end for

12: for each offload region Off_Reg ∈ C do

13: if all Off.vars ∈ Off_Reg also ∈ Dsub then

14: ⊲ Replace _Cilk_offload by _pragma_offload
15: end if

16: end for

17: ⊲ Generate the final code with offload directives

can execute successfully, though performance will likely be poor. Thus, in the next step,

the pre-processor short-lists all variables in D for which explicit data transfer clauses can

automatically be inserted at the compile time. This is done by analyzing the memory allo-

cation statements and memory access sites for each variable and running a set of legality

checks (as described in Section 5.2.2). For all the variables in Dsub that can be handled at

compile-time, the pre-processor also identifies the corresponding offloadable code regions

Csub where they are accessed, and marks them for explicit transfer.

When the source-to-source transformation is applied, it operates on variables annotated

with _explicit_transfer and generates corresponding memory allocation and data

transfer statements. The #pragma offload directive is inserted for code regions annotated

with _pragma_offload along with the corresponding in/out clauses. The resulting

source code uses both explicit data transfers as well MYO runtime memory management.

Figure 5.12 shows an example.

126

1: /* two dimensional array handled using explicit data transfer */

2: int **A;

3: /* linked list handled by implicit data transfer (MYO) */

4: struct node{ int x; struct node *next;} list;

5: list _Cilk_shared *head;

6: /* computation kernel 1 */

7: _Cilk_shared void kernel1(){

8: /* operations on list */

9: ...

10:}
11:void main(){

12: _Cilk_offload kernel1();

13: /* array A linearized using pointer reset approach */

14: ...

15: #pragma offload target(mic) inout(A_data:length(A_len)

16: REUSE) {

17: /* computation kernel 2 */

18: #pragma omp parallel for private(i, j)

19: for (i = 0; i < m; ++i) {

20: for (j = 0; j < n; ++j) {

21: /* operations on array A*/

22: ...

23: }

24: }

25: }

26: ...

27:}
Figure 5.12: Integrating Compile Time and Runtime Solutions: Simultaneous Use of Ex-

plicit and Implicit Memory Management

127

Preprocessor

Compile Time Run Time

Offload Region

Identification

Liveness Analysis

Apricot

Malloc Analysis

Partial Linearization

Linearization Function

Fdata

Pointer Reset Function

Fpointer

Hoisting & Data Reuse

OPT

Offload Insertion

Coprocessor

Offload Interface

(COI)

MYO

Modified Coherence

Mechanism

ICC

Input C Code

Intermediate Code w

Implicit Data Transfer

Clauses & Other

Annotations

Output Code w Both

Implicit & Explicit

Data Transfer

Compiled

Binary

Figure 5.13: Overall Solution Architecture

5.4 Evaluation

In this section, we evaluate our compile-time and runtime solutions in detail, and com-

pare our CPU-MIC solution with multi-core CPU solution.

5.4.1 Implementation

We have implemented the compile-time solution for automatic insertion of data transfer

clauses using partial linearization with pointer reset approach described in Section 5.2.2.

It has been implemented as a source-to-source transformation on top of the Apricot [115]

framework. Apricot provides modules for liveness analysis, handling of one-dimensional

arrays and identification of offloadable code regions. We have also modified the coherence

mechanism in MYO as described in Section 5.3. The solution architecture is shown in

Figure 5.13.

128

Benchmark Source Description

MG NAS Parallel in C Multi-Grid on meshes

FT NAS Parallel in C 3D fast Fourier Transform

330.art SPEC OMP Image recognition by neural network

Heat3D Heat 3D Heat transfer simulation

27stencil EPCC 3-d stencil kernel

convolution CAPS OpenACC 2-d stencil kernel

dgemm LINPACK Double general matrix multiplication

Table 5.3: Benchmarks

5.4.2 Experimental Methodology

The test suite consists of seven C benchmarks from different sources (shown in Ta-

ble 5.3). These benchmarks contain dynamically allocated multi-dimensional arrays/multi-

level pointers and OpenMP parallel regions. We particularly note that the first three bench-

marks, MG, FT, and 330.art, are all more than 1, 500 lines each (330.art is more

than 2000), and are used to demonstrate the applicability of our approach (and the current

implementation) on full-scale applications. All experiments were conducted on a Xeon E5-

2609 server equipped with an Intel MIC (Xeon Phi) card and the necessary software. Xeon

E5-2609 has 8 cores, each running at 2.40GHz with 2 threads per core. Xeon Phi has 61

cores each running at 1.05GHz with four threads per core, a total of 32MB L2 cache and

8GB GDDR5 memory. Our source-to-source compiler is invoked on each benchmark and

the transformed source code is compiled with ICC at -O3 with additional compiler flags

(-openmp -parallel [-ansi-alias] [-fno-alias]).

There are several objectives in our evaluation. We evaluate the overall performance

of our partial linearization with pointer reset solution, and compare it with the runtime

method through MYO, as well as the optimized complete linearization (with stride-bucket).

129

Besides comparing the execution times, the amount of data transferred over PCIe is also

measured and reported. To demonstrate the benefits of using the accelerator after applying

our solution, we also evaluate the performance of our best multi-core CPU+MIC version

over the multi-core CPU version.

We also individually evaluate the benefits of particular optimizations. Performance of

the runtime memory management system (MYO) is evaluated with and without our opti-

mization, and similarly, the performance of the complete linearization approach is evalu-

ated with and without the stride-bucket optimization.

5.4.3 Results and analysis

Overall Performance Evaluation

The overall performance comparison is shown as Figure 5.14. Figure 5.14(a) com-

pares the performance of complete linearization (further optimizes using the stride-bucket

method) with our partial linearization approach. 1.6x-2.6x speedup is obtained with the

partial linearization approach for five out of the seven benchmarks, whereas nearly 1.25x

speedup is observed for the other two.

While the approach benefits all benchmarks, the reasons for performance gains differ

considerably. We now explain these, referring also to data transfer volumes (Fig 5.14(b)),

and details of compiler optimizations enabled for different versions (Table 5.4).

For MG, majority of the speedup comes from reduction in the total amount of data trans-

ferred as shown in Figure 5.14(b), since it is a data-intensive benchmark with variable-size

rows. We also notice more aggressive prefetching for the partial linearization version: total

number of cache lines prefetched goes up from 131 to 542 (Table 5.4). For Heat3D and

27stencil, the main loop gets vectorized for the partial linearization version, resulting

in a 2x speedup. Number of prefetched cache lines goes up from 32 to 72 for Heat3D.

130

 0

 0.5

 1

 1.5

 2

 2.5

 3

MG.A
FT.A

330.art

Heat3D.small

Heat3D.large

27stencil

convolution

dgemm.3K
S

p
e

e
d

u
p

5.2X 6X Optimized MYO
Complete Linearization

Partial Linearization

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

MG.A
FT.A

330.art

Heat3D.small

Heat3D.large

27stencil

convolution

dgemm.3K

D
a

ta
 T

ra
n

s
fe

r
S

iz
e

 (
M

B
)

5500 MB Optimized MYO
Complete Linearization

Partial Linearization

(b)

 0

 0.5

 1

 1.5

 2

 2.5

MG.B
FT.B

330.art

Heat3D.large

27stencil

convolution

dgemm.3K

S
p

e
e

d
u

p

CPU
CPU-MIC

(c)

Figure 5.14: Performance Comparisons for all Benchmarks: Optimized MYO, Complete

Linearization with Stride-Bucket, and Partial Linearization Compared with Respect to (a)

Execution Time and (b) Total Data Transfer Sizes; (c) Execution Time Comparison between

Multi-Core CPU, and Multi-Core CPU+MIC for Large Input Data Sizes. The CPU-MIC

Versions are Obtained with our Partial Linearization

131

Benchmark Vectorization Prefetching LoopDistribution

Complete Partial Complete Partial Complete Partial

Linear Linear Linear Linear Linear Linear

MG 10 10 131 542 0 3

FT 15 16 70 74 0 3

330.art 1 12 50 98 2 0

Heat3D 2 3 32 72 0 0

27stencil 2 3 40 48 0 12

convolution 1 1 10 10 0 0

dgemm 1 1 14 17 0 0

Table 5.4: Impact of the Two Linearization Approaches on Key Compiler Optimizations

We also notice a significant increase in loop distribution for 27stencil: with the pointer

reset version 12 loops are distributed as opposed to none for complete linearization. Both

these benchmarks contain three-dimensional arrays. For 330.art a total of 12 loops are

vectorized with partial linearization, as opposed to 1 for complete linearization. Prefetched

cache lines go up from 50 to 98. This benchmark contains a two-dimensional struct ar-

ray (Figure 5.11). For dgemm the outer loop gets vectorized for the pointer reset version,

while the inner loop is vectorized for the complete linearization version. With outer loop

vectorization the performance goes up by 1.5x.

Figure 5.14 (a) also compares the performance of optimized MYO with both complete

linearization (using stride-bucket) and pointer reset approach. Optimized MYO frequently

outperforms complete linearization. However, partial linearization with pointer reset comes

out on top. It performs 1.5x-2.5x faster than optimized MYO for most benchmarks and

around 6x faster for FT.A.

132

Next, data transfer volumes are shown in Figure 5.14 (b). Except for MG, pointer reset

and complete linearization have identical data transfers. Optimized MYO transfers around

1.5x more data on average for most benchmarks.

Finally, Figure 5.14(c) shows the performance of the best CPU-MIC version for each

benchmark (obtained with the partial linearization approach) and compares it with the orig-

inal CPU version. The original CPU version uses 16 threads, while the CPU-MIC version

uses 16 threads on the CPU and around 240 threads on Intel MIC. The CPU-MIC version

runs 1.5x-2.5x faster for six out of the seven benchmarks. No gains are obtained for MG,

which is a highly data intensive benchmark. Considering the benefits of using partial lin-

earization that we reported earlier, it can be seen that most performance gains from the use

of the coprocessor will not be possible without optimizing data transfers.

Optimizations Evaluation

In our overall evaluation above, we use the optimized version of runtime MYO solution

and complete linearization (with stride-bucket) solution. We evaluate these optimizations

as following to validate their efficacy.

Figure 5.15 (a) compares the performance of MYO with optimized MYO. Figure 5.15 (b)

shows the total amount of data transferred for the two MYO versions. With the modified

MYO, the amount of data transfer increases by 1.5x on average (most of it comes from the

increase in communication from coprocessor to CPU). This is because dirty pages are not

tracked in the modified coherence mechanism. Despite an increase in data transfer, signifi-

cant performance gains (1.5x-3.2x) are observed with modified MYO. There is a noticeable

drop in the execution time of coprocessor side code with the modified coherence mecha-

nism. Also, we notice a very small increase in the time spent on data transfers, which can

be attributed to DMA.

133

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

MG.A
FT.A

330.art

Heat3D.small

Heat3D.large

27stencil

convolution

dgemm.3K

S
p

e
e

d
u

p

MYO
Optimized MYO

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

MG.A
FT.A

330.art

Heat3D.small

Heat3D.large

27stencil

convolution

dgemm.3K

D
a

ta
 T

ra
n

s
fe

r
S

iz
e

(M
B

)

MYO
Optimized MYO

(b)

Figure 5.15: Optimized MYO vs. MYO: (a) Execution Time, (b) Total Data Transfer Size

Complete Linearization: Figure 5.16 (a) compares the performance of the complete lin-

earization approach with the optimized one using stride-bucket, for varying input data sizes

(class=W,A,B). MG is the only benchmark in our test-suite containing arrays with variable-

size elements in the first dimension. Optimized linearization approach yields more than

1.5x speedup for classes A and B. There is no difference in the array data size between

classes A and B, hence similar speedup is observed. Xeon Phi coprocessor runs out of

memory for class C and above when using complete linearization. Data transfers are shown

in Figure 5.16 (b). Stride-bucket linearization results in around 1.8x reduction in data size.

134

 0

 0.5

 1

 1.5

 2

 2.5

W A B

S
p

e
e

d
u

p

MG (CLASS)

Complete Linearization
With Stride-bucket

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

W A B

D
a

ta
 T

ra
n

s
fe

r
S

iz
e

 (
M

B
)

MG (CLASS)

Complete Linearization
With Stride-bucket

(b)

Figure 5.16: Performance of Complete Linearization with and without Stride-Bucket Op-

timization for Varying Input Data Sizes: (a) Execution Time, (b) Total Data Transfer Size

5.5 Related Work

Over the last 5-6 years, many compilation systems have been built for accelerators,

which have also addressed the problem of data transfers from host to accelerators. For

example, OpenMPC [81] compiler automatically converts OpenMP code to GPU kernels

and in the process inserts data transfer clauses. Baskaran et al. [5] do the same in system

where the primary focus is on using a polyhedral framework for memory management.

135

The PGI [46] compiler also automatically inserts data transfer clauses for OpenAcc appli-

cations. JCUDA [139] based on Java can automatically transfer GPU function arguments

between CPU and GPU memories, however, it requires annotations indicating the live-

in/out information for arguments. Because these, as well as other comparable systems,

generate the accelerator (CUDA) code also, interaction of the offload mechanism with op-

timizations inside the native compiler is not a concern for these systems.

Apricot [115] automatically inserts LEO offload and data transfer clauses in OpenMP

applications for the Intel MIC coprocessor, using liveness analysis to determine data vari-

ables that need to be copied into and out of the coprocessor. It does not handle pointer

arithmetic, aliasing or pointer indirection for dynamically allocated data. Similarly, stati-

cally allocated arrays can be automatically handled by ICC for Intel MIC without additional

support. The challenge we have addressed here is to handle dynamically allocated multi-

dimensional arrays and other structures with multi-level pointers.

Our work is closest to CGCM [60], which is a state-of-the-art compiler-based data

management and optimization system for GPUs. CGCM incorporates a runtime library

that tracks memory allocation at runtime and replicates allocation units on the GPU. It

supports two key optimizations– map promotion and alloca promotion, to hoist runtime

library calls and local variables up the call graph. However, CGCM does not linearize

the heap. As a result, all the memory regions allocated for a multi-dimensional array or

multi-level pointer are allocated and transferred separately. This would suffer from high

memory allocation overheads and DMA suppression, as confirmed by our experiments for

Intel MIC.

136

DyMand [59], AMM [108], and ADSM/GMAC [42] are all runtime systems for auto-

matic memory management for GPUs. Each of them implements runtime coherence mech-

anisms for supporting a virtual shared memory abstraction for the CPU and the GPU. They

bear strong resemblance to MYO [120] and inherit the properties of software DSM [82, 7]

and PGAS [121, 16] to some extent. AMM uses compiler analysis to optimize placement

of coherence checks, but tracks read and write operations in order to monitor coherence

status of Rails, similar to MYO’s Arenas. We have implemented our optimizations on top

of MYO, and a novel component of our effort is integrated static and runtime optimizations.

Our work has some similarities with previous efforts on data layout optimizations [143,

19, 67, 78, 80]. However, our work is distinct in the sense that the context is coprocessors.

By modifying the malloc sites and allocating one large chunk of memory instead of numer-

ous small chunks for the array components distributed over memory space, we minimize

memory allocation overheads (for both CPU and coprocessor), maximize DMA utilization

for fast and asynchronous data transfer over PCIe and improve cache performance for both

CPU and coprocessor. By retaining original memory accesses in the code, we allow ICC

to be able to apply optimizations for multi-dimensional arrays.

5.6 Summary

This Chapter has addressed the problem of automating and optimizing data transfers for

coprocessors, with specific emphasis on dynamically allocated multi-dimensional arrays

and other data structures with multi-level pointers. Our work includes a novel compiler-

based approach, partial linearization with pointer-reset. The benefits of this approach

include reduced data transfer volumes, use of DMA, reduced overheads of memory alloca-

tions, and most importantly, no modification to the memory access subscripts, which turns

137

out to be crucial for preserving key optimizations from the native compiler for the copro-

cessor. This approach outperforms complete linearization by 1.6x-2.5x on average. We

also devise a stride-bucket approach for optimizing the performance of the linearization

method.

Because the static approach is not completely general, we also consider runtime so-

lutions, specifically in the context of Xeon Phi. We optimize the performance of MYO

by modifying the coherence mechanism, specifically trading additional data transfers for

reduced overheads of tracking dirty pages. This results in a significant speedup - 1.5x-

3.2x. Finally, we describe a way to integrate the static and runtime by selectively inserting

explicit data transfer clauses when possible and using shared memory otherwise.

The most insightful observation from our work is that optimizations from the native

compiler can have a far more significant impact on the overall performance than the over-

heads of data transfers and other operations associated with offload. Largest gains from our

pointer-reset approach arise because, as compared to other solutions, it enables vectoriza-

tion, prefetching, and loop distribution by the native compiler for the coprocessor.

138

Chapter 6: Compiling Dynamic Data Structures in Python to Enable

the Use of Multi-Core and Many-Core Libraries

Another important application scenario of dynamic allocated data structures is in very

high level programming languages like Python. As the productivity is increasingly sig-

nificant for Scientific Computing, there is a high demand of applying these languages for

relieving the programmers’ workloads.

While many efforts focus on providing low level extensions to these languages, and

using them more like glue languages, our work claims that an automatic or semi-automatic

compilation framework can be built to adapt these high level languages down to multi-core

and many-core libraries to bridge the gap between high productivity and high performance.

We implement our idea in Python, a very popular high level script language. During this

process, dynamic allocated data structures in Python are required to be transformed into

dense memory buffer to be passed to the low level HPC libraries, and our layout optimiza-

tion work proposed in previous section is apparently a good candidate for such procedure.

Moreover, to enable such procedure more efficiently, we have developed several new al-

gorithms. The key contributions include a demand-driven inter-procedural version of an

existing Partial Redundancy Elimination (PRE) algorithm [109], and an algorithm for de-

termining homogeneity of a list.

In this Chapter, we discuss these topics in detail.

139

6.1 Challenges and Overview of Our Work

In this section, we will introduce the performance issues of Python, and give an overview

to our translation framework.

6.1.1 Python and Performance Issues

While our work is applicable to all languages where dynamic data structures are used,

the techniques we have developed and implemented have been motivated by features of

Python. Python has been rapidly gaining popularity because of its support for high pro-

ductivity and easy learning curve. This enables programmers to focus on developing and

expressing algorithms, rather than programming itself. While it provides high productivity,

performance efficiency of the applications developed using Python is not very good. Thus,

for HPC applications, where performance is an important issue, the use of Python creates

several challenges. At the same time, programmer productivity has become an important

concern within HPC as well, promoting use of Python and similar languages, including

specialized parallel languages like X10 [17]. One approach is to use language extensions

and/or low level libraries to help improve performance. Successful projects in this area

include NumPy [107], SciPy [66], PyMPI [97], PyCUDA, and PyOpenCL [73], among

others.

The reasons for the low efficiency of Python arise because of multiple related reasons.

The fact that Python is interpreted and not compiled is clearly a big factor. Moreover, one

of the most attractive features of Python, the rich support for dynamic data structures, like

list, dictionaries, and others, adds significant overheads. Dynamic typing, which further

gives flexibility to programmers, also adds to the execution time overheads.

140

To look at the overheads in more details, let us take the list data structure supported

in Python as an example. An attractive feature of a Python list is that the users can store

different data types as different elements of the list. However, now dynamic type checking

has to be applied to each element of the list. Moreover, since the list only stores pointers

to the objects, rather than the actual objects themselves, the data is not stored continuously.

As a result, data locality and cache usage is negatively impacted.

To quantify these overheads, we performed the following experiment. We implemented

a linear algebra routine, Double GEneral Matrix Multiplication (DGEMM), in Python.

We compared the execution time for Python program, executing using Python 2.4.3, with

automatically translated C++ code (using Shedkin [35]), and a hand-written C code. In

Python code, the list is used as the input data structure. C++ code is generated from

Python after data type inference is performed, and a user-defined vector-like container is

used as the input data structure. The hand-written C code uses the primitive array as the

input data structure.

It turned out that the calculation time of the pure Python (484.46 sec) is around 8 times

higher than the generated C++ code (59.56 sec). This is primarily because in the C++ code,

all the type inference and type checking is performed at the compilation stage. However, the

wrapper functions around this user-defined data structure still incur significant overheads.

Thus, the hand-written C program (11.96 sec) is 5 times faster than the generated C++

code, and overall, 40 times faster than the interpreted execution of Python.

In addition to the performance issues noted here, there is another challenge. For obtain-

ing performance, it is increasingly becoming important to parallelize execution on multi-

core and many-core architectures. Complex data structures pose significant challenges in

parallelization. Moreover, the most common way of parallelizing computational steps is

141

to use existing libraries. These libraries, however, are based on flatter data structures, like

multi-dimensional arrays. Thus, the use of nested and dynamic data structures can pro-

hibit the use of these libraries, and the application cannot benefit from parallelization on

multi-core or many-core architectures.

6.1.2 Overview of Our Translation Framework

We now give an overview of the approach we have developed in this work. As a mo-

tivating example, we use the Python code in Figure 6.1. The nested loop shown at the

bottom of the Figure is similar to the computation performed in DGEMM example.

Before Linearization

#Data set structure definition

class A:

def _init_ (self, a1):

self.a1 = a1

self.a2 = len (a1)

class B:

def _init_ (self, b1):

self.b1 = b1

self.b2 = len (b1)

points = []

#Data set initialization

for i in range (t):

b1 = []

for j in range (n):

a1 = []

for k in range (m):

a1.append (...)

b1.append (A (a1))

points.append (B (b1))

#Data access before linearization

for i in range (t):

for j in range (n):

for k in range (m):

= points[i].b1[j].a1[k] ...

Figure 6.1: Python Code to Illustrate Translation Challenges

As stated earlier, we can significantly improve performance over interpreted execution

of Python code by using existing tools for translating the code to C++. However, dynamic

142

data structures still impose a significant performance penalty, and disallow the use of ex-

isting libraries for multi-code and many-core systems. One approach for addressing this

problem could be to copy the data to a flatter data structure, just before the execution of

the main computational loop. This way, the main computation step may operate at an effi-

ciency that is similar to that of the hand-written C code. Moreover, the arrays can be passed

to the existing libraries that would allow parallel execution of the main loop.

While this idea seems simple, it still involves several challenges. First, flattening nested

dynamic data structures may not be trivial, and we need a mechanism to perform the trans-

lation and for maintaining the correspondence between the two sets of data structures. Sec-

ond, the copying step itself can be expensive, especially, if the procedure has to be repeated

several times. Thus, we need mechanisms to avoid unnecessary copying of the data. Third,

we can store data in arrays and operate on it only if the data in the dynamic data structure

is homogeneous. We need an efficient mechanism to determine this.

We have developed techniques to address these three challenges, and have implemented

them as part of our overall framework. This framework is shown in Figure 6.2. There are

three main stages in our translation process. In the first stage, the Python code is translated

into C/C++ code, using the existing tool, Shedskin. Particularly, this tool transforms high-

level containers in Python to pre-defined container classes in C++ (similar to those used in

a template library like STL). Type checking and type inferencing is performed during this

step.

In the second stage, the generated C/C++ code is translated further with an emphasis on

the main computational steps. This is the key novel contribution of this work , with algo-

rithms for Homogeneity Decision, Demand-Driven Inter-procedural Partial Redundancy

143

Python Code Configuration File

Python to C/

C++

Input

Compile to Use

HPC Lib

Linearization

Data in

High Level

Structure

Collected

Information

Homo-

Decision

Dense

Data

Mapping

C/C++

with High Level

Data

Lib Call

Insertion

HPC Lib

HPC Run-time Environment

Yes

Data Transformation

C/C++

with Dense Data

& Lib Call

Compilation

Support

Run-time

Support

Primitive Insertion

IPRE

Further Opt

Transform

Insertion

Figure 6.2: Overview of the Translation Framework

Elimination, and Linearization involved in this process. These methods are introduced in

Sections 6.2 and 6.3, and have been implemented using the ROSE infrastructure [113].

In the last stage, the transformed C/C++ code with dense data structures is further

analyzed to make appropriate library calls. This step is based on the existing work [89, 83],

and the details are not described in this work.

144

6.2 Insertion Algorithm

The objective of the insertion algorithm is to reduce the overhead caused by the lin-

earization operation, which is done by reducing the frequency of execution of this state-

ment. Our overall approach can be viewed as a two-level one:

Level 1: Insert a dense data structure (A, such as array) just before any usage of the high

level structure (L, such as list). We copy the actual objects in L to A and replace L by A.

This work can be followed by an optional step, in which we reorder the members in the

objects according to our computational requirement, which can improve the data locality

and the efficiency especially for data-intensive applications.

Level 2: In order to avoid multiple (unnecessary) copy operations, a powerful redun-

dancy elimination algorithm, inter-procedural partial redundancy elimination (IPRE), is

designed.

Level 1 optimization simply requires an ability to linearize the data in the dynamic data

structure. The method for this is presented in the next Section. We focus on the second

level optimization in the next 2 subsections.

6.2.1 Intra-procedural PRE Algorithm

Our Level 2 optimization involves a novel use of an existing partial redundancy elimi-

nation (PRE) algorithm, and its extension into a demand-driven inter-procedural algorithm.

We initially show why our problem is related to PRE.

Along a certain control flow path, if a computation is performed more than once without

any modification to its operands between them, it will be considered as partially (or fully)

redundant. Over the last 30+ years, several PRE algorithms [99, 30, 74] can be applied

to optimize the code. Similarly, in our work, if a copy operation is performed more than

145

once along a certain path without any modification to the relative data elements, the copy

operation can be treated as partially (or fully) redundant.

In order to explain the basic idea of the traditional PRE, Figure 6.3 shows an intra-

procedural example. In the left-hand-side of this figure, a Control Flow Graph is given,

while the transformed code by PRE is introduced in the right-hand-side. In our work, the

IPRE algorithm is derived from an existing intra-procedural algorithm that is summarized

as following. This algorithm is chosen because of its conceptual simplicity.

a = 1

b = 2

if(someCond)

y = a + b

T

y = 0

F

z = a + b

a = b + 1

x = 100

if(someCond)

v = a + b

x = x - v

T

x = 0

F

a = 1

b = 2

if(someCond)

t = a + b

y = t

T

y = 0

t = a + b

F

z = t

a = b + 1

x = 100

t = a + b

if(someCond)

v = t

x = x - v

T

x = 0

F

Figure 6.3: An Example to Illustrate Basic PRE: Before (left) and After (right)

An Existing PRE Algorithm

This part summarizes the main steps in the Partial Redundancy Elimination method

developed by Paleri et al. [109]. While this algorithm uses most of the same ideas as the

146

original algorithm by Morel and Renvoise [99], as well as the subsequent algorithms by

Dhamdhere [30] and Knoop et al. [74], it is conceptually simpler and has other properties,

like the fact that it does not require any splitting of edges.

AV INi =

FALSE if i = s,
Q

j∈pred(i) AV OUTj otherwise,
(6.1)

AV OUTi = COMPi + AV INi · TRANSPi. (6.2)

ANTOUTi =

FALSE if i = e,
Q

j∈succ(i) ANTINj otherwise,
(6.3)

ANTINi = ANTLOCi + ANTOUTi · TRANSPi. (6.4)

SAFEINi = AV INi + ANTINi, (6.5)

SAFEOUTi = AV OUTi + ANTOUTi. (6.6)

SPAV INi =

FALSE if i = s or ¬SAFEINi,
P

j∈pred(i) SPAV OUTj otherwise,
(6.7)

SPAV OUTi =

FALSE if ¬SAFEOUTi,

COMPi + SPAV INi · TRANSPi otherwise.
(6.8)

SPANTOUTi =

FALSE if i = e or ¬SAFEOUTi,
P

j∈succ(i) SPANTINj otherwise,
(6.9)

SPANTINi =

FALSE if ¬SAFEINi,

ANTLOCi + SPANTOUTi · TRANSPi otherwise.
(6.10)

INSERTi = COMPi · SPANTOUTi · (¬TRANSPi + ¬SPAV INi), (6.11)

INSERT(i,j) = ¬SPAV OUTi · SPAV INj · SPANTINj , (6.12)

REPLACEif
= ANTLOCi · (SPAV INi + TRANSPi · SPANTOUTi), (6.13)

REPLACEil
= COMPi · (SPANTOUTi + TRANSPi · SPAV INi), (6.14)

Figure 6.4: Basic Intra-procedural PRE Data Flow Equations

The data-flow equations of this algorithm are shown in Figure 6.4, and the terms are

explained in Table 6.1.

This algorithm can be divided into two phases: the local phase and the global phase.

The local phase is applied to each basic block to reduce the redundancy within each basic

147

Table 6.1: Terms Used in the PRE Data Flow Equations

Symbols

·, Π: Boolean conjunctions;

+, Σ: Boolean disjunctions;

¬: Boolean negation.

Local properties

TRANSPi: transparent

In node i, if the operands of the expression are not modified;

COMPi: locally available

In node i, if there is at least one computation of the

expression E, and including and after the last computation,

there is no modification of the operands of E;

ANTLOCi: locally anticipable.

In node i, if there is at least one computation of the

expression E, and before the first computation, there is no

modification of the operands of E.

Global properties

AV INi/AV IOUTi

The expression is available at the entry/exit of node i;

ANTINi/ANTIOUTi

The expression is anticipable at the entry/exit of node i;

SAFEINi/SAFEOUTi

The entry/exit of node i is safe. A point p is safe for some

expression E, if we insert a computation of E at p without

introducing any new value on any path through p;

SPAV INi/SPAV OUTi

The expression is safe partial available at the entry/exit of i;

SPANTINi/SPANTOUTi

The expression is safe partial anticipable at the entry/exit of i;

INSERTi/INSERT(i,j)

The computation of the expression should be placed before the

last computation in node i; or on the edge between nodes i and j;

REPLACEif /REPLACEil

The replacement of the expression should be happened

to the first / last computation in node i.

148

block. After it, only the first and the last computation of the expression in this block will

be considered.

Focusing now on the global phase, from Equation 6.1, we can know an expression is

available at the entry of a basic block, if it is available at the exit of all the predecessor

blocks. An expression is available at the exit of a basic block, if it is locally available or

available at the entry of the current basic block without any operands modification in it

(Equation 6.2). Similarly, from Equation 6.3 and Equation 6.4, we can know an expression

is anticipable at the exit of a basic block if it is anticipable at the entry of all the successor

blocks, while an expression is anticipable at the entry of a basic block if it is locally antici-

pable or anticipable at the exit of the current basic block without any operands modification

in it.

The most interesting part of this algorithm is that it focuses on the safe points (SAFEIN

and SAFEOUT), the points where we can insert the computation of some expression with-

out introducing a new value along any path. The final insertion points and replace points

are decided by Equations 6.11 to 6.14 based on the operators and terms in Table 6.1.

6.2.2 Inter-procedural PRE algorithm

For even a modest-sized application, the overheads of linearization cannot be reduced

without applying PRE inter-procedurally. Though there have been a couple of efforts on

developing an inter-procedural PRE algorithm [2, 75], we have developed a demand-driven

inter-procedural algorithm, which analyzes procedures only if it is needed for placement of

the linearization operations. In our applications, the key data structures are not modified

149

frequently, so normally, there should be only a few linearization operations placement in-

volved. Thus, our demand-driven algorithm results in analysis of only a small number of

procedures from the application.

void main (){
List points;
Initial points (points);
kmeans reduction (points);

}
void kmeans reduction (List points){
List clusters;
Initial clusters (clusters, points);
for (i = 0; i < iterations; i++){
kmeans (points, clusters);
update clusters (clusters);

}
}
void kmeans (List points, List clusters){

for (point p in points){
//min cluster is the closest centroid
min cluster.min distance = max (double);
min cluster.min position = 1;
for (cluster c in clusters){
min cluster = find closest centroid (p, c);

}
update reduction object (min cluster);

}
}
void update clusters (List clusters){

for (cluster c in clusters){
//update the centroid by pre-defined reduction object
c = . . . reduction object . . . ;

}
}

Figure 6.5: The C-like Pseudo-code for K-means Application

Our algorithm is based on the inter-procedural control-flow graph (ICFG), which has

been widely used for inter-procedural analysis. This ICFG contains the control flow graphs

150

1 main

1.1 ENTRY

1.2 Call-site2

1.3 Return-site2

1.4 Call-site3

1.5 Return-site3

1.6 Exit

2 Initial_points

2.n EXIT

...

2.1ENTRY

3 kmeans_reduction

3.9 EXIT

3.2Call-site4

3.1ENTRY

3.3Return-site4

3.4 loop-header

3.5 Call-site5

3.7 Call-site6

3.6 Return-site5

3.8 Return-site6

4 Initial_clusters

4.n EXIT

...

4.1ENTRY

5 kmeans

5.9 EXIT

5.2 loop-header

5.1ENTRY

5.3 min_cluster = ...

...

5.4 loop-header

5.5 Call-site7

5.6 Return-site7

5.7 Call-site8

5.8 Return-site8

6 update_clusters

6.4 EXIT

6.2 loop-header

6.1ENTRY

6.3 c = ...

5.1ENTRY

3.5 Call-site5

linearize(points)

linearize(clusters)

Original

Placement

Final

Placement

Intermediate

Placement

Original

Placement

Final

Placement

Intermediate

Placement

Not

Available

Figure 6.6: The ICFG for K-means Application

(CFG) for the individual procedures. For each procedure p, an entry node Entryp and an

exit node Exitp are defined. Each call-site to p is represented by two nodes: Call − sitep

and Return − sitep. If a basic block contains a Call − sitep, it will be split into two

basic nodes B1 and B2. There is an edge from B1 to the entry node of the procedure p,

(B1, Entryp), and similarly, there is an edge from the exit node of the procedure p to B2,

151

(Exitp, B2). In Figure 6.6, we show ICFG for the K-means application listed earlier in

Figure 6.5.

Algorithm 7 AnalyzeAll (procedure_set, linearize_set)

1: for each linearization expression linearize(li) ∈ linearize_set do

2: for each procedure pj ∈ procedure_set do

3: intra-procedural analysis on linearize(li) in pj

without considering the effect of call-sites

4: end for

5: pick-up p in which li is first define

6: pparent = pcurrent = p
7: if li ∈ global_variables then

8: pparent = pcurrent =main
9: end if

10: Analyze(pcurrent, pparent)

11: for each procedure pj ∈ procedure_set do

12: final insertion and deletion

13: end for

14: end for

Our IPRE method is shown through Algorithms 7 and 8. In our inter-procedural frame-

work, we assume that inter-procedural pointer-analysis [53] and alias-analysis [52] have

been performed in the preprocessing stage and all the variables that point to the same space

are labeled with the same name.

In order to explain our algorithm, we use K-means example. First, an initial placement

of the linearization operation is performed. After this stage, in Figure 6.6, the linearization

operations for the list points are placed at the beginning of the node 3.2 and the end of the

node 5.1. Similarly, linearization operations for the list clusters are placed at the end of

the node 5.3 and at the end of the node 6.1.

In next stage, we use the method presented through Algorithm 7 and 8. Initially, intra-

procedural analysis is performed in the procedure(s) where the initial placement has been

152

Algorithm 8 Analyze (pcurrent, pparent)

1: for each node nodei in pcurrent do

2: if nodei includes procedure p then

3: pparent = pcurrent

4: pcurrent = p
5: Analyze (pcurrent, pparent)

6: else if nodei = EXITpcurrent then

7: if pcurrent = pparent then

8: return {*arrive at the outer-most procedure*}

9: else if pcurrent is completely transparent with li then

10: return {*nothing is affected*}

11: else if pcurrent includes modification to li then

12: mark the availability of AV INRETURN−SITEpcurrent
in pparent according to the value

of

AV OUTEXITpcurrent

13: if linearize(li) is safe at the ENTRYpcurrent then

14: mark CALL − SITEpcurrent as

ANTIN/ANTOUT and COMP
15: mark ENTRYpcurrent as AV IN
16: end if

17: propagate effect by work-list in pparent and pcurrent

18: return

19: end if

20: end if

21: end for

153

done, without considering the effect of the functions calls. During this phase, we apply only

Equations 6.1 through 6.10 in Figure 6.4, i.e. insertion or deletion logic is not computed.

Next, we move to the inter-procedural phase. If the list parameter is anticipable at

the entry of current procedure, we will pull this linearization operation out of p, and try

to propagate it further. For example, by this pull out strategy, the linearization operation

linearize(points) can be pulled from the procedure kmeans to kmeans_reduction, and un-

til the main function. Finally, we will mark the node 1.4 in Figure 6.6 as COMP and

ANTOUT (stronger than SPANTOUT) by the line of 14 of the Algorithm 8. From

the intra-procedural analysis, we have know that the node 1.4 has already been marked as

¬SPAV IN . Based on all of these, we can know that the final insertion for linearize(points)

can happen at the beginning of the node 1.4. All others placements will be deleted since

we have already marked them as AV IN (according to the line 15 of the Algorithm 8 and

the propagation operation), and there are no further modifications to points.

For a procedure call p from the current procedure pcurrent, we consider two possibilities.

First, if p is completely transparent relative to the parameter list of the copy statement,

no further analysis is done on p. Second, if p is not transparent, we just need to copy

the availability from the Exit point of p. For example, in Figure 6.6, in the Exit node

of the procedure update_clusters, linearize(clusters) is not available, so in the node 3.8,

it is also not available, which will cause linearize(clusters) is ¬AV IN in the node 3.5.

Subsequently, we can infer that the final insertion for linearize(clusters) will happen at the

beginning of the node 3.5 and other placements will be eliminated.

K-means application is an iteration process: before the reduction loop, the input data

set points is initialized without any further modification during the whole process, and the

output data set clusters is updated in each loop. From Figure 6.6, it is easy to know that

154

after our elimination, the final placement of linearize(points) is out of the reduction loop,

and the placement of linearize(clusters) is within the reduction loop, which is coherent to

the basic logic as above.

6.2.3 Checking Homogeneity of a List

One of the requirements for converting a dynamic data structure to an array is that each

element of the original dataset is of the same type. In this section, we describe an algorithm

we have developed for this purpose.

Our description here assumes a list structure, though the algorithm can easily be applied

to any other dynamic data structure. This decision algorithm is modeled as a data flow

analysis problem, similar to the well-known Constant Propagation problem, for which

many algorithms have been developed [12, 135]. Here, only the intra-procedural version

is introduced, and the inter-procedural version can be developed easily similar to how we

developed the IPRE algorithm above.

The entire algorithm can be expressed as a four-tuple < G,D,L′, F >, where, G =

(N,E) is a control flow graph. D is the direction of the data flow, which is FORWARDS

here. L′ is a three-tuple < V ′,∧,m >, in which there are three elements: V ′, ∧ and m.

V ′ is the domain of values, and each element in it is in this form: (type1, type2, . . .), i.e.,

a cross-product of the basic lattice Li, in which, UNDEF is the top element ⊤, and NON-

HOM is the bottom element ⊥. In L′, ∧ is a meet operator, which follows the common

definition of ∧ for the product lattice, i.e, it is defined as:

(type1, type2, . . .) ∧ (type′1, type′2, . . .)

= (type1 ∧ type′1, type2 ∧ type′2, . . .)

155

m is a map function used to map the list definition to the lattice. For example, the result

of m(listi) will be typei. Thus, each element in V ′ can also be expressed in this form

(m(list1),m(list2), . . .). There is a special map function, m0, which can initialize the type

of the list variable into UNDEF.

Returning to the last element of the four-tuple, F : V ′ → V ′ is the domain for transfer

functions. It has an identity function fi, such that fi(x) = x for all x in V ′. Like any

standard intra-procedural data flow algorithm, we can consider two levels: within basic

block, and inter basic block. Based upon this, we can classify the elements in F into two

groups: working on statements within a basic block and working on basic blocks. The rules

for the former case, denoted as fs, can be defined as follows:

1. If the statement (s) is irrelevant to the given list, fs is the identity function fi;

2. If s is relevant to the given list, lista, then for any listi 6= lista, fs(m(listi)) =

m(listi), and for lista, m′(lista) = fs(m(lista)).

We further consider the following cases:

1. if s is a member function call without adding any new elements in the list, such as

lista.remove(), m′(lista) = m(lista);

2. if s is a member function call adding an element, such as lista.append(x), or lista.

insert(k, x), m′(lista) = m(lista) ∧ typeof(x);

3. if s is a concatenation operation, and more than 1 element, i.e., [x1, x2, . . .] are added

to the lista, there are two cases: i) if the type of the new list is already calculated

as type′, then m′(lista) = m(lista) ∧ type′, and ii) if this is not the case, examine

156

Table 6.2: Homogeneity Decision Expression (Global Level)

Non-Hom decision Expression (Global Level)

Domain Sets of Basic Blocks

Direction Forward

Transfer Function fB = x ∧ LOC[B]

Boundary OUT [ENTRY] =

Meet(∧) Defined as above

Equations IN [B] = ∧P,pred(B)OUT [P];

OUT [B] = fB(IN [B])

Initialization OUT [B] =

the type of new elements by type′ = typeof(x1) ∧ typeof(x2) ∧ . . ., and then

m′(lista) = m(lista) ∧ type′.

After applying fs to all statements in each basic block, we can get the result for each

block at the point of OUT [B]. We refer to them as LOC[B]. The rule for the transfer

functions working on each basic block, denoted as fB , are summarized in the Table 6.2.

6.3 Linearization and Mapping Algorithm

The methods presented in the previous section have explained under what conditions

contents of a dynamic data structure can be copied into a dense and flat data structure, and

where the copy operation can be placed. In this section, we introduce linearization and

mapping algorithms, with the goal of translating the high-level dynamic data structures in

Python to low-level dense memory buffer in C++. This, in turn, will allow use of HPC

libraries for multi-core and many-core architectures.

Specifically, we need to create a low-level continuous data storage (Ds) from the high-

level data view (Dv). The entire process can be formally viewed as of computing the

following two functions: 1) Ft ⊆ {f | f : Dv → Ds}, a linearization function, which

157

can transform the high level data view to the low level data storage, and 2) M ⊆ {m |

m : Dv → Ds}, a mapping function created to enable mapping of the computations to the

low-level data layout.

6.3.1 Linearization

Algorithm 9 ComputeLinearizeSize(Xs)

1: size = 0

2: if Xs.type = isPrimitive then

3: size = sizeof(Xs)

4: else if Xs.type = isIterative then

5: for x in Xs do

6: size += ComputeLinearizeSize(x)

7: end for

8: else if Xs.type = isStructureType then

9: for each member m in Xs do

10: size += ComputeLinearizeSize(m)

11: end for

12: . . .

13: end if

14: . . .

15: return size

The basic linearization is a two-step algorithm which includes two functions: Com-

puteLinearizeSize, shown as Algorithm 9 and LinearizeIt, shown as Algorithm 10. The

first function is used to compute the data size while the second one is used to copy the

actual data to the continuous memory space.

Let us revisit the code from Figure 6.1, where a very common example of using the

user defined input data structure in Python was shown. Figure 6.7 shows information that

needs to be collected during the linearization process to enable code generation for the

usage of the linearized data structure.

158

Algorithm 10 LinearizeIt(Xs, size)

1: ⊲ allocate memory with the size of size

2: if Xs.type = isPrimitive then

3: copy(Xs)

4: else if Xs.type = isIterative then

5: for x in Xs do

6: LinearizeIt(x)

7: end for

8: else if Xs.type = isStructureType then

9: for each member m in Xs do

10: LinearizeIt(m)

11: end for

12: . . .

13: end if

14: . . .

15: return addressOfLinearizeData

6.3.2 Mapping

Algorithm 11 ComputeIndex(unitSize[], unitOffset[][], myIndex[], position[][], i, levels)

1: ⊲ During the linearization phase, collecting necessary information

2: if i < levels − 1 then

3: index = unitSize[i] × myIndex[i] + unitOffset[i][position[i][]]
4: index += ComputeIndex(unitSize[], unitOffset[][], myIndex[], position[][], i++,

levels)

5: else

6: index = unitSize[i] × myIndex[i]
7: end if

8: return index

The mapping algorithm can be divided into two stages: in the first stage, collecting the

necessary information during the linearization process; in the second stage, computing the

projected index of the low level data storage Ds from the collected information and the

original index in Dv by the recursive strategy in algorithm 11. The parameters used by this

algorithm are summarized in Table 6.3.

159

Table 6.3: Descriptions of the Parameters in Mapping Algorithm

Collected During Linearization

unitSize[]
1-Dimensional Array. It stores the unit size of the elements

in each level with unitSize[levels− 1] storing the inner-most

elements.

unitOffset[][]
2-Dimensional Array. It stores the offsets of the variables at

each level. The first dimension is used to indicate the level

and the second one indicates the start positions of the variables

at current level.

position[][]
2-Dimensional Array. It provides the position information for

calculating the unitOffset.

levels
The total number of levels of the data.

Collected From Dv

myIndex[]
1-Dimensional Array. It records the index for each level.

i
An indicator to show the current level. Normally, it starts

from 0 indicating that the current level is the outer-most.

160

Information Collected During Linearlization
levels = 3;
unitSize[levels] = {unitSize B, unitSize A, sizeof(data type a1)};
unitOffset[levels-1][2] = {{unitOffset B[]}, {unitOffset A[]}};
unitOffset B[2] = {0, unitSize A × n }
unitOffset A[2] = {0, sizeof(data type a1) × m}
position[levels-1][2] = {{0, 1}, {0, 1}};
{*This should be collected in the accumulate function*}
myIndex[levels] = {i, j, k};

Data access after linearization
for(i = 0; i <t; i++){

for(j = 0; j <n; j++){
for(k = 0; k <m; k++){
index = computeIndex(unitSize, unitOffset,

myIndex, position, 0, levels);
. . . = linea points[index] . . .

}
}

}

Figure 6.7: The Example of Using Linearization and Mapping Functions

Figure 6.7 shows the information that should be collected to apply the mapping algo-

rithm. Most of the information should be collected during the linearization stage, while the

index information is obtained from the usage loop. The entire mapping process is recursive.

It starts from the outer-most level and terminates with the inner-most level. At each level,

we calculate the offset caused by the index and the position offset.

6.4 Implementation and Experiments

In this section, we describe a prototype implementation of our framework and evaluate

it by generating code for execution of data-intensive applications on a multi-core system,

and computation-intensive applications on a GPU.

161

6.4.1 Implementation Overview

Python code was translated to C++ using an existing tool, Shedskin [35]. Our trans-

formations were implemented on top of the ROSE compiler infrastructure [113]. ROSE

is a powerful tool that supports program analysis and source-to-source transformations for

C/C++, FORTRAN, and other languages. After the transformations are applied, low-level

HPC libraries are invoked to support mapping on the multi-core and many-core libraries.

Particularly, we used a data mining middle-ware for mapping data-intensive applications

to multi-core architectures, and used existing libraries to execute linear algebra operations

on GPUs [90]. All these libraries/middle-ware expect the data to be in multi-dimensional

arrays, and cannot support processing of nested or dynamic data structures. The code gen-

eration was based on our earlier work, and the details are not presented here.

6.4.2 Evaluation Goals and Platforms

The objective of our evaluation is to compare the execution time of the original Python

code (Python), Shedskin generated C/C++ code (Gen C++), transformed code with and

without IPRE optimization (WOPRE and WPRE, respectively), and the hand-written C/C++

with library functions (Manual).

Our experiments are conducted on the following platforms. A multi-core machine with

AMD Opteron(tm) Processor (2.6 GHZ frequency) and main memory size of 32 GB was

used for data-intensive applications. The GPU used for compute-intensive applications was

a Quadro FX 5800 GPU, with 240 cores and 4 GB memory.

162

1 2 4 8
0

5

10

15

20

25

30

35

40

45

of Cores

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

WOPRE

WPRE

OPT

Manual

Figure 6.8: K-means: Comparison of Performance of Different Versions (800 MB dataset,

k = 100, iter = 1)

6.4.3 Experiments with Data-Intensive Applications

We invoked a data-intensive computing library from transformed C++ code, and com-

pare the performance of different versions we listed earlier. We used two popular data

mining applications, which are K-means clustering and PCA.

An 800 MB representative dataset was used for K-means. In our experiments, we

control the computation workload by modifying the iteration numbers. Very similar to

the DGEMM example in Section 6.1, the calculation time of the Python code, which uses

a list as the main input data structure, is much longer than the generated code and the

transformed code. For example, even to a much smaller data set (8 MB), the calculation

time of the Python code interpreted by Python 2.4 is 109.60 seconds for 1 iteration and

1122.96 seconds for 10 iterations. For the data set of 800MB, the execution time of the

Gen C++ code is 59.28 seconds for 1 iteration and 593.06 seconds for 10 iterations.

163

1 2 4 8
0

50

100

150

200

250

300

350

400

450

of Cores

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

WOPRE

WPRE

OPT

Manual

Figure 6.9: K-means: Comparison of Performance of Different Versions (800 MB dataset,

k = 100, iter = 10)

In Figure 6.8 and Figure 6.9, we report the calculation time of the code transformed

by our framework. From Figure 6.8, we can see that comparing to the Gen C++ code,

the efficiency of the sequential version of our transformed code for 1 iteration is improved

by more than 30% even including the linearization overhead of the input data set (WOPRE

version). Comparing with the WPRE version, we found that IPRE can help overcome

nearly 50% of the linearization overhead, which is consistent to our analysis in Section 6.2.

In K-means, because the centroid set is a frequently accessed data structure, we can also

linearize and apply the IPRE on it as described in Section 6.2, resulting in a version we refer

to as OPT. By comparing the versions OPT and Manual, we can see that their performance

is very similar to each other, and the overhead caused by linearization and mapping is

within 30% for 1 iteration. On the other hand, by comparing the sequential versions of

OPT and Gen C++, we can see that by our optimization framework, the efficiency of the

164

compiled code can be improved by a factor of more than 2 for the sequential version, and

furthermore, we have enabled use of a parallel library.

From the comparison of Figure 6.8 and Figure 6.9, we can see that the linearization

overhead can be reduced to a large extent by our IPRE method when there are multiple

iterations. Finally, for the sequential version, the overhead of the OPT version is around

10% of the best version, which is mainly caused by the mapping operations and scalable

to the number of processors. That is why we see good scalability of the OPT version. The

relative impact of our optimizations is even more significant for parallel versions, since

linearization is performed sequentially.

1 2 4 8
0

50

100

150

200

250

300

350

400

of Cores

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

WPRE

Manual

Figure 6.10: PCA: Comparison of Performance of Different Versions (row = 1000,

column = 100, 000)

The datasets used for PCA experiments has 1000 rows and 100,000 columns. The

calculation time of the Python code is very long, for example, even to a much smaller data

set (1000 × 1000) it takes 634.45 seconds. The Gen C++ code is also relatively slow, for

165

example, to the data set of 1000×100, 000 it takes 3280 seconds. By using our framework,

the efficiency can be improved obviously, however, the IPRE optimization must be applied

to the linearization of the input data set. Without the IPRE algorithm, the linearization is

inserted in the inner-most loops, resulting in Θ(row2) times copy operations to the input

data set that is a very large overhead. In Figure 6.10, we compare the calculation time

of the WPRE version generated by our framework and Manual versions. As stated above,

WOPRE version data is not shown, because it is extremely slow. From the comparison,

we can see that the efficiency of the WPRE version is very similar to the Manual version,

and the overhead caused by the linearization and mapping operation is around 10% to 20%

for both sequential and parallel versions. Especially, the efficency of the sequential WPRE

version is improved by a factor of 10 comparing to the Gen C++ code.

6.4.4 Scaling Compute-Intensive Applications with a GPU

GPU has been gaining popularity in recent years because of their very favorable perfor-

mance to cost ratio. Many GPU related libraries and automatic code generators have been

developed in recent years. In our experiments, CUBLAS libraries [104] and tensor con-

tractions [90] generated code are used for accelerating the execution of two linear algebra

kernels written in Python.

The first linear algebra kernel is DGEMM. The implementation from the CUBLAS

library can be invoked to replace the sequential computations in the Python implementation.

Because the mapping function is not needed in this case, the mapping overhead is not

considered in this and the next example. We experimented with seven datasets, which

range from 1000 × 1000 to 7000 × 7000. The results of the experiment are shown in

Figure 6.11. By comparing the results on the 1000 × 1000 dataset with the example in

166

1*1 2*2 3*3 4*4 5*5 6*6 7*7
0

2

4

6

8

10

12

14

16

18

20

Kernel Size (1000*1000)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

WOPRE

WPRE

Manual

Figure 6.11: Experiment Results for DGEMM

Section 6.1, we can see that the performance of the CUBLAS version is much better than

the Python code (more than 1000 times speedup) and Gen C++ code (around 163 times

speedup), even before the optimizations are applied.

In this application, the IPRE optimization is mainly used to eliminate the linearization

overhead during the matrix dimension validation. Since there is no modification between

this stage and the main loop computation, there is no need to linearize the input matrices

multiple times. This is also applied to the next experimental case. From the comparison

between the versions of WPRE and WOPRE in Figure 6.11, we can see that the lineariza-

tion overhead can be reduced by more than 50% by using IPRE. And also the linearization

overhead becomes less significant with the increase in the data set sizes, and when the size

of the kernel is 7000×7000, the linearization overhead is reduced to be less than 15% with

our IPRE method comparing to the best Manual version.

167

conf.1 conf.2 conf.3 conf.4 conf.5 conf.6 conf.7
0

5

10

15

20

25

30

35

40

45

50

Data Set

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

WOPRE

WPRE

Manual

Figure 6.12: Experiment Results for Tensor Multiplication

The second linear algebra kernel is tensor contraction, which is a multi-dimensional

matrix multiplication. In pure Python, if we want to perform such a computation, a highly

nested list structure needs to be used, which decreases the performance severely. Thus, our

transformations are even more crucial. The following expression was used in our work:

result[h3, h1, h2, p5, p4, p6]+ = x[h7, p4, p5, h1] × y[h3, h2, p6, h7]

Figure 6.12 illustrates the execution time for different datasets of increasing sizes. Both

WOPRE and WPRE are the versions generated by our framework and the Manual one is

the version written manually to feed into the Code Generator. Again, the Python and Gen

C++ codes are very slow, i.e. even for config1 they run for 261.39 seconds, 16.85 seconds,

respectively. Details of both these versions are not shown here. The effect of the IPRE

optimization is shown in this experiment by comparing the versions of WOPRE and WPRE

that the linearization overhead is decreased by around 50%. From the comparison between

the transformed code (WOPRE and WPRE) and the Manual version in Figure 6.12, we

168

can see that the linearization overhead is very large when the data set is relatively small.

However, the overhead reduces with increasing in dataset sizes. For instance, in config7,

comparing the versions of WPRE and Manual, the linearization overhead is already smaller

than 20% with IPRE.

6.5 Related Work

Given the popularity of Python, there have been several efforts focusing on improving

Python’s efficiency. These efforts can be classified into two groups, which are adding ex-

tension libraries or constructs to Pure Python, and compiling Python to other languages,

such as C/C++ or even CUDA. NumPy and SciPy [107, 66] are examples of the former,

where the inefficiency caused by the dynamic data structure usage in pure Python is sub-

stantially reduced by adding an N-dimensional array object. For multi-processing, these

efforts have been integrated with PyMPI [97]. PyCUDA and PyOpenCL [73] are two li-

brary extensions where GPU code can be invoked from Python. More recently, Catanzaro

et al. [15] developed a data parallel language named Copperhead which is based on Python.

Compared to the above efforts, our goal is clearly different, in the sense that we start with

pure Python, and automatically replace dynamic data structures with arrays.

In efforts that compile Python to other languages, prominent ones include Cython [6]

and Pyrex [37], where type-annotated Python is compiled to C, and Shedskin [35], where

a subset of Python is compiled to C++. To use multi-core or many-core system, Garg et

al. [41] developed a framework to compile Python code to a hybrid CPU-GPU environment.

The initial application is assumed to use array-based constructs in their work.

169

6.6 Summary

In order to bridge the gap between the productivity and the performance in HPC ap-

plications, this work has presented a framework to compile pure Python to invoke existing

multi-core and many-core libraries. To enable such optimizations, a demand-driven inter-

procedural algorithm has been developed. We have also developed a novel Homogeneity

Checking algorithm, and a set of Linearization-Mapping schemes. By these algorithms,

dynamic data constructs in Python can be transformed into dense memory buffer that can

be accepted by the low level libraries.

Two data-intensive and two linear algebra applications were used to evaluate our frame-

work. The evaluation results show that the code generated by our framework is only 10%

to 20% slower than the hand-written C code that invokes the same libraries. IPRE opti-

mization we perform turns out to be significant for improving performance in most cases.

Moreover, the code generated by our framework outperforms interpreted Python and the

C++ code generated by an existing tool by one to two orders of magnitude.

170

Chapter 7: Future Work

Most of our former efforts emphasize on either fine-grained parallelism on SIMD ar-

chitectures, or coarse-grained parallelism on multi-core architectures, respectively. The

emerging Xeon Phi architecture provides us a good opportunity of putting them together,

i.e., exploring hierarchical parallelism on multi-core system with SIMD accelerators. We

have done some preliminary work on this topic, i.e., parallelizing two irregular applica-

tions, Molecular Dynamic, and Euler on Xeon Phi hierarchically, however, we still have

some open issues related to resolving the memory access latency.

7.1 Improving Memory Performance for Hierarchical Parallelism

The memory wall problem is obvious even for fine-grained SIMD parallelism as we

discussed in our existing work, and the combination of fine-grained and coarse-grained

parallelism will make the situation even worse due to the limited memory bandwidth and

last level cache sharing among different cores. It is impossible for one to benefit from

any level parallelism, if the program is memory bounded, so it can be foreseen that false

design without considering the memory impact will result in program with undesirable

performance and resources wasting. This issue provides us an open question not even

evaluated for regular applications.

171

Traditionally, there are two candidate solutions for this problem, software prefetching

and locality optimizations. Our existing work emphasizes on the latter, while the hierar-

chical parallelism offers us a good chance of applying the former to reduce the memory

latency. However, because of the SIMD processing of each core, the data demand and data

access pattern will be much different from traditional cases, and some new challenges may

be arising during this process.

7.1.1 Potential Future Research

This research topic exposes us multiple interesting problems that we can explore in the

future.

Prefetching Objectives Identification and Prefetching Slices Creation

Data Flow Analysis is helpful for us to identify the irregular data structures that should

be prefetched. Based on this kind of analysis, the work [11] provides us an intra-thread

prefetching method for irregular data structures, greedy prefetching. This kind of inter-

procedural data flow analysis is certainly capable to be applied in our work to identify the

prefetching objectives. However, we assume that in our specific applications, the number

of prefetching objectives is limited, and these objectives are a sort of underlying knowledge

of programmer, so this analysis procedure can be reduced to a light-weight one.

There are many different ways of generating the helper threads. The work [22] uses

hand-built helper threads. The work [71] uses compiler techniques to generate the reduced

version statically with the help of profiling. The works [85, 142] generate helper threads in

dynamic run-time compilation environment. In our work, since the prefetching objective is

specific, a hand-built creation procedure is capable for us.

172

The Thread Order Guarantee and Cache Pollution Minimization

Properly optimization on the pre-computation thread (p-thread, and the pre-computation

code is called p-slice) may guarantee that the prefetching thread is always ahead of the

main thread. The work [142] discussed on a series of optimization methods from hardware

to software, such as dynamic hardware load stride prediction to speculatively specialize

p-slices, allowing for simpler p-slices with lower overhead, dynamically identification of

the loop induction variables, allowing to jump start the p-slice execution a few iterations

ahead of the main thread, reducing the control flow dependency to speed up the p-slice,

continuously monitor the success of prefetching and so on.

Cache pollution minimizing for prefetching algorithm is solved as the topic prefetching

control policy of helper thread [68]. It is another side of the problem above, i.e. how to

guarantee that the helper thread does not prefetch the data too early.

This problem is an important future work for my dissertation, since SIMD units ap-

plication is going to bring us new research issues when we are applying the traditional

approach above.

Combination of Helper Thread Prefetching and Data Layout Optimization

Generally, helper thread prefetching reduces the memory latency however increases the

memory bandwidth usage; while data locality optimization reduces both average mem-

ory latency and bandwidth usage by using computation reordering or data layout reorder-

ing [3, 4]. So for high-bandwidth memory hierarchy (GPU, and MIC), software prefetching

works better; and for low-bandwidth memory hierarchy (traditional CPU), data locality op-

timization works better. This leaves us a question whether it is possible to combine the

173

benefits of both the helper thread prefetching and data layout optimizations in our hierar-

chical parallelism for irregular data structures, i.e., we reorder the irregular data structures

to explore both inter-thread and intra-thread data locality as our earlier work, and next de-

sign a proper helper thread prefetcher to overlap the computation with the memory access.

There are two detailed research topics here: first, exploring the way to allocate the

resources properly as we talked in previous section, i.e., developing a scheduling strategy to

decide the number of cores as computation worker, and the number of cores as prefetchers;

second, comparing the implementations on both MIC architecture and GPUs architecture,

to study the difference between them or to design a portable analytical model as our earlier

work.

174

Chapter 8: Conclusions

This is a summary of the contributions of my dissertation and future work.

8.1 Contributions

Our main objective is to automatically utilize fine-grained and coarse-grained paral-

lelism methodologies to improve the performance of three classes of applications involv-

ing dynamic data structures and irregular memory access on various SIMD accelerators and

many-core architectures, an important topic nowadays in both high performance computing

and compiler communities. Our contributions can be summarized as following:

• We identify the opportunity of exploiting fine-grained data parallelism in important,

latency critical irregular algorithms, like trees and graphs traversals widely used

in production level software, and design a novel intermediate language based ap-

proach to implementing such kind of parallelism. Our approach is evaluated by two

real random forest applications and one regular expression engine, resulting in good

single-core speedup.

• To improve the memory performance of fine-grained SIMD parallelism of irregular

data structure traversals as above, we describe three novel data layout optimizations

that are designed to extract intra and/or inter thread data locality from applications

175

that traverse a large number of irregular data structures on SIMD hardware, and pro-

pose an analytic model that can remove the burden of performance portability from

the programmer side by accurately modeling which of our data layout optimizations

to use on a particular architecture.

• We design and implement a programming system to parallelize applications with ir-

regular reduction communication pattern on emerging Intel Xeon Phi coprocessors

with emphasizing on two levels of parallelism, shared memory MIMD, and SIMD

vectorization. This programming system incorporates a data reorder scheme to re-

duce the partition overhead, increase the data locality, and support better SIMD vec-

torization. Our system is tested on two irregular applications, Euler and Molecular

Dynamics, and shows good performance.

• Intel Xeon Phi coprocessor and CPU host have separate memory hierarchies, so data

transfer between CPU and coprocessors is an important issue in coprocessor pro-

gramming model. To address this problem, especially for dynamic allocated multi-

dimension arrays and multi-level pointer data structures, we design and implement

an optimized compile-time and runtime integrated framework to manage such kind of

data transfer automatically. Our framework is tested on 7 representative benchmarks,

and shows good performance.

• We present a Python based compilation system that invokes libraries for multi-core

and many-core architectures for specific types of computations, in which, the dy-

namic data structures of Python, like List are transformed into dense memory buffer.

To enable such optimizations, we have developed a demand-driven inter-procedural

176

PRE algorithm, and a novel Homogeneity Checking algorithm to reduce the layout

optimization overhead.

To improve the performance of applications involving dynamic data structures, and

irregular memory access, our existing optimization strategies focus on improving data lo-

cality, and better utilizing the cache hierarchy, while in emerging many-core architectures

like Intel Xeon Phi, multi-thread is an important resource, so our future work emphasizes

on leveraging helper-thread prefetching to address the memory wall problem.

177

Bibliography

[1] V. Agarwal, F. Petrini, D. Pasetto, and D. Bader. Scalable Graph Exploration on

Multicore Processors. In Proceedings of the 2010 International Conference for High

Performance Computing, Networking, Storage and Analysis (SC 2010), pages 1–11.

IEEE, 2010.

[2] G. Agrawal, J. Saltz, and R. Das. Interprocedural Partial Redundancy Elimination

and Its Application to Distributed Memory Compilation. pages 258–269, June 1995.

ACM SIGPLAN Notices, Vol. 30, No. 6.

[3] A. Badawy, A. Aggarwal, D. Yeung, and C. Tseng. Evaluating the Impact of Mem-

ory System Performance on Software Prefetching and Locality Optimizations. In

Proceedings of the 15th international conference on Supercomputing (ICS 2001),

pages 486–500. ACM, 2001.

[4] A. Badawy, A. Aggarwal, D. Yeung, and C. Tseng. The Efficacy of Software

Prefetching and Locality Optimizations on Future Memory Systems. Journal of

Instruction-Level Parallelism, 6(7), 2004.

[5] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev,

and P. Sadayappan. Automatic Data Movement and Computation Mapping for

Multi-level Parallel Architectures with Explicitly Managed Memories. In PPoPP,

2008.

[6] S. Behnel, R. Bradshaw, and D. Seljebotn. Cython: C-extensions for Python, 2008.

[7] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed Shared Memory

based on Type-Specific Memory Coherence. In PPoPP, 1990.

[8] G. Blelloch, S. Chatterjee, J. Hardwick, J. Sipelstein, and M. Zagha. Implementation

of a Portable Nested Data-Parallel Language. Journal of Parallel and Distributed

Computing, 21(1):4–14, apr 1994.

[9] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and

Y. Zhou. Cilk: An Efficient Multithreaded Runtime System. In PPoPP, pages 207–

216, 1995.

178

[10] L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

[11] B. Cahoon and K. McKinley. Data Flow Analysis for Software Prefetching Linked

Data Structures in Java. In Proceedings of 2001 International Conference on Paral-

lel Architectures and Compilation Techniques, (PACT 2001), pages 280–291. IEEE,

2001.

[12] D. Callahan, K. Cooper, K. Kennedy, and L. Torczon. Interprocedural Constant

Propagation. ACM SIGPLAN Notices, 21(7):152–161, 1986.

[13] N. Cascarano, P. Rolando, F. Risso, and R. Sisto. iNFAnt: NFA Pattern Matching on

GPGPU Devices. ACM SIGCOMM Computer Communication Review (SIGCOMM

2010), 40(5):20–26, 2010.

[14] C. Cascaval and D. Padua. Estimating Cache Misses and Locality Using Stack Dis-

tances. In Proceedings of the 17th Annual International Conference on Supercom-

puting (ICS 2003), pages 150–159. ACM, 2003.

[15] B. C. Catanzaro, M. Garland, and K. Keutzer. Copperhead: Compiling an Embedded

Data Parallel Language. In PPOPP, pages 47–56, 2011.

[16] B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability and the Chapel

Language. International Journal of High Perf. Comput. Appl., 21(3), 2007.

[17] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von

Praun, and V. Sarkar. X10: an Object-oriented Approach to Non-uniform Cluster

Computing. In R. E. Johnson and R. P. Gabriel, editors, OOPSLA, pages 519–538.

ACM, 2005.

[18] S. Chatterjee, G. Blelloch, and M. Zagha. Scan Primitives for Vector Computers.

In Proceedings of the 1990 ACM/IEEE Conference on Supercomputing (SC 1990),

pages 666–675, Nov. 1990.

[19] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi. Nonlinear

Array Layouts for Hierarchical Memory Systems. In ICS, 1999.

[20] S. Che, J. Sheaffer, and K. Skadron. Dymaxion: Optimizing Memory Access Pat-

terns for Heterogeneous Systems. In 2011 International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis (SC 2011), pages 1–11. IEEE,

2011.

[21] T. Chilimbi, M. Hill, and J. Larus. Cache-Conscious Structure Layout. In Proceed-

ings of the 1999 ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI 1999), pages 1–12. ACM, 1999.

179

[22] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery, and J. Shen. Specula-

tive Precomputation: Long-Range Prefetching of Delinquent Loads. In Proceedings

of 28th Annual International Symposium on Computer Architecture, (ISCA 2001),

pages 14–25. IEEE, 2001.

[23] D. Comer. The Ubiquitous B-Tree. ACM Computing Surveys (CSUR), 11(2):121–

137, 1979.

[24] R. Cox. Regular Expression Matching Can Be Simple and Fast.

http://swtch.com/ rsc/regexp/regexp1.html, January 2007.

[25] L. Dagum and R. Menon. OpenMP: an Industry Standard API for Shared-Memory

Programming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.

[26] R. Das, D. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The Design and Im-

plementation of A Parallel Unstructured Euler Solver Using Software Primitives.

Technical report, DTIC Document, 1992.

[27] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. A. Patterson,

J. Shalf, and K. A. Yelick. Stencil computation optimization and auto-tuning on

state-of-the-art multicore architectures. In SC, page 4. IEEE/ACM, 2008.

[28] V. De Almeida and R. Güting. Indexing the Trajectories of Moving Objects in Net-

works*. GeoInformatica, 9(1):33–60, 2005.

[29] D. Delling, A. Goldberg, A. Nowatzyk, and R. Werneck. Phast: Hardware-

Accelerated Shortest Path Trees. In Proceedings of the 2011 IEEE International

Parallel & Distributed Processing Symposium (IPDPS 2011), pages 921–931. IEEE,

2011.

[30] D. M. Dhamdhere. Practical Adaptation of the Global Optimization Algorithm of

Morel and Renvoise. ACM Trans. Prog. Lang. Syst., 13(2):291–294, 1991.

[31] H. Dietz and W. Cohen. A Massively Parallel MIMD Implemented by SIMD Hard-

ware? Technical report, Purdue University, 1992.

[32] C. Ding and K. Kennedy. Improving Cache Performance in Dynamic Applications

through Data and Computation Reorganization at Run Time. In PLDI, pages 229–

241, 1999.

[33] X. Ding, K. Wang, and X. Zhang. ULCC: a User-Level Facility for Optimizing

Shared Cache Performance on Multicores. In Proceedings of the 16th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming, (PPOPP

2011), pages 103–112. ACM, 2011.

180

[34] J. Dokulil, E. Bajrovic, S. Benkner, S. Pllana, M. Sandrieser, and B. Bachmayer. Ef-

ficient hybrid execution of c++ applications using intel (r) xeon phi (tm) coprocessor.

arXiv preprint arXiv:1211.5530, 2012.

[35] M. Dufour. Shed Skin-An Experimental (Restricted) Python to C++ Compiler

(2009-09-30).

[36] A. E. Eichenberger, P. Wu, and K. O’Brien. Vectorization for simd architectures

with alignment constraints. In PLDI, pages 82–93. ACM, 2004.

[37] G. Ewing. Pyrex. A Language for Writing Python Extension Modules, 2006.

[38] F. Franchetti and M. Puschel. In Proceedings of the 2002 IEEE International Parallel

and Distributed Processing Symposium (IPDPS 2002).

[39] A. Frank and A. Asuncion. UCI Machine Learning Repository, 2010.

[40] C. Garca, R. Lario, M. Prieto, L. Piuel, and F. Tirado. Vectorization of Multigrid

Codes Using SIMD ISA Extensions. Proceedings of the 2003 IEEE Inernational

Parallel and Distributed Processing Symposium (IPDPS 2003), 0:58a, 2003.

[41] R. Garg and J. N. Amaral. Compiling Python to a Hybrid Execution Environment.

In D. R. Kaeli and M. Leeser, editors, GPGPU, volume 425 of ACM International

Conference Proceeding Series, pages 19–30. ACM, 2010.

[42] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W.-m. W. Hwu. An

Asymmetric Distributed Shared Memory Model for Heterogeneous Parallel Sys-

tems. In ASPLOS, 2010.

[43] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.

Memory Consistency and Event Ordering in Scalable Shared-Memory Multiproces-

sors. In ISCA, 1990.

[44] R. Ghiya, L. Hendren, and Y. Zhu. Detecting Parallelism in C Programs with Recur-

sive Data Structures. In Proceedings of 7th International Conference on Compiler

Construction (CC 1998), pages 159–173. Springer, 1998.

[45] W. D. Gropp, E. L. Lusk, and A. Skjellum. Using MPI: Portable Parallel Program-

ming with the Message-Passing Interface, volume 1. the MIT Press, 1999.

[46] T. P. Group. PGI Accelerator Compilers OpenACC Getting Started Guide. 2013.

[47] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent Pattern Mining: Current Status and

Future Directions. Data Mining and Knowledge Discovery, 15:55–86, 2007.

[48] R. Hanxleden and K. Kennedy. Relaxing SIMD Control Flow Constraints using

Loop Transformations. In PLDI, pages 188–199. ACM, 1992.

181

[49] J. Hardwick. An Efficient Implementation of Nested Data Parallelism for Irreg-

ular Divide-and-Conquer Algorithms. In Proceedings of the First International

Workshop on High-Level Programming Models and Supportive Environments (HIPS

1996), pages 105–114, April 1996.

[50] P. Harish and P. Narayanan. Accelerating Large Graph Algorithms on the GPU using

CUDA. High Performance Computing (HiPC 2007), pages 197–208, 2007.

[51] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet, J. Ramanujam, and P. Sadayap-

pan. A stencil compiler for short-vector simd architectures. In ICS, pages 13–24,

2013.

[52] M. Hind, M. Burke, P. Carini, and J. Choi. Interprocedural Pointer Alias Analysis.

TOPLAS, 21(4):848–894, 1999.

[53] M. Hind and A. Pioli. Which Pointer Analysis Should I Use? In ACM SIGSOFT

Software Engineering Notes, volume 25, pages 113–123. ACM, 2000.

[54] J. Holewinski, L.-N. Pouchet, and P. Sadayappan. High-performance code genera-

tion for stencil computations on gpu architectures. In Proceedings of the 26th ACM

international conference on Supercomputing, pages 311–320. ACM, 2012.

[55] S. Hong, T. Oguntebi, and K. Olukotun. Efficient Parallel Graph Exploration on

Multi-Core CPU and GPU. In Proceedings of the 2011 International Conference

on Parallel Architectures and Compilation Techniques (PACT 2011), pages 78–88.

IEEE, 2011.

[56] X. Huo, V. Ravi, W. Ma, and G. Agrawal. An Execution Strategy and Optimized

Runtime Support for Parallelizing Irregular Reductions on Modern GPUs. In Pro-

ceedings of the International Conference on Supercomputing (ICS 2011), pages 2–

11. ACM, 2011.

[57] X. Huo, B. Ren, and G. Agrawal. A Programming System for Xeon Phis with

Runtime SIMD Parallelization. In Proceedings of the International Conference on

Supercomputing. ACM, 2014.

[58] N. Ide, M. Hirano, Y. Endo, S. Yoshioka, H. Murakami, A. Kunimatsu, T. Sato,

T. Kamei, T. Okada, and M. Suzuoki. 2.44-GFLOPS 300-MHz Floating-Point

Vector-Processing Unit for High-Performance 3D Graphics Computing. IEEE Jour-

nal of Solid-State Circuits, 35(7):1025 –1033, Jul 2000.

[59] T. B. Jablin, J. A. Jablin, P. Prabhu, F. Liu, and D. I. August. Dynamically Managed

Data for CPU-GPU Architectures. In CGO, 2012.

182

[60] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and D. I. August.

Automatic CPU-GPU Communication Management and Optimization. In PLDI,

2011.

[61] B. Jang, D. Schaa, P. Mistry, and D. Kaeli. Exploiting Memory Access Patterns to

Improve Memory Performance in Data-Parallel Architectures. IEEE Transactions

on Parallel and Distributed Systems, 22(1):105–118, 2011.

[62] J. Jeffers and J. Reinders. Intel Xeon Phi Coprocessor High Performance Program-

ming. Newnes, 2013.

[63] W. Jiang, V. Ravi, and G. Agrawal. A Map-Reduce System with an Alternate API

for Multi-Core Environments. In Proceedings of Conference on Cluster Computing

and Grid (CCGRID), 2010.

[64] Y. Jo and M. Kulkarni. Enhancing Locality for Recursive Traversals of Recur-

sive Structures. In Proceedings of the 2011 ACM International Conference on Ob-

ject Oriented Programming Systems Languages and Applications (OOPSLA 2011),

pages 463–482. ACM, 2011.

[65] Y. Jo and M. Kulkarni. Automatically Enhancing Locality for Tree Traversals with

Traversal Splicing. In Proceedings of the 2012 ACM International Conference

on Object Oriented Programming Systems Languages and Applications (OOPSLA

2012). ACM, 2012.

[66] E. Jones, T. Oliphant, and P. Peterson. SciPy: Open Source Scientific Tools for

Python. http://www. scipy. org/, 2001.

[67] Y.-L. Ju and H. G. Dietz. Reduction of Cache Coherence Overhead by Compiler

Data Layout and Loop Transformation. In LCPC, 1992.

[68] C. Jung, D. Lim, J. Lee, and Y. Solihin. Helper Thread Prefetching for Loosely-

Coupled Multiprocessor Systems. In The 20th International Conference on Parallel

and Distributed Processing Symposium, (IPDPS 2006), pages 10–pp. IEEE, 2006.

[69] Junichiro and Makino. Vectorization of a Treecode. Journal of Computational

Physics, 87(1):148 – 160, 1990.

[70] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. Nguyen, T. Kaldewey, V. Lee,

S. Brandt, and P. Dubey. FAST: Fast Architecture Sensitive Tree Search on Modern

CPUs and GPUs. In Proceedings of the 2010 International Conference on Manage-

ment of Data (SIGMOD 2010), pages 339–350. ACM, 2010.

[71] D. Kim and D. Yeung. Design and Evaluation of Compiler Algorithms for

Pre-execution. ACM SIGARCH Computer Architecture News (ASPLOS 2002),

30(5):159–170, 2002.

183

[72] S. Kim and H. Han. Efficient SIMD Code Generation for Irregular Kernels. In

Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of

Parallel Programming (PPoPP 2012), pages 55–64. ACM, 2012.

[73] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih. PyCUDA:

GPU Run-Time Code Generation for High-Performance Computing. Arxiv preprint

arXiv:0911.3456, 2009.

[74] J. Knoop, O. Ruething, and B. Steffen. Lazy Code Motion. volume 27, pages 224–

234, San Francisco, CA, 1992.

[75] J. Knoop and B. Steffen. Optimal Interprocedural Partial Redundancy Elimination.

In Proceedings of the Poster Session of the 4th International Conference on Com-

piler Construction (CC92), 1992.

[76] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and P. Sadayappan. When

polyhedral transformations meet simd code generation. In Proceedings of the 34th

ACM SIGPLAN conference on Programming language design and implementation,

pages 127–138. ACM, 2013.

[77] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Casçaval. How Much

Parallelism is There in Irregular Applications? In Proceedings of the 14th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP

2009). ACM, 2009.

[78] R. Ladelsky. Matrix Flattening and Transposing in GCC. In GCC Summit Proceed-

ings, volume 2007, 2006.

[79] Lars and Hernquist. Vectorization of Tree Traversals. Journal of Computational

Physics, 87(1):137 – 147, 1990.

[80] C. Lattner and V. S. Adve. Automatic Pool Allocation: Improving Performance by

Controlling Data Structure Layout in the Heap. In PLDI, pages 129–142. ACM,

2005.

[81] S. Lee and R. Eigenmann. OpenMPC: Extended OpenMP Programming and Tuning

for GPUs. In SC, 2010.

[82] K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory Systems. ACM

Trans. Comput. Syst., 7(4), Nov. 1989.

[83] X. Li and G. Agrawal. Supporting XML-Based High-level Interfaces Through Com-

piler Technology. In Proceedings of Languages and Compilers for Parallel Comput-

ing (LCPC), Oct. 2003.

184

[84] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey. Efficient sparse matrix-vector

multiplication on x86-based many-core processors. In Proceedings of the 27th in-

ternational ACM conference on International conference on supercomputing, pages

273–282. ACM, 2013.

[85] J. Lu, A. Das, W. Hsu, K. Nguyen, and S. Abraham. Dynamic Helper Threaded

Prefetching on the Sun UltraSPARC R© CMP Processor. In Proceedings of 38th

Annual IEEE/ACM International Symposium on Microarchitecture, (MICRO 2005),

pages 12–pp. IEEE, 2005.

[86] M. Lu, L. Zhang, H. P. Huynh, Z. Ong, Y. Liang, B. He, R. S. M. Goh, and R. Huynh.

Optimizing the mapreduce framework on intel xeon phi coprocessor. arXiv preprint

arXiv:1309.0215, 2013.

[87] C.-K. Luk and T. C. Mowry. Compiler-Based Prefetching for Recursive Data Struc-

tures. In ASPLOS, pages 222–233, 1996.

[88] L. Luo, M. Wong, and W. Hwu. An Effective GPU Implementation of Breadth-first

Search. In Proceedings of the 47th Design Automation Conference (DAC 2010),

pages 52–55. ACM, 2010.

[89] W. Ma and G. Agrawal. A Compiler and Runtime System for Enabling Data Min-

ing Applications on GPUs. In Proceedings of Principles and Practices of Parallel

Programming (PPoPP), Feb. 2009.

[90] W. Ma, S. Krishnamoorthy, O. Villa, and K. Kowalski. Acceleration of Streamed

Tensor Contraction Expressions on GPGPU-Based Clusters. In Proceedings of the

2010 IEEE Cluster. IEEE, 2010.

[91] S. S. Mannarswamy, R. Govindarajan, and R. Surendran. Region Based Structure

Layout Optimization by Selective Data Copying. In PACT, pages 338–347. IEEE

Computer Society, 2009.

[92] K. McKinley. A Compiler Optimization Algorithm for Shared-Memory Multipro-

cessors. IEEE Transactions on Parallel and Distributed Systems, 9(8):769–787,

1998.

[93] M. Méndez-Lojo, D. Nguyen, D. Prountzos, X. Sui, M. Hassaan, M. Kulkarni,

M. Burtscher, and K. Pingali. Structure-Driven Optimizations for Amorphous Data-

Parallel Programs. In PPOPP, pages 3–14. ACM, 2010.

[94] J. Meng, J. Sheaffer, and K. Skadron. Exploiting Inter-Thread Temporal Locality

for Chip Multithreading. In Proceedings of the 2010 IEEE International Symposium

on Parallel & Distributed Processing (IPDPS 2010), pages 1–12. IEEE, 2010.

185

[95] J. Meng and K. Skadron. A performance study for iterative stencil loops on gpus

with ghost zone optimizations. International Journal of Parallel Programming,

39(1):115–142, 2011.

[96] D. Merrill, M. Garland, and A. Grimshaw. Scalable GPU Graph Traversal. In

Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPoPP 2012), pages 117–128. ACM, 2012.

[97] P. Miller. PyMPI-An Introduction to Parallel Python Using MPI. Livermore National

Laboratories, Jan, 2002.

[98] J. S. Moore and R. Boyer. A Fast String Searching Algorithm. Communications of

the ACM, pages 762–772, 1977.

[99] E. Morel and C. Renvoise. Global Optimization by Suppression of Partial Redun-

dancies. Commun. ACM, 22(2):96–103, 1979.

[100] A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg. OpenCL Programming

Guide. Pearson Education, 2011.

[101] A. D. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey. 3.5-d blocking op-

timization for stencil computations on modern cpus and gpus. In SC, pages 1–13.

IEEE, 2010.

[102] M. Nicola and J. John. XML Parsing: a Threat to Database Performance. In Pro-

ceedings of the Twelfth International Conference on Information and Knowledge

Management (CIKM 2003), pages 175–178. ACM, 2003.

[103] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization of interleaved data for simd.

In PLDI, pages 132–143. ACM, 2006.

[104] C. NVIDIA. CUBLAS Library. NVIDIA Corporation, Santa Clara, California,

2008.

[105] C. NVIDIA. Programming Guide, 2008.

[106] C. NVIDIA. NVIDIA CUDA C Programming Guide. NVIDIA Corporation, 2013.

[107] T. Oliphant. A Guide to NumPy, volume 1. Trelgol Publishing, 2006.

[108] S. Pai, R. Govindarajan, and M. J. Thazhuthaveetil. Fast and Efficient Auto-

matic Memory Management for GPUs Using Compiler-Assisted Runtime Coher-

ence Scheme. In PACT, 2012.

[109] V. K. Paleri, Y. N. Srikant, and P. Shankar. Partial Redundancy Elimination: a Sim-

ple, Pragmatic, and Provably Correct Algorithm. Sci. Comput. Program., 48(1):1–

20, 2003.

186

[110] S. Pennycook, C. Hughes, M. Smelyanskiy, and S. Jarvis. Exploring simd for molec-

ular dynamics, using intel xeon processors and intel xeon phi coprocessors. 2013.

[111] A. Porterfield. Software Methods for Improvement of Cache Performance on Super-

computer Applications. Rice University, Department of Computer Science, 1989.

[112] J. Prins and D. Palmer. Transforming High-Level Data-Parallel Programs into Vector

Operations. In PPOPP, pages 119–128. ACM, 1993.

[113] D. J. Quinlan. ROSE: Compiler Support for Object-Oriented Frameworks. Parallel

Processing Letters, 10(2/3):215–226, 2000.

[114] J. Rao and K. Ross. Making B+-Trees Cache Conscious in Main Memory. In Pro-

ceedings of the 2000 ACM SIGMOD International Conference on Management of

Data (SIGMOD 2000), volume 29, pages 475–486. ACM, 2000.

[115] N. Ravi, Y. Yang, T. Bao, and S. Chakradhar. Apricot: an Optimizing Compiler

and Productivity Tool for x86-Compatible Many-Core Coprocessors. In ICS, pages

47–58, 2012.

[116] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-Core Pro-

cessor Parallelism. O’Reilly Media, Inc., 2010.

[117] B. Ren and G. Agrawal. Compiling Dynamic Data Structures in Python to Enable the

Use of Multi-core and Many-core Libraries. In PACT, pages 68–77. IEEE Computer

Society, 2011.

[118] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In Proceedings

of the 13th USENIX Conference on System Administration (LISA 1999), pages 229–

238. USENIX, 1999.

[119] T. Rognes and E. Seeberg. Six-Fold Speed-up of Smithwaterman Sequence Database

Searches Using Parallel Processing on Common Microprocessors. 16(8):699–706,

2000.

[120] B. Saha, X. Zhou, H. Chen, Y. Gao, S. Yan, M. Rajagopalan, J. Fang, P. Zhang,

R. Ronen, and A. Mendelson. Programming Model for a Heterogeneous x86 Plat-

form. In PLDI, 2009.

[121] V. A. Saraswat, V. Sarkar, and C. von Praun. X10: Concurrent Programming for

Modern Architectures. In PPoPP, 2007.

[122] D. Scarpazza and G. Russell. High-Performance Regular Expression Scanning on

the Cell/B.E. Processor. In Proceedings of the 23rd International Conference on

Supercomputing (ICS 2009), pages 14–25. ACM, 2009.

187

[123] M. Schatz, C. Trapnell, A. Delcher, and A. Varshney. High-Throughput Sequence

Alignment using Graphics Processing Units. BMC Bioinformatics, 8(1):474, 2007.

[124] J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey. PALM: Parallel

Architecture-Friendly Latch-Free Modifications to B+ Trees on Many-Core Proces-

sors. PVLDB, 4(11):795–806, 2011.

[125] T. Sharp. Implementing Decision Trees and Forests on a GPU. Computer Vision

(ECCV 2008), pages 595–608, 2008.

[126] A. Singh. Optimization of geometric multigrid for emerging multi-and manycore

processors.

[127] S. Solomon, P. Thulasiraman, and R. Thulasiram. Exploiting Parallelism in Iterative

Irregular Maxflow Computations on GPU Accelerators. In Proceedings of the 12th

IEEE International Conference on High Performance Computing and Communica-

tions (HPCC 2010), pages 297 –304. IEEE, 2010.

[128] M. M. Strout, L. Carter, and J. Ferrante. Compile-Time Composition of Run-Time

Data and Iteration Reorderings. In PLDI, pages 91–102, 2003.

[129] K. Thompson. Programming Techniques: Regular Expression Search Algorithm.

Commun. ACM, 11:419–422, June 1968.

[130] C. Trapnell and M. Schatz. Optimizing Data Intensive GPGPU Computations for

DNA Sequence Alignment. Parallel Computing, 35(8):429–440, 2009.

[131] S. Unkule, C. Shaltz, and A. Qasem. Automatic Restructuring of GPU Kernels for

Exploiting Inter-Thread Data Locality. In Compiler Construction (CC 2012), pages

21–40. Springer, 2012.

[132] H. L. A. van der Spek, S. Groot, E. M. Bakker, and H. A. G. Wijshoff. A

Compile/Run-time Environment for the Automatic Transformation of Linked List

Data Structures. IJPP, 36(6):592–623, 2008.

[133] H. L. A. van der Spek, C. W. M. Holm, and H. A. G. Wijshoff. How to Unleash Array

Optimizations on Code Using Recursive Data Structures. In T. Boku, H. Nakashima,

and A. Mendelson, editors, ICS, pages 275–284. ACM, 2010.

[134] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. Markatos, and S. Ioannidis. Reg-

ular Expression Matching on Graphics Hardware for Intrusion Detection. In Recent

Advances in Intrusion Detection, volume 5758 of Lecture Notes in Computer Sci-

ence, pages 265–283. Springer Berlin / Heidelberg, 2009.

[135] M. Wegman and F. Zadeck. Constant Propagation with Conditional Branches.

TOPLAS, 13(2):181–210, 1991.

188

[136] B. Wu, Z. Zhao, E. Z. Zhang, Y. Jiang, and X. Shen. Complexity analysis and

algorithm design for reorganizing data to minimize non-coalesced memory accesses

on gpu. In Proceedings of the 18th ACM SIGPLAN symposium on Principles and

practice of parallel programming, pages 57–68. ACM, 2013.

[137] S. Wu, D. Jiang, B. Ooi, and K. Wu. Efficient B-Tree Based Indexing for Cloud

Data Processing. PVLDB, 3(1):1207–1218, 2010.

[138] X. Yan and J. Han. gSpan: Graph-Based Substructure Pattern Mining. In Pro-

ceedings of the 2002 IEEE International Conference on Data Mining (ICDM 2002),

pages 721 – 724. IEEE, 2002.

[139] Y. Yan, M. Grossman, and V. Sarkar. JCUDA: A Programmer-Friendly Interface

for Accelerating Java Programs with CUDA. In Euro-Par 2009, pages 887–899.

Springer, 2009.

[140] E. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen. On-the-Fly Elimination of Dy-

namic Irregularities for GPU Computing. In ASPLOS, pages 369–380, 2011.

[141] E. Zhang, Y. Jiang, and X. Shen. Does Cache Sharing on Modern CMP Matter to the

Performance of Contemporary Multithreaded Programs? In Proceedings of the 15th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

(PPOPP 2010), pages 203–212. ACM, 2010.

[142] W. Zhang, D. Tullsen, and B. Calder. Accelerating and Adapting Precomputation

Threads for Effcient Prefetching. In 13th International Symposium on High Perfor-

mance Computer Architecture, 2007. (HPCA 2007), pages 85–95. IEEE, 2007.

[143] Y. Zhang, W. Ding, J. Liu, and M. Kandemir. Optimizing Data Layouts for Parallel

Computation on Multicores. In PACT, 2011.

[144] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array Regrouping and Structure

Splitting Using Whole-Program Reference Affinity. In Proceedings of the ACM

SIGPLAN 2004 Conference on Programming Language Design and Implementation

(PLDI 2004), pages 255–266. ACM, 2004.

[145] X. Zhou, W. Chen, and W. Zheng. Cache sharing management for performance fair-

ness in chip multiprocessors. In Proceedings of the 18th International Conference

on Parallel Architectures and Compilation Techniques (PACT 2009), pages 384–393.

IEEE, 2009.

[146] Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng, and Q. Dong. GPU-based NFA

Implementation for Memory Efficient High Speed Regular Expression Matching. In

Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of

Parallel Programming (PPoPP 2012), pages 129–140. ACM, 2012.

189

