
Automating and Optimizing Data Transfers for Many-core
Coprocessors

Bin Ren*, Nishkam Ravi†, Yi Yang†, Min Feng†, Gagan Agrawal*, Srimat Chakradhar†
*Dept. of Computer Science and Engineering, The Ohio State University

†NEC Laboratories America
{ren, agrawal}@cse.ohio-state.edu, {nravi, yyang, mfeng, chak}@nec-labs.com

ABSTRACT

Orchestrating data transfers between CPUs and a coprocessor man-

ually is cumbersome, particularly for multi-dimensional arrays and

other data structures with multi-level pointers, which are common

in scientific computations. This work describes a system that in-

cludes both compile-time and runtime solutions for this problem,

with the overarching goal of improving programmer productivity

while maintaining performance.

We implemented our best compile-time solution, partial lineariza-

tion with pointer reset, as a source-to-source transformation, and

evaluated our work by multiple C benchmarks. Our experiment

results demonstrate that our best compile-time solution can per-

form 2.5x-5x faster than original runtime solution, and the CPU-

Coprocessor code with it can achieve 1.5x-2.5x speedup over the

16-thread CPU version.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: [Concurrent Programming —

Parallel Programming]

Keywords

Coprocessors, Static Analysis, Runtime Analysis, Offloading

1. TECHNICAL DESCRIPTION
Accelerating parallel computation using many-core coprocessors

requires specification of code regions that can be profitably of-

floaded to the coprocessor and executed as independent tasks. These

code regions have been specified by the developer using low-level

APIs till recently. The software available with Xeon Phi, as well as

the emerging directive-based models for GPU programming, are

providing much higher-level APIs for using accelerators. However,

even with such high-level APIs, there are many challenging issues.

Particularly, orchestrating data transfers for multi-level pointers us-

ing in/out or equivalent clauses is cumbersome and error-prone.

With the goal of further improving productivity of HPC pro-

grammers while also maintaining performance, we focus on eas-

ing data transfer related efforts, considering both compile-time and

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the owner/author(s).

ICS’14, June 10–13, 2014, Muenchen, Germany
ACM 978-1-4503-2642-1/14/06.
http://dx.doi.org/10.1145/2597652.2600114

runtime solutions. While such data transfers for static arrays can

be handled by ICC compiler1 today, and solutions proposed pre-

viously by the literature [2, 1] can handle dynamically allocated

one-dimensional arrays, the open problem is handling dynamically

allocated multi-dimensional arrays or other structures with multi-

level pointers.

It turns out that the problem is quite complex, particularly be-

cause the choice of the mechanism used for automatically inserting

data transfer clauses impacts memory layouts and access functions

(subscripts) on the coprocessor. Because of the nature of the accel-

erators and complex interactions between the resulting source-code

and the native compiler on the accelerator, the performance can be

impacted in multiple ways. Overall, our work considers four met-

rics: 1) Minimization of redundant data transfers, 2) Utilization

of Direct Memory Accesses (DMA), 3) Minimization of memory

allocation overheads on the accelerator (or even the host), and 4)

Preservation of aggressive memory-related compiler optimizations

(e.g., vectorization and prefetching) by proper memory layout and

accesses for the accelerator.

Our work describes an automated framework that uses both com-

pile time and runtime solutions to address this problem. This sys-

tem includes a simple but effective compile-time solution, where

we linearize the heap without having to modify the memory ac-

cesses (subscripts), by using a pointer reset approach. This method

scores well on all of our metrics and maintains code readability.

For the cases where our compile-time approach cannot apply,

we also explore runtime solutions. The background is that a sys-

tem like Xeon Phi also has shared memory implementations avail-

able between the main processor and accelerator. We also investi-

gate and optimize the performance of the runtime memory manage-

ment approach, by providing certain improvements to the existing

coherence protocol. The best compile-time solution consistently

performs better than the optimized runtime scheme, but is not as

generally applicable. In order to combine performance with gen-

erality, we describe a mechanism for integrating the two disjoint

approaches using a simple source-to-source transformation.

We have implemented our compile-time solution as a source-to-

source transformation using the Apricot framework and evaluated

it within the context of application execution on Xeon Phi copro-

cessor.

2. REFERENCES
[1] S. Lee and R. Eigenmann. OpenMPC: Extended OpenMP Programming and

Tuning for GPUs. In SC, 2010.

[2] N. Ravi, Y. Yang, T. Bao, and S. Chakradhar. Apricot: an Optimizing Compiler

and Productivity Tool for x86-Compatible Many-Core Coprocessors. In ICS,

pages 47–58, 2012.

1
Intel C++ Compiler. http://www.intel.com/Compilers.

177




