
A Programming System for Xeon Phis with Runtime SIMD
Parallelization

Xin Huo, Bin Ren, and Gagan Agrawal
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

huox@cse.ohio-state.edu, ren@cse.ohio-state.edu, agrawal@cse.ohio-state.edu

ABSTRACT
The Intel Xeon Phi offers a promising solution to coprocessing, since
it is based on the popular x86 instruction set. However, to fully uti-
lize its potential, applications must be vectorized to leverage the wide
SIMD lanes, in addition to effective large-scale shared memory par-
allelism. Compared to the SIMT execution model on GPGPUs with
CUDA or OpenCL, SIMD parallelism with a SSE-like instruction set
imposes many restrictions, and has generally not benefitted applica-
tions involving branches, irregular accesses, or even reductions in the
past. In this paper, we consider the problem of accelerating applica-
tions involving different communication patterns on Xeon Phis, with
an emphasis on effectively using available SIMD parallelism. We
offer an API for both shared memory and SIMD parallelization, and
demonstrate its implementation. We use implementations of over-
loaded functions as a mechanism for providing SIMD code, which
is assisted by runtime data reordering and our methods to effectively
manage control flow. Our extensive evaluation with 6 popular appli-
cations shows large gains over the SIMD parallelization achieved by
the production (ICC) compiler, and we even outperform OpenMP for
MIMD parallelism.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—Par-
allel programming; C.1.2 [Processor Architectures]: Multiple Data
Stream Architectures (Multiprocessors)—Single-instruction-stream,
multiple-data-stream processors (SIMD)

Keywords
Xeon Phi; SIMD; API; Communication Patterns

1. INTRODUCTION
Over the last 6-7 years, high-end computing systems have changed

significantly with respect to the intra-node architectures, with popu-
larity of coprocessors. Over the last 3 years, as many as three of the
five fastest supercomputers (at any time, based on the bi-annual top
500 list) in the world involved coprocessors on each node, as they
offered excellent performance-price and performance-power ratios.

A recent development along the same lines has been the emer-
gence of Xeon Phi chips, based on the Intel MIC architecture. Xeon
Phi is a promising system, because it allows x86 compatible soft-
ware to be used. Thus, users could potentially continue to use their
MPI and/or OpenMP applications, and not have to program in (and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS’14, June 10–13 2014, Munich, Germany.
Copyright 2014 ACM 978-1-4503-2642-1/14/06 ...$15.00.
http://dx.doi.org/10.1145/2597652.2597682.

learn a) new language like OpenCL or CUDA for the use of acceler-
ators. At the same time, there are many similarities between GPUs
and Xeon Phis. Both of these systems have a small amount of mem-
ory per thread/core, and moreover, both of them extensively employ
a form of SIMD parallelism. NVIDIA GPUs have relied on SIMT
(Single Thread Multiple Threads) model. Xeon Phi is built on top of
the long-existing Intel SSE (Streaming SIMD Instructions), and par-
ticularly, supports IMCI (Initial Many Core Instructions) instruction
set for use of SIMD. The SIMD width has been extended to 512 bits
(16 floats), potentially offering large benefits for applications.

Use of SSE-like instruction sets has always been a hard problem,
and it turns out that such parallelism has not been consistently used
for applications outside dense matrix or imaging kernels. Moreover,
there are significant programming differences between CUDA and
SSE-like instruction sets, since they target SIMT and SIMD mod-
els, respectively. Specifically, while coalesced memory accesses are
important for performance in SIMT programming, parallelism is still
available, whereas programmers need to explicitly create aligned and
contiguous accesses in the case of SSE or IMCI. Similarly, while
branches are automatically managed in SIMT, with masks internally
implemented, programmers or compilers must identify instructions
executed by all threads with SSE/IMCI.

Effectively exploiting the power of a coprocessor like Xeon Phi re-
quires that we exploit both MIMD and SIMD parallelism. While the
former can be done through Pthreads or OpenMP, it is much harder
to extract SIMD performance. This is because the restrictions on the
model make hand-parallelization very hard. At the same time, pro-
ductions compilers are unable to exploit SIMD parallelism for many
of the cases.

This paper focuses on the problem of application development on
any system that supports both shared memory parallelism and SSE-
like SIMD parallelism, with a specific emphasis on the Intel Xeon
Phi system. We describe an API and a runtime system that helps
extract both shared memory and SIMD parallelism. One of the key
ideas in our approach is to exploit the information about underlying
communication patterns, to both partition and schedule the computa-
tion for MIMD parallelism, and reorganize the data for achieving bet-
ter SIMD parallelism. While our approach is general, we currently
focus on stencil computations, generalized reductions, and irregular
reductions.

In the context of SIMD parallelization, though there is large vol-
ume of existing work on compiler-based code generation [7, 20, 9,
14], our work is driven by three observations. First, advanced fea-
tures, like scatter and gather operations and masks need to be ex-
ploited for supporting different types of applications with the IMCI
instruction sets. Second, increasing width requires that new approaches
be exploited, for example considering aggressive inter-iteration par-
allelism for irregular reductions, unlike the existing work on this
topic [14]. Finally, we observe that some of the advances in research
prototype compilers have not made it to production-level compilers
(as evidenced by our experiments with ICC compiler), and alternative
approaches to simplifying SIMD code generation may be needed.
Overall, with our approach, it is possible to use SIMD lanes for code

283

involving irregular accesses, reductions, and control flow, unlike the
previous work in this area.

Our work is significant in multiple ways: 1) We provide an end-to-
end application development system for the Xeon Phi architecture, or
more broadly, any system with both shared memory and SIMD paral-
lelism, 2) Our work can be viewed as providing a CUDA or OpenCL-
like programming API for SSE-like instructions, where the respon-
sibility for determining contiguous vs. non-contiguous accesses or
managing conditionals is the responsibility of the underlying library,
3) we offer potential intermediate language which may be generated
by a compiler (for example, systems similar to the ones that gen-
erate CUDA code), and subsequently, runtime transformations and
libraries be used for SIMD parallelization. Compared to the exist-
ing code generation approaches, we can simplify SIMD compilation
process and make it more portable.

We have extensively evaluated our framework using six applica-
tions, which involve generalized reductions, stencil computations,
and irregular reductions. Our evaluations shows: 1) on larger of
the two datasets used for each application, the SIMD paralleliza-
tion speedup from our system ranges from 1.6 to 7.8 (average of
2.8) whereas the corresponding gain from production compiler (ICC)
is between 0.95 and 3.5 (average of 1.5), 2) as compared to hand-
written IMCI code, the overheads of our framework is negligible,
3) by combining MIMD and SIMD parallelism on Xeon Phi, we
achieve a speedup between 33 and 580 over single thread execu-
tion, outperforming Pthreads with ICC based vectorization by an av-
erage of 1.9x, and 4) we outperform parallelism with OpenMP at
both MIMD and SIMD levels, even though we offer a comparable
programming API.

2. PARALLELIZATION AND PERFORMANCE
ISSUES IN INTEL XEON PHI

2.1 Intel Xeon Phi Architecture
The x86-compatible Intel Xeon Phi coprocessor, which is a latest

commercial release of the Intel Many Integrated Core (MIC) archi-
tecture, has already been incorporated in 9 of the top 100 supercom-
puters at the time of writing this paper [1]. MIC is designed to lever-
age existing x86 experience and benefit from traditional multi-core
parallelization programming models, libraries, and tools.

In the available MIC systems, there are 60 or 61 x86 cores orga-
nized with shared memory. These cores are low frequency in-order
ones, and each supports as many as 4 hardware threads. Addition-
ally, there are 32 512-bit vector registers on each core for SIMD op-
erations. The main memory sizes vary from 8 GB to 16 GB, and the
memory is shared by all cores. The L1 cache is 32 KB, entirely local
to each core, whereas each core has a coherent L2 cache, 512 KB,
where cache for different cores are interconnected in a ring.

Our work focuses on three important features of Intel MIC archi-
tecture, which need to be exploited for obtaining high performance:
Wide SIMD Registers and Vector Processing Units (VPU): VPU
has been treated as the most significant feature of Xeon Phi by many
previous studies [16, 27, 21, 6]. The reason is that the Intel Xeon
Phi coprocessor has doubled the SIMD lane width compared to In-
tel Xeon processor, i.e., 256-bit to 512-bit, which means that it is
possible to process 16 (8) identical floating point (double precision)
operations at the same time. In addition, we have a new 512-bit
SIMD instruction set called Intel Initial Many Core Instructions (In-
tel IMCI), which has built-in gather and scatter operations that allow
irregular memory accesses, a hardware supported mask data type,
and write-mask operations that allow operating on some specific ele-
ments within the same SIMD register. Even though all of these new
instructions could potentially be simulated by the programers in the
SIMD Streaming Extension (SSE) model, explicit new instructions
allow easier implementation of more irregular parallelism. Note that
SIMD instructions can be generated by the ICC compiler through
the auto-vectorization option, or the programmers could use IMCI
instruction set directly. The former needs low programming effort,
though current compilation systems have several limitations and do
not always obtain high performance. In comparison, the latter op-

tion can achieve the best performance, however, is tedious and error
prone, and creates non-portable code.
Large Number of Concurrent Threads: Each Xeon Phi core al-
lows up to 4 hyper-threads, in another word, we can have as many
as 240/244 hardware threads sharing the same memory on Xeon Phi.
This provides us with massive Multiple Instruction Multiple Data
(MIMD) parallelism with shared memory, which has not been com-
mon in the past.
Coherent Distributed L2 Cache: Intel Xeon Phi architecture uses
coherent L2 Cache with ring interconnection. When a L2 cache miss
occurs for a specific core, an address request is sent to the ring. If the
address is found in another core’s L2 cache, the corresponding data is
forwarded back along the ring. In worst case, the entire process may
take hundreds of clock cycles. Thus, Xeon Phi reduces the number
of L2 cache misses, but even an L2 cache hit can be very expensive.
Thus, data locality is crucial for the overall performance.

2.2 Our Approach
Our approach for providing a solution for application development

on Xeon Phi systems, including SIMD parallelization, is based on
the observation that most applications follow a small number of pat-
terns or dwarfs (e.g. as summarized by Collela and also described
in Berkeley landscape on parallel computing [3]). By exploiting
knowledge of individual patterns, needed data transformations and
partitioning approaches can be used. Indeed, many previous efforts
on SIMD (and SIMT) parallelization have focused specifically on
particular patterns, like stencil computations [5, 9, 8] or irregular re-
ductions [11, 14, 29].

We focus on a more general framework for specifying the com-
putations, but where underlying patterns are explicitly known and
exploited. Though the idea can be applied to a variety of patterns,
we focus on stencil computations, generalized reductions, and irreg-
ular reductions in this paper. Among these, stencil computations and
generalized reductions are well understood. As a background for our
presentation, we show an example of an irregular reduction here.

Real X(num_nodes), Y(num_edges) ; {* data arrays *}
Integer IA(num_edges,2) ; {* indirection array *}

for(i = 0; i < num_edges; i++) {
X(IA(i,1)) = X(IA(i,1)) + Y(i) ;
X(IA(i,2)) = X(IA(i,2)) - Y(i) ;

}

Figure 1: A simple loop involving indirection

A typical irregular reduction is shown in Figure 1. In iteration i
of the loop, the code makes two indirect references to the array X
using IA(i, 1) and IA(i, 2). Codes from many important scientific
and engineering domains contain loops with such indirection array
sections. When a problem is modeled using an unstructured grid, a
list of edges (with the nodes they connect) is explicitly stored. A
computation that iterates over all edges in the grid and updates the
attributes associated with the two end-points of the edge will have
structure similar to the code in Figure 1. However, such codes can
arise in other contexts - for instance, molecular dynamics contains
similar loops, as the nodes represent molecules, and the edges denote
the interaction between a pair of molecules.

2.3 Challenges and Opportunities
There are two levels of parallelism one can seek on the Xeon Phi:

MIMD parallelism supported by large number of hyper-threads, and
SIMD parallelism provided by the wide VPU. There are challenges
associated with each of them, as well as opportunities to exploit in-
formation from specific communication patterns. The issues for ap-
plications with different types of patterns are summarized in Table 1.

2.3.1 MIMD Parallelization Issues
A Xeon Phi can be viewed as a SMP machine, in which all the

cores not only share the same memory address, but also a coherent

284

Com Pattern MIMD Challenge SIMD Challenge

Generalized Reduction job partition unaligned/non-unit-stride access
control flow dependency
data dependency/conflicts

Stencil Computation job partition unaligned memory access
control flow dependency

Irregular Reduction job partition unaligned/random memory access
load balance control flow dependency

data dependency/conflicts

Table 1: Parallelization Challenges of Different Communication Pat-
terns

cache space. Thus, the traditional MIMD parallelization methods,
like OpenMP, can also be applied with the support of the Intel com-
piler. Yet, there are many opportunities for exploiting information
about specific communication patterns.

Particularly, applications with different communication patterns
usually have different requirements on task partitioning and schedul-
ing. For stencil computation and generalized reductions, static schedul-
ing could provide better performance, since it can achieve load bal-
ance with a small scheduling overhead. For irregular reductions,
a technique like the reduction space partitioning [11] can be used
to avoid conflicts between the threads. Moreover, dynamic, fine-
grained, scheduling could achieve better performance over static schedul-
ing by achieving better load balance.

Communication pattern specific information can also help in other
ways. Data reorganization is one of the optimizations to support vec-
torization, but data reordering can also provide better cache locality
for irregular reductions. These optimizations are normally not per-
formed by a more general framework, such as an OpenMP imple-
mentation.

2.3.2 SIMD Parallelization Issues
In SIMD execution, one memory access operation can load (store)

multiple data elements simultaneously from (to) the memory. How-
ever, there are strict restrictions on how and when such operations
can be applied.
Unaligned/Non-unit Stride Accesses: For using SIMD parallelism,
the start of the read or write memory address has to be 64 bytes
aligned on Xeon Phi. But, it is difficult to satisfy this requirement
for almost any kind of application. For instance, stencil computation
usually needs to access one node’s neighbors in different directions.
In a one dimension matrix, if the address of matrix[i] is aligned by
64 bytes, addresses of its neighbors, matrix[i-1] and matrix[i+1], will
not be aligned. Similar problems will also arise for a matrix with
more dimensions. In addition, different SIMD lanes can only access
continuous memory address. Thus, accesses of elements from an ar-
ray of structures or data accessed through indirection arrays cannot
exploit SIMD parallelism directly.
Control Flow Dependencies: At any time, all the SIMD lanes have
to execute the same instructions on different data elements. However,
in the different branches of an if-else clause, different lanes may ex-
ecute different instructions, which is not supported by SIMD. This
kind of control flow arises very commonly in generalized reduction
and irregular reductions.
Data Dependencies and Conflicts: When different SIMD lanes try
to write to the same location, the behavior is undefined, as there is
no locking operation. In the case of both generalized reductions and
irregular reductions, such write conflicts arise. Thus, how to solve the
data dependencies and conflicts for SIMD effectively and efficiently
is another challenge.

3. API FOR APPLICATION DEVELOPMENT ON
XEON PHI

Our parallelization framework provides a set of user API. Next,
we introduce our MIMD and SIMD API, and then show how to use
it in a variety of sample kernels.

User Interface API (class Task)
API Descriptions

struct Configuration Configuration of the Task size, offset, and
accessing stride.

enum Patterns
Declare the communication pat-
ter(Generalized Reduction, Stencil, and
Irregular Reduction).

tuple</*Parameter
Lists*/>Parameters

Define the input parameters for a specific ap-
plication.

void Kernel(vector<int>
&index)

The kernel function provides the computing
logic for a single data, given by the index
vector.

MIMD Parallel Framework API (class MIMD_Framework)
API Descriptions

void run(Task &task)

The run function has the capability of reg-
ister the user defined task to MIMD frame-
work, invoking runtime optimizations, task
partitioning, and scheduling on MIC archi-
tecture.

void join() It will block, until the execution on MIC is
finished.

Table 2: User Interface and MIMD Parallel Framework API

3.1 Shared Memory (MIMD) API
MIMD parallelization API is shown in Table 2. The first four

parameters correspond to a Task class, which has four attributes,
Configuration, Pattern, Parameters, and the Kernel function. The
Configuration comprises three vector type variables, representing the
size, offset, and stride of the computation space across different di-
mensions. Pattern is used to indicate which communication pattern
the given task belongs to. Based on the pattern information, MIMD
parallelization framework applies different partitioning methods, and
this information is used by the SIMD parallel framework as well. In
addition, users need to define the Parameters types, which includes
the input and output parameters for a specific application. The most
important part in the user interface is the Kernel function, which
gives the smallest computation logic on one data element. It has
only one input parameter representing the index of the target data el-
ement. Moreover, users need to guarantee that the kernel function
is independent between different input indices. The independency
can be achieved by either replicating the shared writing data or using
locks while updating.

The last two API are related to the execution and optimization of
the applications. The run function receives a user defined task, with
a specification of the four set of parameters, and automatically in-
vokes runtime optimizations, including partitioning and scheduling
methods, for parallel execution on the Xeon Phi. The strategies em-
ployed in partitioning, scheduling, and optimizations are based on
the parameters from the user interface. We will elaborate it in detail
in Section 4. After these preprocessing, run function will launch a
group of threads, each of which executes the kernel function with
different input indices. The run function is a non-blocking function,
which will return immediately after launching a job. Next, the users
can call the join function to wait, until the execution of the task fin-
ishes.

Overall, our MIMD API provides a way to port applications to the
Xeon Phi architecture with a very small efforts on part of the users.
After giving a task definition, users can call run(Task) directly to
execute the target applications.

3.2 SIMD API
The main idea of our SIMD API is to express collections of data

elements on which parallel operations can be applied. The actual lay-
out and scheduling of the operations is left up to the runtime system.

Before introducing the API for operations, we first introduce the
definition of the new data types. We introduce three data types in
SIMD API, which are shown in Table 3. Scalar Type is the basic
data type, which only contain one data element - the implication is
that if this variable is involved in a SIMD operation, it will be shared

285

Data Type Name Description

Scalar Type int, float, double, ...

Data is shared by all the SIMD
lanes. All the basic data types or
temporary variables are belonged
to shared type.

Vector Type vint, vfloat, vdouble, ... It includes multiple data scaling to
all the SIMD lanes.

Mask Type mask It helps handling control flow in
vectorization

Table 3: The data types defined in SIMD API

vint v1, v2; int s; mask m;
op represents the supported mathematic or logic operations;
API Examples

Assignment API
Support assignment between vector types,
and scalar type to vector type.

v1 = v2; v1 = s; v1 op= v2;
v1 op= s;

Mathematic API
Support most mathematic operations, in-
cluding +, -, *, /, %, between vector types
and scalar types.

v1 = v2 op v1; v1 = v2 op
s;

Logic API
Support most logic operations, including ==,
!=, <, >, <=, >=, between vector types and
scalar types. Return type is mask type.

m = v1 op v2; m = v1 op s;

Load/Store API
void load(void *src); v1.load(addr);
void store(void *dst); v1.store(addr);
void load(void *src, const vint &index, int
scale) v1.load(addr,index,scale);

void store(void *dst, const vint &index, int
scale) v1.store(addr,index,scale);

Generalized Reduction API
template<class ReducComp = reducAdd >
void reduction(int *update, int scale, int off-
set, vint *index, type value, [mask m])

reduction(update, scale,
offset, index, v1);

Mask API
mask() v1.mask()

Mask_State Object
Members Descriptions
mask m mask type variable

type old_val the default value for unset
vector lanes

set_mask(const mask &m, type &old_val); set mask and default value

void clear_mask(); clear default value and set
all vector lanes to active

Table 4: SIMD API

by all the SIMD lanes. In contrast, Vector Type, which is represented
as vint or vfloat, includes an array of data elements. Thus, if we
declare one array as Vector Type, each time SIMD lanes will access
a group of contiguous data elements. However, when SIMD lanes
access a Scalar Type, the same data element will be automatically
duplicated for all the lanes. This automatic duplication is supported
by the implicit conversion from Scalar Type to Vector Type in our
implementation.

The last data type is the Mask Type. Because SIMD vectorization
does not support control flow, we require use of a mask variable to
express what computations are applied on which elements. The mask
type is implemented as a bit set, in which each bit represents one vec-
tor lane. Two values, 1 and 0, represent set and unset, respectively.

The supported operations on different data types are shown in Ta-
ble 4. The main idea is to overload most operators on vector types,
or even operations involving one vector type and a scalar type. Thus,
the difference between the serial codes and the vectorized codes by
using our API is quite small, as we will show through several exam-
ples. As shown in Table 4, for assignments and mathematical opera-
tions, users can use the same operator in serial codes for vector types
and a combination of vector and scalar types. The overloaded oper-

ator implementation will automatically perform vectorization on the
input parameters. For logic operations, the difference from the tra-
ditional logic operators is with respect to the return type. Because
there is no support for control flow in SIMD, in the logic operation
API, the return type is the mask type, which is then used to express
the conditional clause that will be applied for a particular element.

Moving onto the rest of the API, there are two types of load and
store functions, which are for reading and writing contiguous and
non-contiguous addresses, respectively. A load (store) with a sin-
gle source or destination parameter provide the function of read and
write between the vector type and a contiguous memory address
space. On the other hand, a function with the extra index and scale
parameters helps exploit gather and scatter operations in the IMCI
instruction set for non-contiguous memory accessing. For the ap-
plications, which data reorganization can be applied, such as gen-
eralized reductions and stencil computations, there is no need for
non-contiguous load and store API. However, for irregular applica-
tions, in which data reorganization cannot eliminate indirect memory
accessing, non-contiguous load and store API can provide an alter-
native way.

One specific feature is a reduction function. As we had stated be-
fore, multiple SIMD lanes cannot update the same element, and as a
result, implementation of a reduction function using SIMD instruc-
tions is more complex. The specific reduction function is given as a
parameter in the template. Our runtime system ensures that SIMD
lanes are correctly used for such computation.

The goal of the mask function is the conversion of a unmask vec-
tor type to the mask vector type. After this conversion, all the opera-
tions on this collection start using the mask_state object to determine
which elements an operation is applied to. Function set_mask is used
to setup the mask for current mask_state object on one thread, which
is then used till it is cleared or updated.

3.3 Sample Kernels
We now illustrate the API using functions involving different com-

munication patterns. We establish how code using our API is similar
to sequential code, and much simpler than a hand-written vectorized
code.

3.3.1 Stencil Application

Listing 1: Sobel: Stencil Computation with serial codes

1 void kernel(int i, int j){
2 float Dx = 0.0, Dy = 0.0;
3 for(int p = -1; p <= 1; p++){
4 for(int q = -1; q <= 1; q++){
5 Dx += weight_H[p+1][q+1]*b[i+p][j+q];
6 Dy += weight_V[p+1][q+1]*b[i+p][j+q];
7 }
8 }
9 float z = sqrt(Dx*Dx + Dy*Dy);

10 a[i][j] = z;
11 }

Listing 2: Sobel: Stencil Computation with SIMD API

1 void kernel(int i, int j){
2 vfloat Dx = 0.0, Dy = 0.0;
3 //Compute the weight for a node in a 3x3 area
4 for(int p = -1; p <= 1; p++){
5 for(int q = -1; q <= 1; q++){
6 Dx += weight_H[p+1][q+1]*b[X(i,p,q)][Y(j,p,q)];
7 Dy += weight_V[p+1][q+1]*b[X(i,p,q)][Y(j,p,q)];
8 }
9 }

10 vfloat z = sqrt(Dx*Dx + Dy*Dy);
11 z.store(&a[i][j]);
12 }

286

Listing 3: Sobel: Stencil Computation with manual vectorization

1 void kernel(int i, int j){
2 __m512 Dx = _mm_set1_ps(0.0), Dy = _mm_set1_ps(0.0);
3 //Compute the weight for a node in a 3x3 area
4 for(int p = -1; p <=1; ++p){
5 for(int q = -1; q <=1; ++q){
6 __m512 *tmp = (__m512*)&b[i+q][j+p*vec_width];
7 __m512 tmpx = _mm512_mul_ps(*tmp,weight_H[p+1][q+1]);
8 Dx = _mm512_add_ps(Dx, tmpx);
9 __m512 tmpy = _mm512_mul_ps(*tmp,weight_V[p+1][q+1]);

10 Dy = _mm512_add_ps(Dy, tmpy);
11 }
12 }
13 __m512 sqDX = _mm512_mul_ps(Dx, Dx);
14 __m512 sqDy = _mm512_mul_ps(Dy, Dy);
15 __m512 ret = _mm512_add_ps(sqDx, sqDy);
16 ret = _mm512_sqrt_ps(ret);
17 _mm512_store_ps(&a[i][j], ret);
18 }

In Listing 1, 2, and 3, we take a simple stencil computation,
the sobel filter, and compare serial, vectorized using our API, and
manually vectorized versions.

Comparing between Listing 1 and 2, the vectorized codes in our
API are almost as same as the serial version, except new vector types
(vfloat) are introduced to replace the original scalar types (float). An-
other difference is that the assignment from vector type to scalar type
is achieved through the store API, because it needs to involve mul-
tiple data copies from the vector variable to the target memory lo-
cations. Also, to facilitate a possible data reorganization at runtime,
a function Dim(idx, offset1, offset2, . . .) is provided to calculate the
transformed index in each dimension by applying offsets on differ-
ent dimensions. For example, in Listing 2, X(i, p, q) calculates the
transformed index in the X-dimension when applying p and q offsets
on the original X and Y dimensions, respectively.

To summarize, our API provide a convenient way to achieve vec-
torization with very little modification on the serial code. It is also
clear that the manual vectorization codes, shown in Listing 3, in-
troduces more new Intel IMCI API, and is much more complicated
compared to serial and our SIMD API versions, as about 40% extra
lines are added.

3.3.2 Generalized Reduction

Listing 4: Kmeans: Generalized Reduction with SIMD API

1 void kernel(vfloat *data, int i){
2 vfloat min = FLT_MAX;
3 vint min_index = 0;
4 for(int j = 0; j < k; ++j){
5 //step 1 (Computation): compute the distance
6 vfloat dis = 0.0;
7 for(int m = 0; m < 3; ++m){
8 dis += (data[i+m*n]-cluster[j*3+m])*
9 (data[i+m*n]-cluster[j*3+m]);

10 }
11 dis = sqrt(dis);
12 //step 2 (Control flow): update index
13 mask m = dis < min;
14 set_mask(m, min);
15 min.mask() = dis.mask();
16 set_mask(m, min_index);
17 min_index.mask() = j;
18 }
19 //step 3 (Reduction): reduction
20 reduction(update, 5, min_index, 0, data[i]);
21 reduction(update, 5, min_index, 1, data[i+n]);
22 reduction(update, 5, min_index, 2, data[i+n*2]);
23 reduction(update, 5, min_index, 3, 1.0);
24 reduction(update, 5, min_index, 4, min);
25 }

In Listing 4, we show the main function of Kmeans, a simple data
mining kernel, with vectorization by using our API. The procedures
of Kmeans can be divided into three steps: 1) compute the distance
between one node and the candidate clusters, 2) update index to the
cluster with the minimum distance, 3) do reduction on the cluster
found in the step 2. Thus, the step 1 is only simple arithmetic op-
erations, whereas steps 2 and 3 involve control flow and generalized
reduction, respectively.

In the step 1, similar to the stencil computation, the only modifi-
cation is the data types of corresponding variables are changed from

scalar type to the vector type. As a result, the computation is au-
tomatically vectorized by loading values from the data array to all
vector lanes, and computing the distance between the data in each
lane and the clusters. The step 2 introduces a branch, specifically, if
the distance is smaller than the current minimum distance (min), we
update the min and min_index, otherwise, min and min_index
are not changed. Using our mask API, we represent this computation
as if-else branch, in which the else branch just assigns its own value
to itself. As we can see in step 2 of the Listing 4, a mask variable
m is returned by the logic computation. Then, m and the default
value for else branch are set by set_mask function. Next, the mask()
function will do the conversion from unmask vector type to the mask
vector type. In the step 3, reduction is performed on the array update
with the add operation. It is not safe to perform the reduction using
the general arithmetic and assignment operations, due to the poten-
tial written conflict between different vector lane. Thus, we use the
API for reduction. Here, add operation, which is the default reduce
operation for reduction function, is used to reduce values to the array
update.

To summarize, in our API, the code with arithmetic operations is
almost as same as the original (serial) code. The reduction in our API
is provided through a function interface, which allows us to vectorize
these codes, whereas most compile-time solutions fail to do this. The
most complicated part of our API is handling of control flow, where
branches are replaced by mask operations. However, we note that
existing vectorizing compilers do not handle control flow at all (as we
will show through experimental results), and manual vectorization in
presence of control flow is very complicated (please see an example
in Figure 4).

4. RUNTIME SCHEDULING FRAMEWORK
We now describe the implementation of the framework, and par-

ticularly, how runtime scheduling that is applied for both MIMD and
SIMD parallelization.

4.1 MIMD Parallelization
Though MIMD parallelization is performed by a number of exist-

ing frameworks, our focus is on providing automatic or guided task
partitioning and scheduling for three different communication patters
(generalized reduction, stencil computation and irregular reduction)
on the Xeon Phi. In each of these patterns, the computation is an
iteration over a set of indices, where the following two steps are ap-
plied on each index: Step 1 - Loading the index of the targeted data
and other auxiliary data for computation, and Step 2 - Executing the
computation logic, including both computation and writing results,
for the target data. In MIMD parallelization, each thread will load a
different index in the Step 1, and execute Step 2 simultaneously and
independently, except for handling possible race conditions on the
output elements. Our API allows the user to provide a task function,
which is the serial code for computations associated with a single
target data element, which is used for Step 2.

Our runtime system has two major components, task partitioning
and runtime scheduling, to parallelize the target applications on the
Xeon Phi. Task partitioning can potentially be applied on the compu-
tation space or the reduction space. Computation space refers to the
space of the computation loop. For example, the num_edges loop in
Figure 1 is belonged to computation space. Reduction space refers
to the space in which a reduction is executed. The X array in Fig-
ure 1 is an example of reduction space for this loop. For generalized
reductions and stencil computations, it is straightforward to perform
task partitioning on the computation space. Particularly, the task par-
titioning component can just divide the computation loop into a num-
ber of blocks with an equal size, and pass these blocks to the dynamic
scheduling component to execute.

However, for irregular reduction applications, there is a tradeoff
between computation space partitioning and reduction space parti-
tioning [11]. Briefly, computation space can introduce significant
overhead on locking operations when different threads trying to up-
date the results on the same reduction index, whereas, reduction
space partitioning can completely avoid competition between threads

287

by assigning different reduction space to different threads. Thus,
all threads can execute independently by updating non-overlapping
parts of the reduction space. Thus, in our framework, different task
partitioning strategies will be launched based on the types of the ap-
plications, provided by the users.

In the runtime scheduling component, we include three schedul-
ing methods. The first is the static scheduling, in which all the tasks
from task partitioning module will be equally distributed to the all the
available threads. The static method introduces the smallest schedul-
ing overhead, and for stencil computations, this scheduling method
achieves better performance, because it can still achieve good load
balance. However, for generalized reductions and irregular reduc-
tions, the workload in each task partition may be different. Espe-
cially, for an irregular reduction, after reduction space partitioning,
the workload in each partition may be quite different, and depends
on the number of edges associated with each node in the reduction
space. Thus, a dynamic scheduling method based on factoring is
provided in our framework, which assigns large number of tasks to
the threads at first, and reduces the number of assigned tasks as ex-
ecution progresses. The third and the final scheduling method is the
user-defined method, where a user can define the number of tasks in
each partition.

4.2 SIMD Parallelization Support
Our SIMD parallelization support has three components: imple-

mentation of overloaded functions which supports SIMD execution,
runtime data reorganization, and handling of control flow.

4.2.1 SIMD Parallelization Through Implementation
of Overloaded Functions

int func(vfloat *a, vfloat *b, vfloat *c){
for(int i = 0; i < n; ++i)

c[i] = a[i] + b[i];
}

(a) An vectorized function by using overloaded functions
int func(float *a, float *b, float *c){

for(int i = 0; i < n; i+=16){
__mm512 *s_a = (__mm512*)a[i];
__mm512 *s_b = (__mm512*)b[i];
__mm512 *s_c = (__mm512*)c[i];
*s_c = _mm512_add_ps(*s_a, *s_b);

}
}

(b) The expansion of the overloaded functions in (a)

Figure 2: An example of vectorization in overloaded functions

Our primary method for auto vectorization is based on the imple-
mentation of the overloaded functions we had listed in Table 4. The
basic idea is as follows - overloaded functions are used inside def-
inition of a task, which applies computation to a particular point.
Since these computations can be applied in parallel, an overloaded
function’s implementation uses SIMD instructions to achieve paral-
lel execution.

An example is shown in Figure 2. The initial function performs
an add operation between arrays a and b, and writes the results to
the array c. The sub-figure (a) shows the code with our API, which
is the sequential code, except for vector-type declarations. SIMD
parallelization is now automatically applied based on the overloaded
add operator on the vector types. Sub-figure (b) shows the expansion
of the overloaded function. First, it applies a translation between
the scalar type and the vector types on the arrays involved. Then, a
SIMD add function is called on the translated arrays to perform 16
add and write operations in the SIMD manner. Next, the index is
moved to the start of the next 16 operands.

Overall, unlike hand-code SIMD parallelization, our framework
uses numerous overloaded functions to provide a convenient way to
achieve the same performance. There is no need for application de-
velopers to consider address translation, different vectorization in-
structions for different operand types, operations, and architectures,

0

1 2

5 4
3

0 1

1 2

3 4

0 2

1 5

4 5

0 3

2 3

Assume SIMD Width = 4

Random Order

Step I

Increase

Data Locality

0 1

0 2

0 3

0 5

1 2

1 5

2 3

2 4

Sorted Order

Step II Explore

Regularity

0 1

1 2

2 3

3 4

0 3

0 5

4 5

Round-Robin Order

0 5

2 4

3 4

4 5

0 2

1 5

2 4

Regular Irregular

Step III

Resolve

Reduction Conflict

0 3

4 5

Final Order

0 2

1 5

2 4

Regular Irregular

0 1

1 2

2 3

3 4

0 5

Split into 2

SIMD groups

Figure 3: Irregular Reduction Edges Reorder

and the position of the next computing index. However, in practice,
there are many complications in the application of overloaded func-
tions, particularly, when data elements are not contiguous, and/or
when branches are involved. We discuss these issues in the rest of
this section.

4.2.2 Data Reorganization
SIMD operations on Xeon Phis (or any SSE-like instruction set)

can only be applied if there are continuous and aligned memory ac-
cess. Many applications have non-unit stride and unaligned or even
random memory accesses. Such kind of accesses impede compiler
vectorization. In our framework, we exploit the knowledge about un-
derlying communication patterns to reorganize the data and facilitate
SIMD parallelization.
Generalized Reductions: For generalization reductions, data array
is usually given as an Array of Structures (AoS). For instance, in
Kmeans, the input point array comprises x, y, and z dimensional in-
formation (for three dimensional-points). During vectorization, the
Vector Processing Unit (VPU) will apply the same operation for 16
elements, which means that the VPU needs to access 16 continuous
values from each dimension. However, with AoS storage, values cor-
responding to one particular attribute are non-contiguous. Moreover,
if the x dimension data is stored aligned, y and z dimension, data
is likely to be unaligned. Therefore, both non-continuous and un-
aligned memory accesses can either prevent vectorization or impact
vectorization performance negatively by the compiler or programing
having to introduce extra gather and scatter operations.

Our system applies the standard AoS to SoA Structure of Array
transformation. In the SoA format, instead storing each member
of the structure continuously, all values for a particular member are
grouped together. Thus, accesses to the same member will be contin-
uous. Moreover, aligned accesses can be ensured by adding padding
at the end of each member array. Because AoS can be viewed as a
matrix, in which columns represent different members of the struc-
ture, our framework employs a parallel matrix transpose to apply the
transformation efficiently.
Stencil Computations: Unaligned memory accesses is the major
problem for vectorization on stencil computations. When computing
the value for a target point, we need to access all its neighbors. Thus,
in the original format, it is impossible to ensure that the target point
and its neighbors are both aligned. In the literature [8], a non-linear
data layout transformation has been proposed to make the target point
and its neighbors aligned at the same time, achieved by dimension
lifting and a matrix transposition. In our framework, we invoke this
data reorganization to be able to achieve aligned memory accesses.
Irregular Reductions: In an irregular reduction kernel, indirect data
references can cause very random memory accesses. If we want to
vectorize these operations, a large number of gather and scatter op-
erations must be invoked. There are many existing efforts trying to
solve or alleviate this problem from different perspectives. Kim and

288

Han [14] design an algorithm to replace unnecessary gather and scat-
ter operations by scalar operations. Wu et al. [28] try to resolve a very
similar problem, coalesced memory access, within the context of the
GPU architecture. Focusing on inter-iteration parallelism on an irreg-
ular reduction for a SSE-like instruction set, we address this problem
by a novel computation (edges data) reordering method, which we
describe below.

Our method is explained with the help of an example shown in
Figure 3. First, the motivation for our method is as follows. The
gather and scatter operations incur a very long latency when the data
locality is poor, because each gather and scatter operation works at
the unit of the entire cache line. For example, when the required data
is split across multiple cache lines, we need multiple gather opera-
tions to load them. So, the first objective of the our data reorgani-
zation method is to reorder the edge data, and increase data locality.
To achieve this objective, based on the partitioning algorithm that is
used for task partitioning at the MIMD level, we further reorder the
edge data according to their first nodes (Step I in Figure 3). As a
result, at least for one of the end-points of the edge, data is likely to
be in the same cache line.

The second objective is to replace gather and scatter operations
by normal SIMD load and store operations to the extent possible. To
achieve this objective, we partition the edges into regular partitions
and irregular partitions, as explained below. First, we further reorder
the edges data (Step II in Figure 3), so that the edges are ordered in
a round-robin manner according to their first nodes, and we have a
consecutive set of first node for the set of edges that will be processed
in one SIMD step (a regular partition). Now, clearly, given a set of
edges, we cannot ensure that we can simply reorganize them as a
set of regular partitions. A set of edges that will be processed in
one SIMD step but whose first nodes do not form a consecutive set
is an irregular partition. Thus, we will likely have a set of regular
partitions and irregular partitions. After this, we can further apply
AoS to SoA to duplicate all the first nodes of edges in the regular
partition. In such case, we can apply normal SIMD load and store
operations for the first nodes of edges in the regular partition, and
only apply gather and scatter operations for the remaining nodes.

The third objective is to resolve write conflicts within the same
SIMD register for the second nodes of edges in a regular partition
and for all the nodes in an irregular partition. Note that this issue
arises for generalized reductions as well. The problem is that unless
we are careful, different SIMD lanes may update the same element
of the SIMD register, causing a race condition. A larger SIMD width
increases this possibility, and moreover, indirect accesses can make
it hard to avoid such situations. In order to resolve this problem,
we have two options: a) serialized reduction; and b) further data/-
computation reorder. For serialized reduction, we provides a way to
automatically serialize all the reduction operations to eliminate the
possible conflicts. Alternatively, we can further reorder the elements
into blocks according to the SIMD width, even introducing bubble
elements. For irregular reductions, we can further reorder the edges
(computation order) as shown in Step III of Figure 3, by which, we
can make sure there is no write conflict within the same SIMD regis-
ter.

4.2.3 Resolving Control Flow
Control flow (presence of branches) has been a severe impedi-

ment to SIMD parallelization, from the time of the initial version
of SSE released decades ago. Without hardware support, in SSE
and AVX, one has to simulate the mask operations, which is cumber-
some. We show an example in Figure 4, where sub-figure(b) shows
hand-written SIMD parallelization, where a set of tasks are apply-
ing the code in sub-figure (a). It is easy to see that a statement with
simple control flow leads to very complex and the size of the code is
increased dramatically.

Our framework helps manage this complexity, building on top of
the mask data type and mask operations in latest Xeon Phi (and the
IMCI instruction set). As shown in Figure 4 (c), logic operations be-
tween the vector variables can return a mask type variable, and we
can use the mask variable as part of the mask arithmetic operations

if(a < b) a += b;
else a -= b;
(a) An example of control follow

__mm128i mask1 = _mm_cmplt_epi32(a, b);
__mm128i mask0 = _mm_andnot_si128(mask1,
_mm_set1_epi32(0xffffffff));
__mm128i res = _mm_and_si128(_mm_add_epi32(a, b), mask1);
__mm128i oldval = _mm_and_si128(a, mask0);
a = _mm_or_si128(res, oldval);
res = _mm_and_si128(_mm_sub_epi32(a, b), mask0);
oldval = _mm_and_si128(a, mask1);
a = _mm_or_si128(res, oldval);
(b) The vectorization code of control follow in (a)

__mmask16 mask1 = _mm512_cmplt_epi32(a, b);
__mmask16 mask0 = _mm512_cmpge_epi32(a, b);
a = _mm512_mask_add_epi32(a, mask1, a, b);
a = _mm512_mask_sub_epi32(a, mask0, a, b);
(c) The vectorization code of control follow with mask type in (a)

Figure 4: An example of control follow (a) without vectorization (b)
with vectorization (c) with vectorization and mask type

to get results from different branches. Thus, compared to the code in
sub-figure (b), control flow can be handled in a more concise fashion.
However, users are still required to be familiar with the new intrin-
sics, which is still complicated and error prone. This is addressed in
our framework.

Initially, we further elaborate on the available Mask_State Object,
shown in Table 4. There are two members, a mask type m, and a
scalar or vector type old_val. old_val is the default value assigned to
the unset or inactive SIMD lanes. The idea is that the inactive SIMD
lanes still need to execute the instruction, but they simply produce
old_val. So, as one can see from Figure 4 (c), we set a as the old_val.
Thus, when executing a+ = b, for the lanes in which a is greater
than or equal to b, the old_val or a, will be assigned to itself in the
end. Similar operations occur when executing a− = b.

The API we support is simpler, and was summarized towards the
end of Tables 3 and 4. The key thing to note is that interface of
the operations that involve a mask is same as the operations that do
not involve any mask. Each thread owns a local mask_state object
for its entire life. The mask_state object is declared as a global and
static variable for each thread. Each mask_state object includes the
information about the mask and old_val for current control flow. Af-
ter users set a mask_state object by the set_mask function (example
shown in Listing 4), it is effective, until a new mask is set, or the cur-
rent mask is cleared (using the clear_mask function). Each thread’s
mask information is used to provide two implementations of each
overloaded operation: unmask (default) and with mask. If a mask
is set, versions with mask are invoked, and use the thread’s local
mask_state object as a parameter. Listing 4 includes an example of
how to translate unmask vector type to mask vector type.

5. EVALUATION
In this section, we evaluate our framework using various appli-

cations that involve the communication patterns we have focused
on. The objectives of our experiments were: 1) Comparing the per-
formance of applications developed using framework, over hand-
written parallel versions (using Pthreads), and evaluating the SIMD
parallelization in our framework, over the ICC compiler generated
SIMD code, 2) Quantifying the overheads of our runtime framework,
by comparing performance against the hand-written SIMD code for
SIMD parallelization, 3) Comparing the performance of MIMD par-
allelization from our framework against OpenMP, another high-level
framework, and further evaluating the SIMD parallelization by our
framework against what is achieved by ICC compiler with OpenMP
directives. All experiments were conducted on a Xeon Phi SE10P
card, which has 61 cores each running at 1.1 GHz, with four hyper-

289

threads per core, along with a 32 MB L2 cache and 8 GB GDDR5
memory. The compiler that we used is Intel ICC compiler 13.1.0.
All benchmarks are compiled with the -O3 optimization. Compiler
vectorization is turned on and off by -vec and -no-vec options, respec-
tively. #pragma vector always was always used with OpenMP. We
also attempted SIMD pragmas, such as #pragma ivdep and #pragma
simd, as well as the SIMD Pragmas introduced by OpenMP 4.0.
However, none of them could handle irregular and some generalized
reductions, due to data dependencies, complicated deferences, and
the need for outer loop vectorization for our target class of applica-
tions. All experiments are conducted in the Native Model with the
-mmic option.

5.1 Benchmarks
Six benchmarks are selected from various benchmark suites, two

each involving generalized reductions, stencil computations, and ir-
regular reductions. Kmeans [12] is a very popular data clustering
kernel - in each iteration, it processes each point in the dataset, de-
termines the closest center to this point, and computes how this cen-
ter’s location should be updated. Our experiments used two different
values of the parameter K, the number of clusters, K = 10 and
K = 100. Naive Bayes Classifier (NBC) [25] is a simple clas-
sification algorithm based on observed probabilities. We used two
datasets, 50 MB and 200 MB. Sobel is a stencil computation. For 2D
Sobel, two 3 × 3 weight templates are used to compute the weight
on the target point. Two matrices, with the size of 8192× 8192 and
16384× 16384, respectively, were used. Heat3D [2] simulates heat
transmission in a 3D space, involving a 7-point stencil. The small
and large datasets used in the experiments are 512× 256× 256 and
512× 512× 512, respectively. Molecular Dynamics (MD) is an ir-
regular reduction kernel used to study the structural, equilibrium, and
dynamic properties of molecules. The simulation iterates over all the
edges, and updates the attributes associate with the two end nodes.
The small dataset used in the experiments has 16K nodes and 2M
edges, while the large one has 256K nodes and 32M edges. Euler
is another irregular reduction kernel based on Computational Fluid
Dynamics (CFD) that takes description of the connectivity of a mesh
and calculates quantities like velocities ate each mesh point. The
small dataset used in our experiments has 182K nodes and 1.13M
edges, while the large one has 1.4M nodes and 8.9M edges.

5.2 Speedups from Our Framework
Our first set of experiments focused on comparing the SIMD par-

allelization with our framework against compiler generated SIMD
code (auto-vectorization), and hand-written SIMD code. Compiler
SIMD parallelization was applied on Pthreads code, so as to also
allow shared memory parallelization. Pthreads-based shared mem-
ory parallel versions used similar style (and thus obtain similar per-
formance) as the shared memory parallelization supported by our
framework, though the programmer effort is much smaller with our
framework. In Figure 5, we compared the best performance between
the pthread versions with and without compiler vectorization, and
the vectorization versions with hand-coding and our API, for small
and large datasets described earlier. The performance, shown in Fig-
ure 5, is the one with the number of threads that leads to the best
performance (which maybe different across versions). The num-
bers reported are relative speedups, with baseline of Pthreads version
without vectorization.

For generalized reductions, both Kmeans and NBC show similar
trends. The SIMD-API version achieves better performance com-
pared to the Pthread versions with or without compiler generated
SIMD code. Moreover, the runtime overhead introduced by SIMD-
API is very small compared to the hand-written SIMD versions. In
Kmeans, compiler vectorization can only be applied in the inner-
most loop, which is the loop calculating the distance between one
node and all the cluster centers. The performance is sensitive to the
amount of computation in this loop, which depends upon the num-
ber of clusters, K. Thus, with K = 10, pthread-vec version
is even slower than the pthread-novec version. With K = 100,
pthread-vec gains 3.5x speedup compared to pthread-novec.

However, with SIMD-API, the vectorization is applied on the outer-
most loop, which is the loop iterating over all input points. In addi-
tion, with data reorganization and effective management of branches,
we can further improve the performance. Thus, SIMD-API gains 2.5
and 7.8 times speedups with K = 10 and K = 100. Another opti-
mization applicable to Kmeans is the reordering of reduction. When
K is smaller than the number of vector lanes, it is impossible to elim-
inate the write-conflicts, but this optimization is effective with a large
K.

Now, considering NBC, large number of branches causes signif-
icant overhead on vectorization. So, the available production com-
piler failed to vectorize the kernel function in NBC, i.e, the differ-
ence between pthread-novec and pthread-vec is negligible.
However, with the help of the mask operations introduced in our
framework, SIMD-API still gains 1.5 and 1.6 times speedups on
small and large datasets, respectively.

For stencil computations, one of the major problems for vectoriza-
tion is unaligned memory accesses. In our framework, we overcome
this limitation by reorganizing the datasets. However, the ICC com-
piler also has the capability to do the automatic vectorization. In
Heat3D, we can see that pthread-vec achieves the best perfor-
mance, which is very close to SIMD-API and SIMD-Manual. But
for Sobel, compiler vectorization fails due to the extra inner loop that
applies weights on the neighbors of the target node. Thus, the perfor-
mance of pthread-vec is very similar to that of pthread-novec,
whereas SIMD-API can still achieve more than 2x speedup, because
vectorization is not limited to the inner loop.

For irregular reductions, the production compiler cannot vectorize
a loop with indirection-based memory access at all. In our frame-
work, we use data reordering together with a reduction in the use of
gather and scatter operations to vectorize such kind of loops, which
turns out to be effective when the datasets are large. We achieve
1.5 and 2.5 times speedup over the pthread versions for Euler and
MD, respectively. For small datasets, the performance of the best
SIMD-API version is comparable to the pthread versions. However,
the best configuration with SIMD-API involves fewer threads (60
instead of 244). In other words, for the smaller datasets, enough par-
allelism is not available to exploit both MIMD and SIMD features.
Comparing to the best SIMD-manual versions, SIMD-API incurs
neglectable overheads.

5.3 Overall Scalability
In Figure 6, we compare the scalability of pthread-novec,

pthread-vec, SIMD-API, and SIMD-Manual with an increas-
ing number of threads. Execution with a single thread and no vec-
torization on Xeon Phi is used as the baseline, and thus, we are
evaluating the combined benefits of shared memory parallelization
(61 cores), hardware multi-threading (4 threads per core) and SIMD
units. The performance scales well for all the versions. SIMD-API
outperforms both pthread-vec and pthread-novec in most
cases, consistent with what we reported earlier. SIMD-API achieves
better relative performance when the number of threads is small.
For instance, when the number of threads is one, SIMD-API is
20 times better than the Pthreads-novec version. With small
datasets, as the number of threads increases, the vectorization advan-
tage with SIMD-API becomes restricted due to limited amount of
overall work. The overall speedups obtained range between 580 and
33, depending upon the application. Thus, we can see that our frame-
work is effective in allowing users to exploit the Xeon Phi chip. As
an aside, benefits of hardware multi-threading (more than 1 thread
per core) seem limited, except for Kmeans (speedup from 2 threads
per core, but slowdown from 4 threads per core) and the irregular ap-
plications (where latency is masked by hardware multi-threading). In
the future, we will examine this issue further and develop a module
for automatically choosing the number of threads for a given appli-
cation.

5.4 Comparison with OpenMP
Our last set of experiments had two distinct goals. First, we wanted

to examine how SIMD parallelization with our framework compares

290

K=10 K=100

K
m

e
a

n
s
:

s
p

e
e

d
u

p

0

2

4

6

8

Pt
hr
ea
d-
no
ve
c

Pt
hr
ea
d-
ve
c

SI
M
D-
AP
I

SI
M
D-
M
an
ua
l

Pt
hr
ea
d-
no
ve
c

Pt
hr
ea
d-
ve
c

SI
M
D-
AP
I

SI
M
D-
M
an
ua
l

NBC-small NBC-large

N
B

C
:

s
p

e
e

d
u

p

0

0.5

1.0

1.5

Pth
rea
d-n
ov
ec

Pth
rea
d-v
ec

SIM
D-
AP
I

SIM
D-
Ma
nu
al

Pth
rea
d-n
ov
ec

Pth
rea
d-v
ec

SIM
D-
AP
I

SIM
D-
Ma
nu
al

Sobel-small Sobel-large

S
o

b
e

l:
 s

p
e

e
d

u
p

0

1

2

3

Pth
rea
d-n
ov
ec

Pth
rea
d-v
ec

SIM
D-
AP
I

SIM
D-
Ma
nu
al

Pth
rea
d-n
ov
ec

Pth
rea
d-v
ec

SIM
D-
AP
I

SIM
D-
Ma
nu
al

Heat3D-small Heat3D-large

H
e

a
t3

D
:

s
p

e
e

d
u

p

0

0.5

1.0

1.5

Pth
rea
d-n
ov
ec

Pth
rea
d-v
ec

SIM
D-
AP
I

SIM
D-
Ma
nu
al

Pth
rea
d-n
ov
ec

Pth
rea
d-v
ec

SIM
D-
AP
I

SIM
D-
Ma
nu
al

Euler-small Euler-large

E
u

le
r:

 s
p

e
e

d
u

p
0

0.5

1.0

1.5

pth
rea
d-n
ov
ec

pth
rea
d-v
ec

SIM
D-
AP
I

SIM
D-
Ma
nu
al

pth
rea
d-n
ov
ec

pth
rea
d-v
ec

SIM
D-
AP
I

SIM
D-
Ma
nu
al

MD-small MD-large

M
D

:
s
p

e
e

d
u

p

0

0.5

1.0

1.5

2.0

2.5

pth
rea
d-n
ov
ec

pth
rea
d-v
ec

SIM
D-
AP
I

SIM
D-
Ma
nu
al

pth
rea
d-n
ov
ec

pth
rea
d-v
ec

SIM
D-
AP
I

SIM
D-
Ma
nu
al

Figure 5: Speedup of Pthread without SIMD (Pthread-novec), Pthread with auto-SIMD (Pthread-vec), MIC SIMD with our framework
(SIMD-API), and hand-written SIMD (SIMD-manual): Kmeans, NBC, Sobel, Heat3D, Euler, and MD with small and large datasets each

Pthread-novec

Pthread

SIMD-Manual

SIMD-API

K
m

e
a
n
s
-K

1
0
0
:
S

p
e
e
d
u
p
 o

v
e
r

o
n
e
 c

o
re

0

200

400

600

Thread Number

1 2 4 8 16 32 40 50 61 64 122 128 244 256 305

Pthread-novec

Pthread-vec

SIMD-Manual

SIMD-API

N
B

C
-l
a
rg

e
:
S

p
e
e
d
u
p
 o

v
e
r

o
n
e
 c

o
re

0

10

20

30

40

50

Thread Number

1 2 4 8 16 32 40 50 61 64 122 128 244 256 305

Pthread-novec

Pthread-vec

SIMD-Manual

SIMD-API

S
o
b
e
l-
la

rg
e
:
S

p
e
e
d
u
p
 o

v
e
r

o
n
e
 c

o
re

0

50

100

150

Thread Number

1 2 4 8 16 32 40 50 61 64 122 128 244 256 305

Pthread-novec

Pthread-vec

SIMD-Manual

SIMD-API

H
e
a
t3

D
-l
a
rg

e
:
S

p
e
e
d
u
p
 o

v
e
r

o
n
e
 c

o
re

0

20

40

60

Thread Number

1 2 4 8 16 32 40 50 61 64 122 128 244 256 305

Pthread-novec

Pthread-vec

SIMD-Manual

SIMD-API

E
u
le

r-
la

rg
e
:
S

p
e
e
d
u
p
 o

v
e
r

o
n
e
 c

o
re

0

50

100

150

Thread Number

1 2 4 8 16 32 40 50 61 64 122 128 244 256 305

Pthread-novec

Pthread-vec

SIMD-Manual

SIMD-API

M
D

-l
a
rg

e
:
S

p
e
e
d
u
p
 o

v
e
r

o
n
e
 c

o
re

0

50

100

150

200

250

Thread Number

1 2 4 8 16 32 40 50 61 64 122 128 244 256 305

Figure 6: Scalability with Increasing Number of Threads: Pthread without vectorization (Pthread-novec), Pthread with auto-vectorization
(Pthread-vec), SIMD with API (SIMD-API), and hand-written SIMD (SIMD-manual) with Kmeans, NBC, Sobel, Heat3D, Euler, and
MD (large datasets) - Relative Speedups Over 1 Thread Execution on Xeon Phi with no Vectorization

against SIMD parallelization performed by the ICC compiler with
OpenMP directives. Second, because both OpenMP and the MIMD
API in our framework provide a high-level model for developing
shared memory applications, we wanted to examine if our framework
offers any performance advantages, possibly because it exploits the
knowledge of the underlying communication patterns.

In Figure 7, we compared our MIMD parallel framework with and
without SIMD parallelization to the OpenMP MIMD parallelization
with and without the compiler vectorization. Comparing MIMD+SIMD
to OpenMP-vec, more than 3 times speedup is achieved in Kmeans
and NBC, due to the better SIMD parallelization and efficient MIMD
parallelism. For Heat3D, OpenMP with compiler vectorization can
provide good performance, but our parallel framework still outper-
forms the OpenMP version, due to the more efficient MIMD par-
allelism. Sobel, where SIMD parallelization is not achieved by the

compiler, our framework gains significant speedups compared to the
OpenMP version.

Now, focusing just on MIMD parallelization, our parallel frame-
work still obtains better performance compared to OpenMP. The ben-
efits of our framework are modest for Kmeans and stencil compu-
tations, but more significant for NBC and the two irregular applica-
tions. Overall, combining both MIMD and SIMD parallelization, our
framework is better for all six applications, has relative speedup of
2.5 or better for five of the six applications, and for the two irregular
reductions, it has an improvement by a factor of 4 and 7, respec-
tively. As discussed throughout the paper, these advantages come
from a number of factors, e.g., our framework can vectorize an irreg-
ular kernel with indirection-based memory accesses, while OpenMP
compiler cannot, and pattern-aware MIMD partitioning and schedul-
ing can avoid locking overheads.

291

OpenMP-vec MIMD+SIMD OpenMP-novec MIMD

S
p
e
e
d
u
p

0

2

4

6

Km
ea
ns

NB
C
So
be
l

He
at3
D
Eu
ler MD

Km
ea
ns

NB
C
So
be
l

He
at3
D
Eu
ler MD

Figure 7: Benefits of MIMD+SIMD Execution in our Framework
(Comparison with OpenMP-vec - left) and MIMD-only execution
(Comparison with OpenMP-novec - right)

6. RELATED WORK
Intel SSE has been a part of the x86 since 1999, and there have

been many efforts to automatically accelerate various applications
using these instructions. For vectorizing stencils, memory alignment
is a key problem, which was addressed by Eichenberger et al. [7]
and Nuzman et al. [20] with data reorganization methods. More Re-
cently, Henretty et al. [9] propose a system that involved improv-
ing data locality and utilizing short-vector SIMD optimizations, and
Kong et al. [15] designed a Polyhedral compiler to perform loop
transformation, optimization and vectorization for imperfectly nested
loops.

Vectorizing irregular applications on SSE has also gained consid-
erable interest in recent years. Kim and Han [14] propose a compiler
method to generate efficient SIMD code for irregular kernels con-
taining indirection based memory accesses. However, their work is
on Cell SPU, with much shorter SIMD unit compared to the Xeon
Phi and their method primarily focuses on intra-iteration vectoriza-
tion. We focus on aggressive inter-iteration parallelism, consistent
with presence of wide SIMD lanes. Tian et al. [26] provided an
extension to the current directive vectorization methods to support
function call. ISPC [22] provides a compiler based solution sup-
porting function calls, SOA data structure, and control flow. The
focus of our work is different, as we are providing a template based
runtime solution for auto-vectorization. It utilizes the knowledge of
patterns to automatically conduct data reorganization for different
patterns. Moreover, it can also help resolving data dependencies in
runtime, which is difficult to be handled for compiler solutions. Ren
et al. [23] design a virtual machine together with domain-specific
bytecodes method for pointer data traversals. There are also efforts
on hand-optimizing irregular applications on SSE and other vector
units [24, 13].

Some of the GPU compilation efforts have a similar favor, because
SIMT is closely related to SIMD. This includes work on parallelizing
stencil applications on GPUs [5, 18, 19, 10, 4]. For irregular applica-
tions on GPU, the coalesced memory access problem has also been
addressed [28, 29]. However, because of the differences in the archi-
tectures (e.g. lack of atomic stores), our data reorganization methods
are different. Overall, as compared to the existing work on SIMD
compilation, the key distinctive aspects of our work are: 1) handling
branches in a general way, 2) exploiting features in the IMCI instruc-
tion set, 3) using knowledge of communication patterns for runtime
data reorganization, and 4) use of an overloaded function approach,
which is unlike all previous efforts on SIMD parallelization, and can
simplify the compiler code generation in the future.

There are also many efforts to parallelize various applications on
Xeon Phi, which includes the work of Liu et al. [16] on Sparse
Matrix-Vector Multiplication, Pennycook et al. [21] on parallelizing
a Molecular Dynamic application, and Lu et al. [17] on optimizing
the MapReduce framework. We have, to the best of our knowledge,

offered the first general and end-to-end system for exploiting both
MIMD and SIMD parallelism on the Xeon Phis.

7. CONCLUSIONS
This paper has presented and evaluated a framework for paral-

lelization on the Xeon Phi coprocessors. Two distinct aspects of our
work are 1) use of the knowledge of underlying patterns to perform
job partitioning and scheduling in MIMD setting and data reorgani-
zation for SIMD parallelization, and 2) a very different approach for
SIMD code execution, based on the implementation of overloaded
functions, with runtime management of masks. Overall, we perform
SIMD parallelization in presence of control flow, irregular accesses,
and reductions, unlike previous work with SSE-like instruction sets.
Moreover, our work can also be seen as providing a CUDA-like lan-
guage (and its implementation) for using SSE-like instruction sets.

8. REFERENCES
[1] http://www.top500.org/lists/2013/11/.
[2] http://dournac.org/info/parallel_heat3d.
[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson,

W. L. Plishker, J. Shalf, S. W. Williams, et al. The landscape of parallel computing research: A
view from berkeley. Technical Report EECS-2006-183, EECS Department, University of
California, Berkeley, 2006.

[4] L. Chen, X. Huo, and G. Agrawal. Scheduling methods for accelerating applications on
architectures with heterogeneous cores. In HCW13, 2013.

[5] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. A. Patterson, J. Shalf, and
K. A. Yelick. Stencil computation optimization and auto-tuning on state-of-the-art multicore
architectures. In SC, page 4. IEEE/ACM, 2008.

[6] J. Dokulil, E. Bajrovic, S. Benkner, S. Pllana, M. Sandrieser, and B. Bachmayer. Efficient hybrid
execution of c++ applications using intel xeon phi coprocessor. CoRR, abs/1211.5530, 2012.

[7] A. E. Eichenberger, P. Wu, and K. O’Brien. Vectorization for simd architectures with alignment
constraints. In PLDI, pages 82–93. ACM, 2004.

[8] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ramanujam, and P. Sadayappan. Data
layout transformation for stencil computations on short-vector simd architectures. In
CC’11/ETAPS’11, pages 225–245, Berlin, Heidelberg, 2011. Springer-Verlag.

[9] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet, J. Ramanujam, and P. Sadayappan. A stencil
compiler for short-vector simd architectures. In ICS, pages 13–24, 2013.

[10] J. Holewinski, L.-N. Pouchet, and P. Sadayappan. High-performance code generation for stencil
computations on gpu architectures. In Proceedings of the international conference on
Supercomputing, pages 311–320. ACM, 2012.

[11] X. Huo, V. Ravi, W. Ma, and G. Agrawal. An execution strategy and optimized runtime support
for parallelizing irregular reductions on modern gpus. In Proceedings of the international
conference on Supercomputing, pages 2–11. ACM, 2011.

[12] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1988.

[13] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. Nguyen, T. Kaldewey, V. Lee, S. Brandt, and
P. Dubey. FAST: Fast Architecture Sensitive Tree Search on Modern CPUs and GPUs. In
Proceedings of the International Conference on Management of Data. ACM, 2010.

[14] S. Kim and H. Han. Efficient simd code generation for irregular kernels. ACM SIGPLAN
Notices, 47(8):55–64, 2012.

[15] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and P. Sadayappan. When polyhedral
transformations meet simd code generation. In Proceedings of the 34th ACM SIGPLAN
conference on Programming language design and implementation, pages 127–138. ACM, 2013.

[16] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey. Efficient sparse matrix-vector multiplication on
x86-based many-core processors. In Proceedings of the 27th international ACM conference on
supercomputing, pages 273–282. ACM, 2013.

[17] M. Lu, L. Zhang, H. P. Huynh, Z. Ong, Y. Liang, B. He, R. S. M. Goh, and R. Huynh.
Optimizing the mapreduce framework on intel xeon phi coprocessor. CoRR, abs/1309.0215,
2013.

[18] J. Meng and K. Skadron. A performance study for iterative stencil loops on gpus with ghost
zone optimizations. International Journal of Parallel Programming, 39(1):115–142, 2011.

[19] A. D. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey. 3.5-d blocking optimization for
stencil computations on modern cpus and gpus. In SC, pages 1–13. IEEE, 2010.

[20] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization of interleaved data for simd. In PLDI,
pages 132–143. ACM, 2006.

[21] S. Pennycook, C. Hughes, M. Smelyanskiy, and S. Jarvis. Exploring simd for molecular
dynamics, using intel xeon processors and intel xeon phi coprocessors. In IPDPS, 2013.

[22] M. Pharr and W. R. Mark. ispc: A spmd compiler for high-performance cpu programming. In
Innovative Parallel Computing (InPar), 2012, pages 1–13. IEEE, 2012.

[23] B. Ren, G. Agrawal, J. R. Larus, T. Mytkowicz, T. Poutanen, and W. Schulte. Simd
parallelization of applications that traverse irregular data structures. In Code Generation and
Optimization (CGO), 2013 IEEE/ACM International Symposium on, pages 1–10. IEEE, 2013.

[24] J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey. PALM: Parallel Architecture-Friendly
Latch-Free Modifications to B+ Trees on Many-Core Processors. PVLDB, 4(11):795–806, 2011.

[25] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining, (First Edition).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[26] X. Tian, H. Saito, M. Girkar, S. Preis, S. Kozhukhov, A. G. Cherkasov, C. Nelson,
N. Panchenko, and R. Geva. Compiling c/c++ simd extensions for function and loop
vectorizaion on multicore-simd processors. In IPDPS Workshops, pages 2349–2358. IEEE
Computer Society, 2012.

[27] S. Williams, D. D. Kalamkar, A. Singh, A. M. Deshpande, B. Van Straalen, M. Smelyanskiy,
A. Almgren, P. Dubey, J. Shalf, and L. Oliker. Optimization of geometric multigrid for emerging
multi- and manycore processors. SC ’12, 2012.

[28] B. Wu, Z. Zhao, E. Z. Zhang, Y. Jiang, and X. Shen. Complexity analysis and algorithm design
for reorganizing data to minimize non-coalesced memory accesses on gpu. In Proceedings of the
SIGPLAN symposium on Principles and practice of parallel programming, 2013.

[29] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen. On-the-fly elimination of dynamic
irregularities for gpu computing. In ASPLOS, pages 369–380, 2011.

292

