
Efficient and Simplified Parallel Graph Processing

over CPU and MIC

Linchuan Chen Xin Huo Bin Ren Surabhi Jain Gagan Agrawal

Department of Computer Science and Engineering

The Ohio State University

Columbus, OH 43210

{chenlinc,huox,ren,jainsu,agrawal}@cse.ohio-state.edu

Abstract—Intel Xeon Phi (MIC architecture) is a relatively
new accelerator chip, which combines large-scale shared memory
parallelism with wide SIMD lanes. Mapping applications on a
node with such an architecture to achieve high parallel efficiency
is a major challenge. In this paper, we focus on developing a
system for heterogeneous graph processing, which is able to
utilize both a many-core Xeon Phi and a multi-core CPU on
one node. We propose a simple programming API with an
intuitive interface for expressing SIMD parallelism. We develop
efficient techniques for supporting our high-level API, focusing on
exploiting wide SIMD lanes, massive number of cores, and parti-
tioning of the work across CPU and accelerator, while handling
the irregularity of graph applications. The components of our
runtime system include a condensed static memory buffer, which
supports efficient message insertion and SIMD message reduction
while keeping memory requirements low, and specifically for
MIC, a pipelining scheme for efficient message generation by
avoiding frequent locking operations. Besides, a hybrid graph
partitioning module is able to effectively partition the workload
between the CPU and the MIC, ensuring balanced workload and
low communication overhead. The main observations from our
experimental evaluation using five popular applications are: for
MIC executions, pipelining scheme is up to 3.36x faster than a
naive approach using locking based message generation, and the
speedup over OpenMP ranges from 1.17 to 4.15. Heterogeneous
CPU-MIC execution achieves a speedup of up to 1.41 over the
better of the CPU-only and MIC-only executions.

I. INTRODUCTION

The motivation of our work arises from the emergence or
greater applicability of a set of algorithms broadly referred
to as graph mining [6], [31], [8], [37], [35], [14], [11]. Many
challenging real-world scenarios can be modeled as graphs [4],
[20], [30], [34] and graph analysis or mining algorithms
can help solve key problems. However, the resulting graphs
can often be very large, especially the ones derived from
the World Wide Web or those representing social networks,
such as the ones created by friendship links on Facebook.
Because of the size of the graphs, it is natural to use parallel
implementations to solve the problems. Recently, there has
been much interest in the scalable graph mining. The work
at CMU has developed a graph mining package based on the
Hadoop implementation of MapReduce [15], whereas Google
developed a more specialized API, called Pregel [26] for
creating implementations of graph mining problems.

Over the last 6-7 years, high-end computing systems have
changed significantly with respect to the intra-node architec-
tures, with popularity of coprocessors. Over the last 3 years,
as many as three of the five fastest supercomputers (at any
time, based on the bi-annual top 500 list [1]) in the world
involved coprocessors on each node, as they offer excellent
performance-price and performance-power ratios. A recent
development along the same lines has been the emergence of

Xeon Phi chips, based on the Intel MIC architecture, which
allows x86 compatible software to be used. More broadly, a
node with a Xeon Phi represents many characteristics of a
processing node that we can expect to see increasingly in the
future – heterogeneity, large number of cores, combination
of MIMD and SIMD parallelism, and only a small amount
of memory per core. At the same time, our target class of
applications, i.e., the graph processing algorithms, represent
a class of irregular applications, for which extracting either
large-scale shared memory parallelism or SIMD parallelism
has been very hard.

Overall, effectively exploiting the power of a coprocessor
like Xeon Phi requires that we exploit both MIMD and SIMD
parallelism. While the former can be done through Pthreads
or OpenMP, it is much harder to extract SIMD performance.
This is because the restrictions on the model make hand-
parallelization very hard. Particularly, in a Xeon Phi, the SIMD
width has been extended to 512 bits (16 floats), potentially
offering large benefits for applications. Even for MIMD paral-
lelism, load balanced execution with a large number of cores
and limited memory is challenging, especially for irregular
applications. Yet another challenge is heterogeneity – a Xeon
Phi coprocessor is connected to a multi-core CPU through
PCIe bus. Compared with a Xeon Phi, the CPU has fewer
cores, but better sequential performance on each core. Thus,
it is important to utilize both of these devices for compu-
tation. This, however, leads to the challenge of partitioning
the workload and minimizing inter-device sychronization and
communication.

This paper describes a system for graph processing utilizing
both the CPU and the MIC chip. We support a vertex-centric
high-level API that can express a graph application easily.
The system enables the users to write portable code that is
simultaneously executed on both a Xeon Phi and a multi-
core CPU. Overall, we address the following four challenges
in our work: 1) Minimizing random memory accesses and
exploiting the wide SIMD lanes: this is achieved through
an innovative design of the message buffer, 2) Reducing
contention overhead from concurrent vertex update: we create
a pipelining implementation for the message generation step,
which is suitable for operating with a large number of threads.
3) Load balancing among the large number of cores: we
support a novel dynamic load balancing scheme for execu-
tion within a device. 4) Workload partitioning between CPU
and MIC: we develop an effective hybrid graph partitioning
scheme which achieves balanced workload and minimized
communication. Even though the first three challenges arise
from the MIC execution, and the optimizations are specifically
designed considering its particular properties, the same code
and optimizations are used for CPU execution.

We have evaluated our framework using five popular
graph algorithms. For the MIC-only executions, the pipelining
scheme we have introduced outperforms a naive locking based



approach by 1.07x to 3.36x, and our approach for exploiting
SIMD lanes delivers a speedup of between 5.16x and 7.85x
for the message processing sub-step, and results in 1.18x to
1.23x performance improvement for the overall execution. Our
system also outperforms OpenMP by up to 4.15x. Heteroge-
neous execution using our framework delivers a speedup of
up to 1.41 over the better of the single device executions.

II. BACKGROUND

A. Intel Xeon Phi Architecture

The x86-compatible Intel Xeon Phi coprocessor, which is
a latest commercial release of the Intel Many Integrated Core
(MIC) architecture, has already been incorporated in 9 of the
top 100 supercomputers at the time of writing this paper [1].
MIC is designed to leverage existing x86 experience and ben-
efit from traditional multi-core parallelization programming
models, libraries, and tools.

In the available MIC systems, there are 60 or 61 x86 cores
organized with shared memory. These cores are low frequency
in-order ones, and each supports as many as 4 hardware
threads. Additionally, there are 32 512-bit vector registers on
each core for SIMD operations. The main memory sizes vary
from 8 GB to 16 GB, and the memory is logically shared
by all cores. Even though, the memory space is physically
composed of separate GDDR5 memory channels, offering a
very high parallel memory access bandwidth. The L1 cache is
32 KB, entirely local to each core, whereas each core has a
coherent L2 cache, 512 KB, where cache for different cores
are interconnected in a ring.

Our work focuses on three important features of Intel MIC
architecture, which need to be exploited for obtaining high
performance:
Wide SIMD Registers and Vector Processing Units (VPU):
VPU has been treated as the most significant feature of Xeon
Phi by many previous studies [24], [39], [29], [9]. The reason
is that the Intel Xeon Phi coprocessor has doubled the SIMD
lane width compared to Intel Xeon processor, i.e., 256-bit
to 512-bit, which means that it is possible to process 16
(8) identical floating point (double precision) operations at
the same time. In addition, we have a new 512-bit SIMD
instruction set called Intel Initial Many Core Instructions (Intel
IMCI), which has built-in gather and scatter operations that
allow irregular memory accesses, a hardware supported mask
data type, and write-mask operations that allow operating on
some specific elements within the same SIMD register.

The SIMD instructions can be generated by the ICC com-
piler through the auto-vectorization option, or the program-
mers could use IMCI instruction set directly. The former
needs low programming effort, though current compilation
systems have several limitations and do not always obtain high
performance. In comparison, the latter option can achieve the
best performance, however, is tedious and error prone, and
creates non-portable code.
Large Number of Concurrent Threads: Each Xeon Phi
core allows up to 4 hyper-threads, in another word, we can
have as many as 240/244 hardware threads sharing the same
memory on Xeon Phi. This provides us with massive Multiple
Instruction Multiple Data (MIMD) parallelism with shared
memory, which has not been common in the past.
Source Code Portability with CPU: Similar to modern
CPUs, a Xeon Phi coprocessor integrates x86 cores. This
enables the same source code to be run on both a CPU and a
Xeon Phi.

B. Graph Processing Algorithms

Though graph algorithms have been widely used, and for a
long time, with rapid development of social network websites,
graphs have become the most important data structure for

representing relationships among people or other entities for
social network websites such as Facebook, Twitter, Wikipedia,
and others. A variety of graph mining algorithms have been
proposed for discovering the relationships among people for
social network graphs [4], [38], [21].

The most commonly used graph representations for storing
a graph are the adjacency matrices or adjacency lists. Com-
pressed Sparse Row (CSR) format is a well known format for
efficient storage of sparse matrices, which is also widely used
for storing sparse graphs. Figure 1 shows an example graph
and its storage in CSR format (the associated vertex data or
edge data are not shown).

0 1 2 3

8

4 5

9 10

0 2 5 8 8 11 12 13 14 15 19 20 22 24 26

54 520 3 5 7 5 8 9 2 2 2 0 5 6 8 11 6 9 8 13 9 12 10

27 28

7454 520 3 5 7 5 854 520 3 5 7 5 854 520 3 5 7 5 854 520 3 5 7 5 8 9 2 2 2 0 5 6 8 11 6 99 2 2 2 0 5 6 8 11 6 99 2 2 2 0 5 6 8 11 6 99 2 2 2 0 5 6 8 11 6 99 2 2 2 0 5 6 8 11 6 99 2 2 2 0 5 6 8 11 6 99 2 2 2 0 5 6 8 11 6 99 2 2 2 0 5 6 8 11 6 9 8 13 9 12 108 13 9 12 108 13 9 12 108 13 9 12 10

vertices:

edges:

dummy vertex, offset = num_edges 

6 7

11

13 14 1512

Fig. 1: An Example Graph and Its Representation in CSR
Format

Despite a variation in the underlying logic across different
graph algorithms, a significant fraction of graph algorithms
share certain similarities. First, most graph algorithms are
vertex-centric, i.e., the values and the processing are centered
around vertices. These algorithms usually gradually update the
values associated with vertices, using edges as the auxiliary
information to perform the computations. The output of these
algorithms is typically a set of vertex values. Second, edges
are usually used for communication among vertices. These
common characteristics have inspired the design of many
graph processing programming models that have targeted
different hardware platforms, including Pregel [26], GPS [32],
Giraph [2], GraphLab [25] and Medusa [43], and also form
the basis for the work presented in this paper.

III. PROGRAMMING API

We base the programming API of our framework on the
BSP model [36]. We treat a graph application as an iterative
process, and each iteration is divided into three important
steps: message generation, message processing and vertex
updating, with synchronization between these steps. To use
an example – Single Source Shortest Paths Problem (SSSP)
aims to find a shortest path between a single source vertex and
every other vertex in the graph. The algorithm we introduce
here is applied to a positive weighted directed graph. The
brief steps of the SSSP algorithm are: 1) initialization: for
each vertex, an attribute distance representing the possible
minimum distance from the source is maintained and ini-
tialized to a large constant, and the distance value for the
source vertex is initialized to 0, 2) relaxation: for every
vertex u, and for every incoming edge e (e = (v, u)),
if v.distance + e.weight < u.distance, then update
u.distance to v.distance + e.weight, and 3) the above two
steps are repeated until no more updates occur.

This algorithm can be easily expressed by a programming
model with an API for message generation, message pro-
cessing, and vertex updating. After the initialization step, the
relaxation step could be expressed as a combination of these
three steps. In each iteration, each vertex receives messages
from its incoming neighbors, which are the updated minimum
distances from the source. A minimum value of the values
contained in these messages can then be calculated in (message
processing). If this vertex has a new minimum potential



distance value as a result of this calculation, it updates its
distance with this new minimum value (vertex updating) and
propagates this update through messages to its neighbors along
the outgoing edges (message generation). The same procedure
is repeated in the future iterations. Similar steps are used in
Pregel [26], a distributed memory graph programming model,
but there are also key differences considering the focus on
shared memory and SIMD processing.

We explain our API using user-defined functions for SSSP.
In addition to three main functions that are supported, an
important characteristic of our API is simplified support for
exploiting SIMD parallelism. This will be explained at the end
of this section.

Listing 1: User-defined functions for SSSP

1 User-defined function for message generation:
2 template <class VertexValue,

3 class EdgeValue,

4 class MessageValue>

5 void generate_messages(size_t vertex_id,

6 graph<VertexValue, EdgeValue> *g) {

7 float my_dist = g->vertex_value[vertex_id];

8 // Graph is in CSR format.

9 for (size_t i = g->vertices[vertex_id];

10 i < g->vertices[vertex_id + 1]; i++) {

11 send_messages<MessageValue>(g->edges[i],

12 my_dist + g->edge_value[i]);

13 }

14 }

15 User-defined function for message processing:
16 template <class MessageValue>

17 void process_messages(vmsg_array<MessageValue> &vmsgs){

18 // Reduce the vector messages to vmsgs[0].

19 vfloat res = vmsgs[0];

20 for (int i = 1; i < vmsgs.size(); ++i) {

21 res = min(res, vmsgs[i]);

22 }

23 vmsgs[0] = res;

24 }

25 User-defined function for vertex updating:
26 template <class VertexValue,

27 class EdgeValue,

28 class MessageValue>

29 void update_vertex(MessageValue &msg,

30 graph<VertexValue, EdgeValue> *g, size_t vertex_id){

31 // Distance changed, will send msgs.

32 if (msg < g->vertex_value[vertex_id]) {

33 g->vertex_value[vertex_id] = msg;

34 g->active[vertex_id] = 1;

35 } else {

36 // Distance not changed, no msgs will be sent.

37 g->active[vertex_id] = 0;

38 }

39 }

Basic API: The user-defined functions for SSSP is shown
in Listing 1. The three key functions are as follows. gener-
ate messages(), defines the way a certain vertex generates
messages. The runtime system invokes this function for a
vertex only when it is active (only the source vertex is active
in the initial iteration). For an active vertex in this example,
the function sends a message to every vertex it connects to,
and specifically, it propagates its minimum distance from the
source plus the weight of each edge.

process messages() is invoked for a vertex (or simultane-
ously for multiple vertices) to process the received messages
coming from other neighbors: in this particular example, it
calculates the minimum value among all the messages that
are received.

The last of the three functions, update vertex() is invoked
to update the value or the status of a particular vertex,
typically as a result of processing of received message(s).
Specifically, the parameter msg of function update vertex() is
the processing result from function process messages() for the
messages received by this vertex. In the example in Listing 1,
the function compares the minimum distances received in the
messages with its own distance from the source. If the received

minimum distance is shorter, it updates its own value to the
smaller value, and at the same time, it sets the status of vertex
to active. Otherwise, this vertex will be inactive, since it is
not updated in the current iteration. An inactive vertex may
not participate in the message generation for next step.
Portable API for Exploiting SIMD Parallelism: Our frame-
work provides a set of SSE primitives for automatic SIMD
processing within each thread, which help to utilize the wide
SIMD lanes. The core units of our SSE primitives are the
set of vector types (vtypes). The vtypes we currently support
are vint, vfloat and vdouble. In contrast to scalar
data types, each vtype contains a group of contiguous data
elements. A set of common arithmetic/logical as well as
assignment operations are overloaded to these vtypes, so that
operations involving vector types, or vector type and scalar
types could be easily supported without requiring users to
perform complicated SSE intrinsics programming. These over-
loaded functions perform vectorization by invoking the built-in
SIMD intrinsics. These functions are portable between MIC
and CPU, that is, the same APIs are built on top of both KNC
(for MIC), and SSE4.2 (for CPU), wrapping corresponding
architecture-specific intrinsics. As we will explain later, our
runtime system organizes received messages for each vertex
in an aligned manner within a buffer, which makes SIMD
processing of the messages possible.

Referring to the example in Listing 1, since the message
type is float, the runtime passes the aligned messages as
floating point vector arrays into the user-defined function.
Users just need to use vfloat variables to process the
messages in the SIMD fashion, in which case messages for
up to 16 vertices (for MIC) are processed simultaneously.
As we can see, the code is very similar to the serial code.
It should be noted that SIMD processing of messages only
applies to messages with basic data types that are supported
by SSE, such as int, float and double, and are limited to
associative and commutative reductions, such as sum, max, or
min. However, such operations are very common in most graph
applications. In the example in Listing 1, the user-defined
function computes the minimum values among the received
messages for up to 16 vertices (for MIC), and stores the results
as the first element of the vector array vmsgs.

IV. FRAMEWORK IMPLEMENTATION

This section describes the detailed design strategies, in-
cluding data structures, algorithms, and optimizations that are
applied.

The system has been designed to address the key features
of the MIC architecture, as described in Section II and the
nature of the graph applications. As the number of edges
connecting a node can vary tremendously, we have difficulty
in obtaining load balance and avoiding contention for memory
accesses (both of these challenges accentuated due to the large
number of cores sharing the same memory). Exploiting SIMD
parallelism and dividing the work among the MIC and the
CPU are other challenges.

A. System Components and Workflow

We first introduce the components and the workflow of
our system, including showing how a graph application is
constructed and processed using our framework.

The overall structure of an application built using our system
is shown in Figure 2. Besides writing user-defined functions,
which have been introduced in the previous section, users
must write a driver code to read the input (with the help of
distributed graph loading API), and to help drive the param-
eters such as the maximum number of iterations. The input
to the system consists of two files: the graph file stored in an
adjacency list format, and a graph partitioning file indicating



user-defined functions

process_messages()

update_vertices()

generate_messages()

distributed graph loading API

proc local msgs

gen msgs

remote msg 

buffer

local msg 

buffer

local msgs remote msgs

remote msg 

buffer

local msg 

buffer

combine combine 

exchange remote msgsexchange remote msgsexchange remote msgsexchange remote msgsexchange remote msgs

proc local msgs

update local vertices

exchange remote msgsexchange remote msgsexchange remote msgsexchange remote msgs

gen msgs

local msgsremote msgs

update local vertices

read graph launch the runtime driver code

runtime system API SIMD API

graph processing system

CPU MIC

graph file

partitioning file

repeat combine combine 

Fig. 2: System Components

which device each vertex belongs to. A separate module for
generating the graph partitioning file will be described later in
Section IV-E. The user-defined functions, in turn, are invoked
by the runtime system. Symmetric runtime instances on the
CPU and the Xeon Phi share the same source code and thus
the same structure, though parameters such as numbers of
threads running on each device are separately configured. The
system is built using MPI symmetric computing, with CPU
being Rank 0, and MIC being Rank 1. Multi-threading is used
on each device.

On each device, a same set of steps are executed iter-
atively. In the first step, message generation, messages are
generated into message buffers (either local message buffer or
remote message buffer, depending on the message destination)
through the system primitive send_messages(), called in
the user function generate_messages(). A message is
a data unit containing a value pair, in the form of 〈dst id,
msg value〉.

Before the message processing step, an implicit remote mes-
sage exchange step is performed between devices. To reduce
the communication overhead, a combination is conducted to
the remote message buffer. The combination result is sent to
the other device as a single MPI message. Runtime system
invokes the user-defined function process_messages for
message combination. Received messages are inserted into
local message buffer for further processing.

Local message buffer is then accessed by the message
processing step to conduct either SIMD message reduction or
scalar processing. It is also accessed to update the local vertex
values in the vertex updating step. Thus, the message buffer
is the core data structure in the entire system. The design of
this data structure impacts the performance of all the major
steps, and thus, the performance of the entire system.

B. Message Buffer Design

To utilize the SIMD lanes (especially the wide lanes on
Xeon Phi) – more specifically – to support SIMD reduction
of messages, we should organize the messages in a way that
the memory space is aligned, and that messages for the same
destination are loaded into the same lanes while being reduced.
As a secondary consideration, our design must be cognizant
of the memory limits, i.e., that the memory size on a MIC
chip is only a few GBs. Suppose the width of SIMD lanes
is w bytes, and the size of an element to be processed in
the message is msg size. To support SIMD processing, we
should wrap w/msg size messages together in a way that
they are aligned with a multiple of w bytes. The runtime
system stores the messages as aligned vector types, including
vint, vfloat, and vdouble, where exactly w/msg size
scalar data elements are stored in an aligned fashion, same as
the vtypes mentioned in Section III.

We pre-allocate the buffer in a condensed static fashion,
before any iteration is executed. An example of this buffer is

Source Messages (dst id, value)

6 (2, value)

7 (2, value)

11 (6, value), (9, value)

13 (9, value), (12, value)

14 (10, value)

15 (7, value)

TABLE I: Messages Being Sent in the Example Graph

shown in Figure 3, where a buffer is created for the example
graph in Figure 1. The condensed static buffer (CSB) is created
for an input graph in the following steps: 1) Sort the vertices
according to the in-degree in descending order. A redirec-
tion map is generated for redirecting messages from original
dst ids to the proper positions after sorted. The redirection
map will be used in message insertion, to be stated later in
this section. 2) Group the sorted vertices into vertex groups.
Each vertex group contains k×w/msg size vertices, where k
is a small constant and w is the SIMD lane width in bytes. In
the example in Figure 3, k equals 2. 3) Obtain the maximum
in-degree among the vertices in each vertex group (denoted
as max group degree). Allocate k aligned vector arrays for
each vertex group with an array size of max group degree.

We use the directed graph shown in Figure 1 to show how
the CSB shown in Figure 3 is constructed. The graph contains
16 vertices, with the maximum in-degree being 5 for Vertex
5, and minimum in-degree being 0 for Vertices 14 and 15.
The vertices are sorted according to in-degrees in descending
order, and the sorting result is shown in the table in figure 3.
For simplicity, we assume the SIMD lane to be as wide as 4
messages (w/msg size = 4), and that we take the value of
k as 2. Thus, we are combining 8 vertices into a same vertex
group, resulting in two vertex groups in total. For the first
vertex group, the maximum in-degree among all the vertices
is 5, and for the second vertex group, the maximum in-degree
is 1. For the first vertex group, 2 arrays of aligned vector type
are created, with the length of each being 5. Similarly, for the
second vertex group, 2 aligned vector arrays are created, with
the length being 1.

Such a buffer design significantly reduces the memory
requirement because we group vertices with similar in-degrees
together and avoid unnecessary memory consumption for
small in-degree vertices. At the same time, this method allows
likely use of SIMD lanes for processing one message each for
a set of vertices (i.e., w/msg size vertices).

C. Processing of Messages Using CSB

Despite the advantages in memory efficiency, there are
certain challenges in processing messages using the CSB data
structure we have introduced. Again, we use the example graph
in Figure 1 and one iteration in the SSSP algorithm to show
what challenges are faced, as well as how we address them.

Suppose at a certain iteration, vertices 6, 7, 11, 13, 14, 15
(shown in black) just updated their shortest distances from
the source using the incoming messages from the previous
iteration. Thus, these vertices are active in this iteration and
are sending the updated values out to their neighbors in the
current iteration. The messages that are being sent are shown in
Table I. These messages are generated and sent in the message
generation step of our system. Messages that are sent out from
vertices are to be inserted into the message buffer.
Vertex-Column Mapping: The first problem is of mapping
of vertices belonging to a vertex group to the columns of
the vector arrays. The simplest method will be to use a pre-
determined mapping (e.g., direct one-to-one mapping) between
the vertices and the columns in the vector arrays. In this
example, among all the vertices, only Vertices 2, 6, 7, 9, 10,
12 have incoming messages. Whenever a message arrives, its
destination vertex ID is translated to a position in the sorted
table through the indirection map. The value of the message



5 2 8 9 0 4 6 7 3sorted vertex IDs:

5 4 3 3 2 2 2 2 1in-degrees:

10

1

11 12 13 1

1 1 1 0

14 15

0 0

0 1 2 3

4 13 1 8

...

...

(2, value)

redirection:

(a) One-to-one Mapping

5 2 8 9 0 4 6 7 3sorted vertex IDs:

-1 0 -1 -1 -1 1 3 0 -1 1 -1 -1 -12 -1-1

5 4 3 3 2 2 2 2 1in-degrees:

10

1

11 12 13 1

1 1 1 0

14 15

0 0

0 1 2 3

4 13 1 8

...

...

(2, value)

redirection:

index arrays:

(b) Dynamic Column Allocation

Fig. 3: Condensed Static Buffer (CSB) and Message Insertion
Methods

is inserted to the column in that position. After inserting the
messages in Table I to the CSB, we get an insertion result
that is shown in Figure 3(a): dark blocks in the buffer are
the received messages, and others are empty. We can see
that because a number of vertices in each vertex group do
not receive any message, we are wasting SIMD lanes while
conducting message reductions.

To solve this problem, we utilize a dynamic column al-
location, which helps to condense the usage of columns.
Facilitating such an implementation are an index array, and a
column offset, which are maintained for every vertex group.
Each element in the index array corresponds to a vertex and
indicates the column index for the messages with this vertex
as the destination. Before the message generation step in every
iteration, all elements in an index array are initialized to -1,
and the column offset is initialized to 0. Whenever a thread
wants to insert a new message, according to the message’s
destination vertex ID, the thread checks the index array for
that vertex. If the column index is not -1, the thread inserts
the message to that column. Otherwise, it allocates the next
available column from that vertex group, using locking in
the process, by exclusively incrementing the column index
and writing the allocated column index to the corresponding
element in the index array. After all messages have been
inserted within each vertex group, it is possible that only a
subset of vector arrays in the front contain messages, while
the remaining are completely empty. This allows for greater
efficiency in using SIMD lanes. Recall that the width of a
vertex group is k times the SIMD width, so we have the
possibility that i (i < k) loop(s) of instructions may process all
the vertices in the vertex-group. Figure 3(b) shows the result
of message insertion using dynamic column allocation for the
example.
SIMD Message Reduction: Now, let us see how mes-
sages from the CSB are reduced using SIMD parallelism.
Iteratively, the runtime invokes the user-defined function
process_messages() to process one aligned vector array
from the CSB. Take the process_messages() function
in Listing 1 as an example: users iterate on the vfloat type
message array, and each time process a row of w/msg size
messages from the vector array. For MIC, because the SIMD

lane width is 64 bytes and the messages being processed are
of type float, simultaneously 16 messages participate in the
overloaded min() function, which wraps the SSE intrinsic
_mm512_min_ps for MIC. For CPU, 4 messages are pro-
cessed simultaneously. Similarly, other arithmetic operations
(e.g., +, −, ×, ÷, etc.) also wrap the corresponding intrinsics
to process w/msg size messages in one invocation.
Message Insertion to Columns: Though the message buffer
we designed makes it easy to exploit SIMD message process-
ing and avoids excessive memory consumption, there are still
other challenges to be addressed. An important question to be
answered is how messages are to be inserted to the columns
in the presence of parallelism. An intuitive approach is to use
a locking based method – every thread inserts the messages it
generates into the message buffer directly. However, because
different vertices may send messages to same destinations (e.g.
both Vertex 11 and Vertex 13 send messages to the Vertex 9
in Table I), and because different vertices are distributed to
different threads, concurrent message insertions to the same
buffer column is going to be common. To ensure correctness,
locking operations must be used, i.e., whenever a message
is being inserted to a message buffer column, the computing
thread should lock the entire column. Such locking will be
required frequently, and moreover, could lead to contention
among the threads.

Based on this concern, we have implemented a pipelining
scheme for message generation. In this scheme, we divide the
computation threads into worker threads and mover threads.
Worker threads are only responsible for computation and
message generation. They do not insert messages into mes-
sage buffers, instead, they temporarily store the messages
in message queues, working sequentially. Mover threads are
responsible for moving the messages from the message queues
into appropriate locations in the message buffer.

0 1 2 3 4

worker threads:

...

...

dst%3=0

dst%3=1

dst%3=2

0 1 2
mover threads:

dst%3=0

dst%3=1

dst%3=2

message queues:

message buffer:

...

qid = 0:

qid = 1:

qid = 2:

qid = 0:

qid = 1:

qid = 2:

Fig. 4: Message Generation Pipelining Using Worker and
Mover Threads

The example shown in Figure 4 uses 3 threads as mover
threads. Each worker thread maintains private message queues,
with the number of these queues being equal to the number
of mover threads. After generating a message, the worker
thread decides which message queue to insert it to, which is
done based on the destination vertex ID using the expression:
queue id = dst id mod num mover threads. A specific
mover thread tid iterates over all worker threads’ message
queues whose queue id equals tid, and moves the messages
from these queues.

This strategy guarantees that each message queue is only
written by only one thread, as well as read by only one thread.
Similarly, a message buffer column can only be accessed by
one mover thread. This is because messages are classified
based on the modulo operation on the destination vertex
IDs, and thus each message class (generated as a result of
this classification) is handled by only one mover thread.
Thus, a mover thread needs to use locking only at the time
of buffer column allocation. Also, since the worker threads
and mover threads work concurrently, the computation and



memory accesses are overlapped effectively if the number of
mover threads is chosen appropriately.

D. Intra-device Load Balancing

Because the numbers of incoming and outgoing edges
to/from different vertices tend to vary, the amounts of pro-
cessing associated with different vertices is different. Thus, if
we simply evenly distribute the workload based on the number
of vertices, load imbalance will likely occur.

We utilize a dynamic workload scheduling for all sub-steps
during the execution. For the message processing step, we
treat the set of all vector arrays from all vertex groups as
task units. All threads dynamically retrieve these task units
through a mutex-protected scheduling offset. To lower the task
retrieving frequency and thus the scheduling overhead, a thread
can obtain multiple tasks each time. Although the numbers
of messages contained in different vector arrays can vary
significantly, dynamic scheduling of these message processing
tasks ensures that all threads are kept busy until no more
tasks are available. Similarly, for the vertex updating step,
vertices are also dynamically scheduled to all the threads in
blocks. Finally, for the message generation step, vertices are
dynamically scheduled to the worker threads for computation
and message generation. For the mover threads, because we
classify messages based on the modulo operation of the
destination IDs, each message class tends to have a similar
number of messages. Although each message class is statically
mapped to one mover thread, workload distribution among
mover threads is expected to be well balanced.

E. Graph Partitioning between CPU and MIC

Our framework is able to execute a graph application
across CPU and MIC. An important issue in enabling this
functionality is to partition the workload between CPU and
MIC. Because a CPU-MIC node is on top of a distributed
memory space, it is not feasible to utilize dynamic workload
distribution, since it will lead to high data movement costs.
Thus, the framework statically distributes vertices to devices,
before an application is run, using a partitioning ratio (relative
amounts of computation assigned to devices) specified by the
users.

We now discuss how partitioning is performed by the sys-
tem. The two desired properties from the partitioning method
are: 1) load balance – suppose the expected workload ratio
between the CPU and the MIC is a : b, edges CPU :
edges MIC should be close to a : b, where edges CPU and
edges MIC are the number of edges processed by the CPU
and MIC, respectively. 2) minimized communication volume:
cross edges, i.e., the edges whose source and destination are
on different devices should be as few as possible.

We now examine different partitioning methods and intro-
duce our proposed hybrid partitioning method. An intuitive
way of partitioning a graph is continuous partitioning: suppose
the partitioning ratio indicated by the user is a : b, the
first a

a+b
× num vertices vertices are assigned to CPU, and

the remaining vertices are assigned to MIC. The problem is
that most graph datasets are power-law graphs, that is, the
out-degrees of all vertices are not evenly distributed, and
typically vertices with high out-degrees are together in a short
range. If we simply partition graphs according to the number
of vertices, the cumulative workload (cumulative out-degree)
assigned to the devices are not proportional to the partitioning
ratio provided by the users.

A candidate technique for solving the above problem is the
round-robin assignment of vertices to devices: iterate over the
vertices, for every a+b vertices, the first a vertices are assigned
to CPU, and the remaining b vertices are assigned to MIC.
This technique ensures that vertices are assigned to devices

in an interleaved way, and thus avoids the possibility that the
clustered highly connected vertices are assigned to a single
device. The problem is that this partitioning can lead to a
very high volume of cross edges between two partitions, and
thus high communication overhead between devices.

Based on the above observation, we derive a hybrid parti-
tioning scheme. In this scheme, we first partition the vertices
into small blocks, and then assign the blocks to the devices
in a round-robin fashion. While partitioning the graph into
small blocks, we use the min-connectivity volume partitioning
scheme provided by the Metis software [16], so that the
number of cross edges among the blocks is minimized. This
partitioning not only maintains low communication overhead,
but also keeps the computation ratio to be consistent with the
expected partitioning ratio.

V. EXPERIMENTAL RESULTS

In this section, we report results from a series of exper-
iments evaluating our system from different perspectives –
comparison between different execution schemes, i.e., locking
based execution and pipelining execution, comparison with
OpenMP code, benefit of using both CPU and MIC compared
with using a single device, as well as the benefits of using
SIMD parallelism. We also evaluate the effectiveness of graph
partitioning module, and the overall performance by showing
speedups over sequential executions.

A. Evaluation Environment

Our experiments were conducted on a node with an Intel
Xeon E5-2680 CPU and an Intel Xeon Phi SE10P coprocessor.
The CPU has 16 cores, each running at 2.70 GHz. The size of
the main memory is 63 GB. The Xeon Phi has 61 cores each
running at 1.1 GHz, with four hyperthreads per core. The total
size of the memory on this card is 8 GB. We used mpic++
4.1, from Intel IMPI library, to compile all the codes, with
-O3 optimization enabled. The mpic++ was built on top of
icpc version 13.1.0. For the CPU-MIC symmetric computing,
we compile separate binaries for MIC and CPU from the same
source code, with -mmic flag for MIC, and -xhost for CPU.

B. Applications Used

Five commonly used graph applications are used to evaluate
our system. Among them, PageRank is a graph algorithm [4]
used to rank the importance of websites based on the number
and quality of incoming links. Implementing a PageRank
algorithm using our programming model involves treating each
website as a vertex, and the value associated with each vertex
(PageRank value) is initialized to 1. In each iteration, the
message generation sub-step propagates the PageRank value
of each vertex to its neighbors, by dividing the value by the
number of outbound edges. The message reduction sub-step
sums up the received PageRank values from the neighbors,
utilizing SIMD processing. The vertex update sub-step updates
each vertex’s PageRank value using the sum. A directed graph
Pokec [23] containing 1.6 million vertices and 31 million edges
is used as the input.

BFS, Breadth First Search, is a very popular graph traversal
algorithm. While implemented using our framework, initially,
the source vertex is set as active, and its vertex value, level,
is 0, while other vertices are inactive. In each iteration, active
vertices send their level value plus 1 as messages to neighbors.
Unvisited vertices which receive messages set their level, using
any message that is received, and set themselves as active,
and thus, message reduction is not needed. The execution ends
when no active vertex exists. The same dataset with PageRank
is used for this application.

SC or Semi-Clustering – is a graph based clustering algo-
rithm, typically used for social network graphs. The algorithm



CP
U O

MP

CP
U L
ock

CP
U P

ipe

MIC
OM

P

MIC
Loc

k

MIC
Pip
e

CP
U-M

IC

0

1

2

3

4

5

6

7

P
a
g
e
R
a
n
k
T
o
ta
l
R
u
n
T
im
e
(S
e
c
)

Communication Time

Execution Time

(a) PageRank Executions

CP
U O

MP

CP
U L
ock

CP
U P

ipe

MIC
OM

P

MIC
Loc

k

MIC
Pip
e

CP
U-M

IC

0.0

0.1

0.2

0.3

0.4

0.5

0.6

B
F
S
T
o
ta
l
R
u
n
T
im
e
(S
e
c
)

Communication Time

Execution Time

(b) BFS Executions

CP
U O

MP

CP
U L
ock

CP
U P

ipe

MIC
OM

P

MIC
Loc

k

MIC
Pip
e

CP
U-M

IC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
C
T
o
ta
l
R
u
n
T
im
e
(S
e
c
)

Communication Time

Execution Time

(c) Semi-Clustering Executions

CP
U O

MP

CP
U L
ock

CP
U P

ipe

MIC
OM

P

MIC
Loc

k

MIC
Pip
e

CP
U-M

IC

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
S
S
P
T
o
ta
l
R
u
n
T
im
e
(S
e
c
)

Communication Time

Execution Time

(d) SSSP Executions

CP
U O

MP

CP
U L
ock

CP
U P

ipe

MIC
OM

P

MIC
Loc

k

MIC
Pip
e

CP
U-M

IC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
o
p
o
S
o
rt
T
o
ta
l
R
u
n
T
im
e
(S
e
c
)

Communication Time

Execution Time

(e) Topological Sorting Executions (f) Effect of SIMD Processing (Vectorization) on Execu-
tion Times

Fig. 5: (a) - (e): Comparison of Different Versions of Five Applications. (f): Impact of SIMD Processing.

is applied to an undirected graph, with each vertex representing
a person, and an edge representing a connection between
two individuals. Semi-clusters are groups of people such that
people within a semi-cluster interact frequently with each
other. Each vertex may belong to more than one semi-cluster.
A semi-cluster is represented as an array of vertex IDs. Each
vertex has an associated value, which is a vector containing
at most a number (a pre-defined maximum value) of semi-
clusters. Each edge has a weight representing the interaction
frequency. A score for each cluster is computed and the
clusters associated with every vertex are sorted according to
the score in descending order. In the message generation sub-
step, each vertex sends the top-score clusters to all of its
neighbors. In the message processing sub-step, each vertex
combines the received clusters with the clusters from its own
vertex value, and sorts them according to the score. Clusters
with highest scores are used to update the vertex value.
Because the message processing step is not associative and
commutative, and the message type is not basic data type,
SIMD reduction is not utilized. The dataset we used is a
smaller undirected graph DBLP [41] containing 436 K vertices
and 1.1 M edges. The reason why we use a smaller dataset
is that the message size and vertex value size are much larger
than the other applications and the dataset size is limited by
the volume of the main memory on MIC. We converted the
undirected graph to a directed graph by duplicating each edge,
in order to fit the input into our system.

SSSP or Single Source Shortest Paths, was used as the
running example throughout the paper. Same as PageRank,
the message reduction sub-step in each iteration utilizes SIMD
processing. The same dataset with PageRank is used in this
application. In addition, we randomly generated weight value
for each edge.

TopoSort, Topological Sorting, outputs a linear ordering for
the vertices in a DAG (Directed Acyclic Graph), such that if
there is an edge pointing from u to v, then u will appear
before v in the ordering. Programming this algorithm on
our framework involves the following steps: initially, vertices
with zero in-degree are set as active, and other vertices
are inactive. In each iteration, active vertices send messages
containing value 1 to their neighbors, and set themselves as
inactive. Vertices receiving messages sum up the messages,
and decrease their in-degree value using the sum. If a vertex’s
in-degree becomes 0 after the substraction, it sets itself as

active. The algorithm ends when no vertices are active. We
use a randomly generated DAG containing 40K vertices and
200M edges as the input.

C. Overall Performance

In this section, we evaluate the performance of each ap-
plication, and compare the different versions. Specifically,
we evaluate both single-device executions and CPU-MIC
executions. For single-device executions, besides the versions
written using our framework, we also examine how our frame-
work compares with OpenMP. Both OpenMP and our system
provide a high level programming API, and both support
SIMD parallelism either provided by the ICPC compiler with
OpenMP directives or by the vector API of our programming
model. The OpenMP version codes were compiled with ICPC
at -O3 with flags -openmp -parallel. Although the Intel com-
piler supports offload pragma, so that a program could be
executed on both CPU and MIC, it is not easy to write an
offloaded graph algorithm using it, since the communication
handling is non-trivial and hard to achieve efficiency. Thus,
while comparing with OpenMP, we only investigate single-
device executions.

The results are shown in Figure 5(a) to Figure 5(e). The
CPU OMP and MIC OMP versions are written with OpenMP
directives on sequential code, with proper use of synchroniza-
tion (OpenMP locks). CPU Lock and MIC Lock are single-
device executions written with our framework, using locking-
based message generation. Similarly, CPU Pipe and MIC Pipe
are single-device versions on our framework using pipelining
message generation. CPU-MIC version is the heterogeneous
version written with our framework.

We investigated the compiler vectorization report for
OpenMP codes (both on CPU and MIC). It turns out that
the major loops of the applications written in OpenMP are
not vectorized, and thus OpenMP code could not benefit from
SIMD parallelism of the MIC architecture. This is because of
the random memory access pattern of graph applications. The
message organization and SIMD APIs in our system enables
the efficient utilization of SIMD, the details of which will be
shown later in this section.

CPU-only Executions: The framework execution strate-
gies we designed are more suited for the MIC architecture,
which has a larger thread number and high parallel memory
bandwidth. In contrast, CPU has a much smaller number of



threads and thus contention overhead is not severe. Also, CPU
has a much smaller memory bandwidth so that the overhead
of messages storage in our system offsets the benefits from
reduced contention and SIMD message reduction. On average,
for CPU-only executions, OpenMP outperforms our frame-
work by 2.5%. Also, locking-based executions outperform the
pipelining executions, due to that the locking-based method
does not need to store messages in message queue before they
are inserted to message buffer, and that no threads need to
solely work on message movement. For all the applications,
best performance was delivered with a total of 16 threads, i.e,
1 thread per core.

MIC-only executions: With the exception of BFS,
pipelining executions (MIC Pipe) outperform locking-based
(MIC Lock) executions, as well as OpenMP versions (MIC
OMP), though the relative performance varies depending on
the property of applications. For PageRank, all vertices
generate messages along all edges every iteration, and thus the
number of messages generated is large. As a result, contention
is severe while locking is used. The pipelining version is
2.33x faster than the locking based method, and 1.85x faster
than the OpenMP version. For both locking-based framework
execution and OpenMP version, 240 threads was used to
achieve the best performance, while 180 worker threads +
660 mover threads achieve the best performance for pipelining
framework execution (same thread configurations are used
for the remaining applications as well). For BFS, in each
iteration, only a subset of vertices are active and the amount of
messages generated is small, and thus the contention overhead
is less severe. The locking-based framework execution is 1.19x
faster than pipelining execution. MIC lock and MIC pipe are
1.54x and 1.30x faster than MIC OMP, respectively. Even
though neither OpenMP or framework use SIMD for message
processing, OpenMP is slower, likely due to the more expen-
sive locking operations. For SC (Semi-Clustering), pipelining
version performs better than locking version (1.25x faster), as
well as OpenMP (1.17x faster). The speedup achieved from
pipelining execution solely comes from reduced contention
overhead, as SIMD reduction is not applied in this application.
For SSSP, both MIC Lock and MIC Pipe run slightly faster
than OpenMP (1.11x, and 1.20x speedup, respectively). The
speedup of MIC Lock over OpenMP mainly comes from SIMD
message reduction, while MIC Pipe also benefits from the
reduced contention. The last application, TopoSort, uses a
highly connected graph, which implies that in each iteration,
a large number of messages are sent to a single vertex. The
expensive locking used in OpenMP adversely impacts the
performance. Pipelining execution is 4.15x and 3.36x faster
than OpenMP version and locking-based framework execution,
respectively.

CPU-MIC executions: For each graph dataset, a min-
connectivity blocked partitioning (256 partitions) result is
generated using Metis. The blocked partitioning result is
reused for generating hybrid partitioning results for different
ratios. Although the blocked partitioning takes time, it is only
applied to each dataset once, and thus we did not include the
partitioning time. We tried different partitioning ratios between
CPU and MIC, and the results reported here are from the ratios
that gave the best load balance. Locking-based execution was
used for CPU, as it is faster than pipelining execution, while
for MIC, pipelining execution was used except for BFS. Both
the execution time and the communication time are separately
shown in result figures.

For PageRank, MIC Pipe is 1.72x faster than CPU Lock,
and CPU-MIC achieves a 1.30x speedup over the faster of
single-device executions, i.e., MIC Pipe, at a graph partitioning
ratio of 3:5 (CPU 3, MIC 5). For BFS, CPU Lock is 1.30x
faster than MIC Pipe. Using CPU and MIC together results in a

1.32x speedup over CPU Lock version, at a graph partitioning
ratio of 4:3. CPU performs much faster than MIC for SC,
due to the more complex conditional instructions involved,
which CPU is better at. CPU-MIC version is 1.29x faster
than CPU Lock version, using a partitioning ratio of 2:1. For
SSSP, CPU and MIC have a very similar performance, and
using both achieves a speedup of 1.41 (using a equal graph
partitioning). The last application, TopoSort, MIC is 3.32
times faster than CPU. Using CPU and MIC together has a
smaller speedup of 1.20x over the MIC only execution (using
1:4 graph partitioning). Also note that the input for TopoSort
is a highly connected graph, and the number of vertices is
much smaller compared with the large number of edges, so
that the communication overhead is negligible.

D. Benefits of SIMD Execution for Message Processing

Among the five applications, two applications involve no
SIMD message reduction – specifically, SC uses sorting in
message processing step, and BFS does not have message
reduction sub-step. The other three applications perform mes-
sage reduction through nuanced runtime SIMD parallelization
supported in our framework. We now quantify the benefits
obtained from runtime SIMD parallelization. For this purpose,
we re-wrote the message processing sub-step for these three
applications in a scalar way, for both CPU-only and MIC-only
executions.

Figure 5(f) shows the execution times with and without
vectorization. All reported data is from execution strategies
and thread configurations that deliver the best results. For CPU
executions, the vectorized versions achieve a speedup of 2.24,
2.35, and 2.22 over non-vectorized versions for the message
processing sub-step for PageRank, SSSP, and TopoSort, re-
spectively. Similarly, for MIC executions, 6.98x, 5.16x and
7.85x speedups are achieved for message processing steps.
Although up to 4(CPU)/16(MIC) floating point messages are
processed simultaneously by the SIMD lanes on each core,
the achieved speedup is limited due to several factors: bubbles
in the lanes due to the difference in the number of received
messages for each vertex, and processing can become memory
bound after a certain point. The benefits of SIMD processing
on the overall performance depends upon the relative amount
of time spent on the message processing phase. For CPU
executions, these speedups are: 9%, 13% and 8% for PageR-
ank, SSSP and TopoSort, respectively. For MIC executions,
the speedups are: 18%, 23%, and 21%, respectively, for these
applications.

E. Effect of Hybrid Graph Partitioning for CPU-MIC Execu-
tion

Fig. 6: Impact of Different Graph Partitioning Methods

To illustrate the effectiveness of the hybrid graph parti-
tioning, we executed the CPU-MIC versions with continuous
partitioning, round-robin partitioning, and hybrid partitioning.
The partitioning ratio used for each application is the same
as that is used for achieving the best CPU-MIC execution
in Section V-C. Figure 6 shows the time distribution of



each application using the different partitioning schemes. The
execution time is determined by the slower device, and the
communication time is the time spent on exchanging messages
between devices. For PageRank, a 3:5 partitioning ratio is used
as the input to the partitioning modules. Both round-robin
and hybrid partitioning methods achieve balanced partitioning
results: the ratio of cumulative out-degrees on CPU and MIC
is close to the expected workload ratio (3:5). Because vertices
with higher out-degrees are concentrated at the front of the
graph Pokec, continuous partitioning leads to a larger than
expected number of edges on CPU, but less than expected
number of edges on the MIC. This leads to a much longer
overall running time due to significant load imbalance. Round-
robin partitioning results with 2.27x more cross edges than hy-
brid partitioning, and thus much longer communication time.
Execution using hybrid partitioning is 1.72x and 1.13x faster
than continuous and round-robin partitionings, respectively.
Similar trends can be seen from the other applications: for
BFS, using hybrid partitioning is 1.31x and 1.09x faster than
the other two partitioning methods; for SSSP, the speedups are
1.50 and 1.10; and for SC, 1.17 and 1.36. The graph DAG
used in TopoSort has almost equal number of cross edges
using round-robin and hybrid partitionings, and thus similar
execution times using either partitioning, though running with
continuous partitioning result is much slower than the other
two due to the imbalanced partitioning result.

F. Overall Performance Gained from Our Framework

To see the efficiency and scalability of our framework,
we compare different versions using our framework with
sequential versions (written in C/C++ and executed by one
core). We run sequential versions on both CPU and MIC.

Execution times (Sec)

PageRank BFS SC SSSP TopoSort

CPU Seq 18.01 1.46 8.29 2.62 8.42

MIC Seq 181 12.19 134.06 24.07 85.17

CPU Multi-core 5.01 0.29 1.09 0.52 2.20

Speedup over CPU Seq (3.6x) (5x) (7.6x) (5x) (3.8x)

MIC Many-core 2.92 0.38 2.56 0.49 0.66

Speedup over MIC Seq (62x) (32x) (52x) (49x) (129x)

CPU-MIC Best 2.25 0.22 0.81 0.34 0.55

Speedup over CPU Seq (8x) (6.7x) (10.2x) (7.7x) (15.3x)

TABLE II: Parallel Efficiency Obtained from Our Framework

The results are shown in Table II. Note that even though
the clock frequency of a CPU core is only 2.4 times faster
than a core on MIC, a CPU core runs the same sequential
code around 11x faster, on the average, because of out-of-order
execution and other enhancements. The speedup of CPU multi-
core execution on our framework ranges from 3.6x to 7.6x.
Similarly, MIC many-core execution has a speedup of 32x
to 129x, compared with MIC sequential execution. The last
application, Topological sorting, achieves the highest speedup
on MIC, due to the high connectivity of the DAG, leading
to a high computation density. The combined execution of
CPU and MIC, while compared with CPU sequential version,
achieves a speedup of between 6.7x and 15.3x.

VI. RELATED WORK

There have been many efforts on parallelizing various graph
applications on parallel systems. Pregel [26], a programming
model proposed by Malewicz et al., provides programmers a
general API, and was built for distributed graph processing.
The default graph partitioning used in Pregel and some of the
open source implementations [2] is hash based and thus does
not consider the amount of communication volume. GPS [32],
another open source implementation of Pregel, also utilizes
Metis to balance the edges in partitions and minimize cross
edges, but in a more straightforward way. Our method is

able to reuse the blocked partitioning results of Metis for
different partitioning ratios. Mizan [17] implements Pregel
system using vertex migration. Compared with Mizan, our
approach is more lightweight, and more suitable for the case
of using a limited number of devices. Other parallel graph
libraries such as the Parallel Boost Graph Library [10], and
CGMgraph [5] have been on distributed memory systems.
They provide implementations for particular graph algorithms,
instead of general-purpose frameworks. Sedge [42] proposes a
partitioning method for local graph queries on a concentrated
subset of vertices across clusters. Cyclops [7] is a distributed
graph programming framework executing in a different way
from BSP models. Seraph [40] is a distributed graph process-
ing system aiming to minimize the memory consumption and
fault tolerance costs on clusters.

Galois project [27], [22] extensively studies and automati-
cally explores amorphous data-parallelism present in irregular
algorithms including graphs, and it can execute Galoized serial
code in parallel on shared-memory machines. Our work cannot
handle data-driven or speculative parallelism, but focuses on
issues associated with large-scale shared memory and SIMD
parallelization for data-parallel graph applications. MTGL [3]
is another parallel graph library, which is on shared memory
system, however, it focuses on graph query algorithms.

Recently, there have also been many efforts focusing on
parallelizing graphs and trees applications on SIMD acceler-
ators and GPUs. Merrill et al. [28] parallelize Breadth-first
Search, an important graph traversal algorithm, on the GPUs
architecture by focusing on fine-grained task management.
This work shares some similarities to our work, however,
is not aimed towards providing a high-level API for graph
applications. Hong et al. [12] developed a novel virtual warp-
centric programming method to address the work imbalance
problem in graph algorithms, but again, is not providing a
high-level API. Jo et al. [13] designed a novel scheduling
mechanism for efficient SIMD execution of tree traversal ap-
plications, and Kim et al. [19] designed FAST, an architecture-
sensitive layout of the index tree on both CPU with SIMD
and GPU architectures. Both of these efforts focus on tree
structures, which involves different characteristics (especially
from the layout reorganization consideration) than our target
class. Most closely related to our work, Zhong and He [43]
proposed a programming framework, Medusa, to parallelize
graph processing applications on GPUs by adapting Pregel’s
design. They focus on issues with SIMT architecture, whereas
our design is for exploiting the more rigid SSE-like parallelism
as well as larger-scale MIMD (shared memory) parallelism.
CuSha [18] optimizes graph processing on GPUs with in-
tensive usage of shared memory, by re-organizing the graph
data in shards. Again, the technique is specifically for GPU
architecture.

Recently, several efforts have also parallelized irregular
applications on the Xeon Phi architecture, and thus share some
similarities with our work. Saule and Catalyurek [33] provided
a preliminary evaluations on graph applications on the Xeon
Phi architecture, but did not report a system design. Liu et
al. [24] parallelized Sparse Matrix-Vector Multiplication, and
Pennycook et al. [29] parallelized Molecular Dynamics on
Xeon Phi, with emphasis on long vector SIMD parallelization.
Our work has focused on supporting a system with a general
and high-level API, for a set of graph processing applications.

VII. CONCLUSIONS AND FUTURE WORK

With growing density of transistors and increasing focus on
energy efficiency, future processors will have increasing num-
ber of cores, parallelism at multiple levels, and relative small
amount of memory per core. Such a trend is reflected through a
new coprocessor, Intel Xeon Phi. More specifically, Xeon Phi



is an example of a system where large-scale shared memory
(MIMD) as well as SIMD parallelism must be exploited to
achieve high efficiency.

This paper has focused on the challenge of exploiting these
two types of parallelism simultaneously for graph processing
applications. We have supported a simple graph program-
ming API. The innovative components of our runtime system
include a condensed static memory buffer, which supports
efficient message insertion and SIMD message reduction
while keeping the memory requirements low, and a pipelining
scheme for efficient message generation by avoiding frequent
locking operations. Although these techniques are specifically
designed for the MIC architecture, they are able to run on
a multi-core CPU, with a reasonable performance, compared
with OpenMP. Our framework is able to execute a graph
application across the CPU and MIC, with the assistance
of our proposed hybrid graph partitioning. We believe that
the underlying ideas of our approach can be used for other
classes of applications, especially irregular reductions and N-
body problems, which share some similarities with graph al-
gorithms. Our future work includes applying and/or extending
the current system for other classes of applications, as well as
providing additional functionality for graph applications, such
as auto-tuning for deciding the optimal number of worker/-
mover threads, as well as the partitioning ratio between CPU
and MIC.

REFERENCES

[1] http://www.top500.org/lists/2013/11/.

[2] Giraph. http://giraph.apache.org/.

[3] Jonathan W Berry, Bruce Hendrickson, Simon Kahan, and Petr Konecny.
Software and Algorithms for Graph Queries on Multithreaded Architec-
tures. IPDPS ’07, pages 1–14. IEEE.

[4] Sergey Brin and Lawrence Page. The anatomy of a large-scale hyper-
textual web search engine. Computer Networks, 30(1-7):107–117, 1998.

[5] Albert Chan, Frank Dehne, and Ryan Taylor. Cgmgraph/cgmlib:
Implementing and Testing CGM Graph Algorithms on PC Clusters and
Shared Memory Machines. International Journal of High Performance
Computing Applications, 19(1):81–97, 2005.

[6] Jiyang Chen, Osmar R. Zaı̈ane, and Randy Goebel. Detecting Commu-
nities in Social Networks Using Max-Min Modularity. In SDM, pages
978–989, 2009.

[7] Rong Chen, Xin Ding, Peng Wang, Haibo Chen, Binyu Zang, and
Haibing Guan. Computation and Communication Efficient Graph
Processing with Distributed Immutable View. HPDC ’14.

[8] Jiefeng Cheng, Jeffrey Xu Yu, Bolin Ding, Philip S. Yu, and Haixun
Wang. Fast graph pattern matching. In ICDE, pages 913–922, 2008.

[9] Jiri Dokulil, Enes Bajrovic, Siegfried Benkner, Sabri Pllana, Martin
Sandrieser, and Beverly Bachmayer. Efficient Hybrid Execution of C++
Applications using Intel Xeon Phi Coprocessor. CoRR, abs/1211.5530,
2012.

[10] Douglas Gregor and Andrew Lumsdaine. Lifting Sequential Graph
Algorithms for Distributed-memory Parallel Computation. In OOPSLA,
pages 423–437. ACM, 2005.

[11] Daniel S. Hirschberg, Ashok K. Chandra, and Dilip V. Sarwate. Com-
puting Connected Components on Parallel Computers. Commun. ACM,
22(8):461–464, 1979.

[12] Sungpack Hong, Sang Kyun, Kim Tayo, and Oguntebi Kunle Olukotun.
Accelerating CUDA Graph Algorithms at Maximum Warp. In In PPoPP.
ACM, 2011.

[13] Youngjoon Jo, Michael Goldfarb, and Milind Kulkarni. Automatic
Vectorization of Tree Traversals. PACT ’13. IEEE Press.

[14] U. Kang, Charalampos E. Tsourakakis, Ana Paula Appel, Christos
Faloutsos, and Jure Leskovec. Hadi: Fast Diameter Estimation and
Mining in Massive Graphs with Hadoop. Technical Report CMU-ML-
08-117, School of Computer Science, Carnegie Mellon University, 2008.

[15] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. PEGA-
SUS: A Peta-Scale Graph Mining System. In ICDM, pages 229–238,
2009.

[16] George Karypis and Vipin Kumar. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput.,
20(1):359–392, December 1998.

[17] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, Dan
Williams, and Panos Kalnis. Mizan: A System for Dynamic Load
Balancing in Large-scale Graph Processing. EuroSys ’13, pages 169–
182. ACM, 2013.

[18] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan.
CuSha: Vertex-centric Graph Processing on GPUs. HPDC ’14.

[19] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, An-
thony D Nguyen, Tim Kaldewey, Victor W Lee, Scott A Brandt, and
Pradeep Dubey. FAST: Fast Architecture Sensitive Tree Search on
Modern CPUs and GPUs. SIGMOD ’10.

[20] Jon M. Kleinberg. Authoritative Sources in a Hyperlinked Environment.
In SODA, pages 668–677, 1998.

[21] Brian Kulis, Sugato Basu, Inderjit Dhillon, and Raymond Mooney.
Semi-supervised Graph Clustering: A Kernel Approach. ICML ’05.

[22] Milind Kulkarni, Martin Burtscher, Rajasekhar Inkulu, Keshav Pingali,
and Calin Cascaval. How Much Parallelism is there in Irregular
Applications? In PPOPP, pages 3–14. ACM, 2009.

[23] M. Zabovsky L. Takac. Data Analysis in Public Social Networks. In
International Scientific Conference and International Workshop Present
Day Trends of Innovations, 2012.

[24] Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey.
Efficient Sparse Matrix-vector Multiplication on x86-based Many-core
Processors. ICS ’13. ACM.

[25] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M Hellerstein. Graphlab: A New Framework for
Parallel Machine Learning. Conference on Uncertainty in Artificial
Intelligence, 2010.

[26] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A
System for Large-scale Graph Processing. In SIGMOD, pages 135–146,
2010.

[27] Mario Méndez-Lojo, Donald Nguyen, Dimitrios Prountzos, Xin Sui,
Muhammad Amber Hassaan, Milind Kulkarni, Martin Burtscher, and
Keshav Pingali. Structure-driven Optimizations for Amorphous Data-
parallel Programs. In PPOPP, pages 3–14. ACM, 2010.

[28] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable GPU
Graph Traversal. PPoPP ’12. ACM.

[29] Simon J Pennycook, Chris J Hughes, M Smelyanskiy, and SA Jarvis.
Exploring SIMD for Molecular Dynamics, Using Intel R© Xeon R© Pro-
cessors and Intel R© Xeon Phi Coprocessors. IPDPS ’13. IEEE.

[30] Tieyun Qian, Jaideep Srivastava, Zhiyong Peng, and Phillip C.-Y. Sheu.
Simultaneously Finding Fundamental Articles and New Topics Using a
Community Tracking Method. In PAKDD, pages 796–803, 2009.

[31] Sayan Ranu and Ambuj K. Singh. GraphSig: A Scalable Approach
to Mining Significant Subgraphs in Large Graph Databases. In ICDE,
pages 844–855, 2009.

[32] Semih Salihoglu and Jennifer Widom. GPS: A Graph Processing
System. SSDBM, 2013.

[33] Erik Saule and Umit V Catalyurek. An Early Evaluation of the
Scalability of Graph Algorithms on the Intel MIC Architecture. IPDPSW
’12. IEEE.

[34] Nisheeth Shrivastava, Anirban Majumder, and Rajeev Rastogi. Mining
(Social) Network Graphs to Detect Random Link Attacks. In ICDE,
pages 486–495, 2008.

[35] Charalampos E. Tsourakakis, U. Kang, Gary L. Miller, and Christos
Faloutsos. DOULION: Counting Triangles in Massive Graphs with a
Coin. In KDD, pages 837–846, 2009.

[36] Leslie G. Valiant. A Bridging Model for Parallel Computation. Commun.
ACM, 33(8):103–111, August 1990.

[37] Nan Wang, Srinivasan Parthasarathy, Kian-Lee Tan, and Anthony K. H.
Tung. Csv: visualizing and mining cohesive subgraphs. In SIGMOD,
pages 445–458, 2008.

[38] Takashi Washio and Hiroshi Motoda. State of the Art of Graph-based
Data Mining. SIGKDD Explor. Newsl., 5(1), July 2003.

[39] Samuel Williams, Dhiraj D. Kalamkar, Amik Singh, Anand M. Desh-
pande, Brian Van Straalen, Mikhail Smelyanskiy, Ann Almgren, Pradeep
Dubey, John Shalf, and Leonid Oliker. Optimization of Geometric
Multigrid for Emerging Multi- and Manycore Processors. SC ’12, 2012.

[40] Jilong Xue, Zhi Yang, Zhi Qu, Shian Hou, and Yafei Dai. Seraph: An
Efficient, Low-cost System for Concurrent Graph Processing. HPDC
’14.

[41] Jaewon Yang and Jure Leskovec. Defining and Evaluating Network
Communities Based on Ground-truth. MDS ’12. ACM.

[42] Shengqi Yang, Xifeng Yan, Bo Zong, and Arijit Khan. Towards Effective
Partition Management for Large Graphs. SIGMOD ’12. ACM.

[43] Jianlong Zhong and Bingsheng He. Medusa: Simplified Graph Process-
ing on GPUs. TPDS, 99(1):1, 2013.


