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Abstract—Programmer productivity considerations are in- is driven by the growing popularity of Python, and the need
creasing the popularity of interpreted languages like Python. At for scaling numerical computations on multi-cores and GPUs
the same time, for applications where performance is important, using the existing libraries.
these languages clearly lack even on uniprocessors. In addition, Though projects likeNumPy [29] and SciPy [15] have
the use of dynamic data structures in a language like Python triaq improving the suitability of Python for HPC applicaris
makes it very hard to use emerging libraries for enabling the by providing support for arrays and array-based operations
exc_er%?:c;)r;:; ?rglé'éﬁ?éeai?:m”;mﬁfgreCa(‘)rr‘:]r;itl?r?éu;eysthon 10 use COMpute-intensive and data-intensive applications irh@lyt
multi-core and many-core libraries. The key component of our continue to be written irpure Rython, using more Qynamlc

structures. For example, consider the implementations -of K

framework involves a suite of algorithms for replacing dynamic I . f th lar d L |
and/or nested data structures by arrays, while minimizing unnec- M€ans clustering, one of the most popular data mining algo-

essary data copying costs. This involves a novel use of an existingithms, from web-source$. These implementations use lists
partial redundancy elimination algorithm, development of a new In Python to flexibly manage dataset of any size.
demand-driven interprocedural partial redundancy algorithm, a With current interpreters and translation systems, such ap
data flow formulation for determining that the contents of the plications perform poorly, i.e. the programmers are clearl
data structure are of the same type, and a linearization algorithm. trading performance for programmability. Even though a
We have evaluated our framework using data mining and translation system like Shedskin [8] can translate Python
two linear algebra applications written in pure Python. The key  applications to C++, allow existing C++ compilers to be uysed
observations were: 1) the code generated by our framework is the resulting compiled code is still quite slow.
only 10% to 20% slower compared to the hand-written C code Besides the performance problems associated with high-
Lhat .inV.c;!‘es tr}e same Iil_orariﬁs, 2) ?“r optimizations turn out tod productivity languages in general, and applications ths u
e significant for improving the performance in most cases, an : : : : .
3) we outperform interpreted Python and the C++ code generaig dynamic d"’.‘ta structures in Python in par_tlcular, anothgram
by an existing tool by one to two orders of magnitude. tant _faCtor Is the support for use of multi-core and_ manyecor
architectures. There is a growing trend towards librartest t
Keywords-Python; Redundancy Elimination, Compilation for can support a specific class of applications on multi-core or
multi-core and many-core many-core architectures. Examples of classes of appitsti
for which libraries have been developed include data-siten
|. INTRODUCTION applications [14] and linear algebra applications [23]8][2

The problem of scaling applications to large input sizes Ehese libraries expect parameters to be multi-dimensional
becoming increasingly harder. This can be attributed to tv@rays, and cannot be directly invoked when the application
important trends: first, starting from the last 6-7 yearssino is based on dynamic data structures.
longer possible to improve computing speed by simply inerea  We have developed a Python based compilation system
ing clock frequencies. As a result, multi-core architeetur that can replace dynamic data structures with arrays, and
and accelerators like GPUs have become cost-effective snelityoke libraries for multi-core and many-core architeeir
for scaling performance. However, each of these imposedas specific types of computations. To enable such support
programmabilitychallenge, and existing sequential programgfficiently, we have developed several new algorithms. The
cannot directly benefit from these. key contributions include alemand-driveninter-procedural

Second, as programmer productivity is becoming extremefgrsion of an existing Partial Redundancy Elimination (PRE
important, there is a growing trend towards very high-levetlgorithm [30], and an algorithm for determining homogeyei
languages. Languages like MATLAB, Python, Perl, and Rul$f a list.
are often simpler to learn (especially, for programmers in We have applied our framework to compile two data mining
certain domains), and result in much more concise code., Thagplications and two linear algebra applications. We demon
they can ease application development. But, because of tiatiate that by our translation and optimization framewaovlk,
interpreted nature and the use of high-level construcksy thare able to generate code which is only 10-20% slower than
also often result in poor performance, besides being nat aithe hand-written C code that uses the same libraries. Thus,
to exploit parallelism on multi-cores and GPUs. we have demonstrated that the productivity of a language lik

Clearly, it will be very desirable if translators can be bt Python can be combined with performance, and furthermore,
automatically or semi-automatically translate programisten
in high-level languages for scalable execution on multeso  Ihttp://vww.fantascienza.net/leonardo/so/kmeans/kmbtmb
and/or GPUs. This paper describes one such system. Our worttp://www.daniweb.com/software-development/pythareftids/31449



multi-core and many-core architectures can be exploitad-st Thus, the hand-written C programi1(96 sec) is 5 times faster
ing from high productivity languages. than the generated C++ code, and overall, 40 times fastar tha
The rest of the paper is organized as follows. Section the interpreted execution of Python.
describes the challenges in Python and gives an overviewin addition to the performance issues noted here, there is
of our work. Interprocedural PRE and related algorithms aenother challenge. For obtaining performance, it is ing&rea
presented in Sections Ill and IV. In Section V, we outline otingly becoming important to parallelize execution on multi
implementation and report results from a detailed expentsde core and many-core architectures. Complex data structures
evaluation. We compare our work with related research effopose significant challenges in parallelization. Moreovhg
in Section VI and conclude in Section VII. most common way of parallelizing computational steps is to
use existing libraries. These libraries, however, are thase
Il. CHALLENGES AND OVERVIEW OF OUR WORK flatter data structures, like multi-dimensional arraysugthe
In this section, we will introduce the performance issues oise of nested and dynamic data structures can prohibit the
Python, and give an overview to our translation framework.use of these libraries, and the application cannot benefin fr
parallelization on multi-core or many-core architectures
A. Python and Performance Issues

While our work is applicable to all languages where dyB- Overview of Our Translation Framework
namic data structures are used, the techniques we have déA/e now give an overview of the approach we have devel-
veloped and implemented have been motivated by featuresopkd in this paper. As a motivating example, we use the Python
Python. Python has been rapidly gaining popularity becafisecode in Figure 1. The nested loop shown at the bottom of the
its support for high productivity and easy learning curvlisT Figure is similar to the computation performed in DGEMM
enables programmers to focus on developing and expressixgmple.
algorithms, rather than programming itself. While it prozsd

high productivity, performance efficiency of the applicais
developed using Python is not very good. Thus, for HPC
applications, where performance is an important issue, the
use of Python creates several challenges. At the same time,
programmer productivity has become an important concern
within HPC as well, promoting use of Python and similar lan-
guages, including specialized parallel languages like p&l0
One approach is to use language extensions and/or low level
libraries to help improve performance. Successful prgject
in this area includeNumPy[29], SciPy [15], PyMPI [26],
PyCUDA andPyOpenCL[16], among others.

The reasons for the low efficiency of Python arise because of
multiple related reasons. The fact that Python is integateind
not compiled is clearly a big factor. Moreover, one of the mos
attractive features of Python, the rich support for dynadata

Before Linearization

#Data set structure definition ~ #Data set initialization

class A: for i in range (t):
def _init_ (self, al): bl =]
self.al = al for j in range (n):
self.a2 = len (al) al=1]]
class B: for k in range (m):
def _init_ (self, b1): al.append (...)
self.bl = bl bl.append (A (al))
self.b2 =len (b1) points.append (B (b1))
points =[]

#Data access before linearization
for i in range (t):
for j in range (n):
for k in range (m):

structures, likelist, dictionaries and others, adds significant --- = points[i].b1[jl.al[k] ...

overheads. Dynamic typing, which further gives flexibiltty
programmers, also adds to the execution time overheads.
To look at the overheads in more details, let us takelitte
data structure supported in Python as an example. An atieact As stated earlier, we can significantly improve performance
feature of a Python list is that the users can store diffedats  over interpreted execution of Python code by using existing
types as different elements of the list. However, now dymraniools for translating the code to C++. However, dynamic data
type checking has to be applied to each element of the listructures still impose a significant performance penaliy
Moreover, since the list only stores pointers to the objectisallow the use of existing libraries for multi-code andnya
rather than the actual objects themselves, the data isaredst core systems. One approach for addressing this problend coul
continuously. As a result, data locality and cache usagelie to copy the data to #atter data structure, just before the
negatively impacted. execution of the main computational loop. This way, the main
To quantify these overheads, we performed the followingpmputation step may operate at an efficiency that is similar
experiment. We implemented a linear algebra routbeyble to that of the hand-written C code. Moreover, the arrays can
GEneral Matrix Multiplication (DGEMM), in Python. We be passed to the existing libraries that would allow pakalle
compared the execution time for Python program, executimgecution of the main loop.
using Python 2.4.3, with automatically translated C++ code While this idea seems simple, it still involves several
(using Shedkin [8]), and a hand-written C code. Rgthon challenges. First, flattening nested dynamic data strestur
code, thdist is used as the input data structuét+ code is may not be trivial, and we need a mechanism to perform the
generated from Python after data type inference is perfdrmeranslation and for maintaining the correspondence beatwee
and a user-defined vector-like container is used as the inpl¢ two sets of data structures. Second, the copying step
data structure. The hand-written C code uses the primitiitself can be expensive, especially, if the procedure hdseto
array as the input data structure. repeated several times. Thus, we need mechanisms to avoid
It turned out that the calculation time of the pure Pythonnnecessary copying of the data. Third, we can store data in
(484.46 sec) is around 8 times higher than the generaBg-  arrays and operate on it only if the data in the dynamic data
code 69.56 sec). This is primarily because in the C++ codestructure ishomogeneousiNe need an efficient mechanism to
all the type inference and type checking is performed at tldetermine this.
compilation stage. However, the wrapper functions aroligl t We have developed techniques to address these three chal-
user-defined data structure still incur significant ovedsea lenges, and have implemented them as part of our overall

Fig. 1. Python Code to lllustrate Translation Challenges



presented in the next Section. We focus on the second level

~optimization in the next 2 subsections.
Input Python Code ‘Il'l Configuration File [[[V
2
2

A. Intra-procedural PRE Algorithm

Python to C/ _— . .
‘ e }—Wﬁfﬂf}—" J Our Level 2 optimization involves a novel use of an ex-

77777777777777777777777 . isting partial redundancy elimination (PRE) algorithmgdats
[ Compile to Use \ extension into @emand-driverinter-procedural algorithm. We
HPCLib ‘ initially show why our problem is related to PRE.
ﬂﬁ Along a certaincontrol flow path if a computation is
performed more than once without any modification to its
operands between them, it will be considered as partially
(or fully) redundant. Over the last 30+ years, several PRE
algorithms [27], [6], [17] can be applied to optimize the eod
Similarly, in our work, if a copy operation is performed more
than once along a certain path without any modification to the
relative data elements, the copy operation can be treated as
partially (or fully) redundant.
Insertion In order to explain the basic idea of the traditional PRE,
Figure 3 shows an intra-procedural example. In the leftdhan
“,,..r side of this figure, aControl Flow Graphis given, while
the transformed code by PRE is introduced in the right-
Sompon ‘ HPC Run-time Environment ‘ hand-side. In our work, the IPRE algorithm is derived from
an existing intra-procedural algorithm that is summarized
the Appendix [30]. This algorithm is chosen because of its
conceptual simplicity.

Data in
High Level
Structure

Compilation
Support

Transform
Insertion

Lib Call

Fig. 2. Overview of the Translation Framework

framework. This framework is shown in Figure 2. There are

three main stages in our translation process. In the firgesta :Z; ;z;
the Python code is translated into C/C++ code, using the if(someCond) if(someCond)
existing tool, Shedskin. Particularly, this tool transfar high- . F - F
level containers in Python to pre-defined container clagses / \
C++ (similar to those used in a template library like STL). [y=a+b] [ y=0 | (=a+b o
Type checking and type inferencing is performed during this \/ y= -
step. \—}/

In the second stage, the generated C/C++ code is translated :Z::‘; :> acb+1
further with an emphasis on the main computational steps. x=100 i‘f:‘iﬂb

This is the key novel contribution of the paper, with algomis

for Homogeneity DecisignDemand-Driven Inter-procedural

Partial Redundancy Eliminatignand Linearization involved

in this process. These methods are introduced in Sectibns ||

and IV, and have been implemented using the ROSE infras{v=a+b x=0

tructure [32]. X=X-v
In the last stage, the transformed C/C++ code with dense

data structures is further analyzed to make appropriatarib

calls. This step is based on the existing work [24], [21], arElg. 3. An Example to lllustrate Basic PRE: Before (left) antief (right)

the details are not described in this paper.

if(someCond)

B. Inter-procedural PRE algorithm

HIl. INSERTIONALGORITHM For even a modest-sized application, the overheads of

The objective of the insertion algorithm is to reduce thinearization cannot be reduced without applying PRE inter
overhead caused by thieearizationoperation, which is done procedurally. Though there have been a couple of efforts on
by reducing the frequency of execution of this statement. Odeveloping an inter-procedural PRE algorithm [1], [18], we
overall approach can be viewed as a two-level one: have developed @emand-driveninter-procedural algorithm,
Level 1: Insert a dense data structurd, (such asarray) just which analyzes procedures only if it is needed for placement
before any usage of the high level structufe §uch adist). of the linearization operations. In our applications, they k
We copy the actual objects ihto A and replacd. by A. This data structures are not modified frequently, so normallgreth
work can be followed by an optional step, in which we reordeshould be only a few linearization operations placement in-
the members in the objects according to our computationadlved. Thus, our demand-driven algorithm results in asialy
requirement, which can improve the data locality and thef only a small number of procedures from the application.
efficiency especially for data-intensive applications.
Level 2 In order to avoid multiple (unnecessary) copy oper- Our algorithm is based on thiater-procedural control-
ations, a powerful redundancy elimination algorithimter- flow graph (ICFG), which has been widely used for inter-
procedural partial redundancy eliminatiorflPRE), is de- procedural analysis. This ICFG contains the control flow
signed. graphs (CFG) for the individual procedures. For each pro-

Level 1 optimization simply requires an ability tmearize cedurep, an entry nodeEntry, and an exit nodebxit,
the data in the dynamic data structure. The method for thisdse defined. Eachall-site to p is represented by two nodes:



void main (){
List points;
Initial_points (points);
kmeansreduction (points);

void kmeans reduction (List points)
List clusters;
Initial_clusters (clusters, points);
for (i = 0; i < iterations; i++)
kmeans (points, clusters);
updateclusters (clusters);

void kmeans (List points, List clusters)
for (point p in points]
/Imin_cluster is the closest centroid
min_cluster.min distance = max (double);
min_cluster.min position = 1;
for (cluster c in cluster)
min_cluster = find closestcentroid (p, c);

update reduction object (min cluster);

}

void update_clusters (List clusters]
for (cluster c in cluster)
/lupdate the centroid by pre-defined reduction object
¢ = ...reductionobject ...;
}
}

Fig. 4. The C-like Pseudo-code for K-means Application

Call — site, and Return — site,. If a basic block contains a

linearize(points)

linearize(clusters)

Original Final
Placement Placement

4 Initial_clusters

4.1ENTRY

2 Initial_points

2.1ENTRY 4.n EXIT

1 main

1.1 ENTRY
1.2 Call-site2

1.3 Return-site2

1.4 Call-site3

5 kmeans

2.n EXIT

5.1ENTRY

5.2 loop-header

3 min_cluster = ...

3 kmeans_

3.1IENTRY

1.5 Return-site3 3.2Call-site4 5.4 loop-header
[oamemmies o || [ 53l |

5.7 Call-site8
(ssnewmaies |
‘ 5.9 EXIT

3.5 Call-site5

6 update_clusters

6.1ENTRY

A
3.9 EXIT

Mitermediate|

phemet
Original Final Intermediate| P
e |
Fig. 5. The ICFG for K-means Application

Call — sitey, it will be split into two basic node#31 and B2.
There is an edge fronB1 to the entry node of the procedure

A|gOrIthm 2 analyze bcurrenty pparent)

p, (B1, Entry,), and similarly, there is an edge from the exit ;

node of the procedure to B2, (Exit,, B2). In Figure 5,

we show ICFG for the K-means application listed earlier in®
Figure 4. 4
5:
Algorithm 1 analyzeall (procedure_set, linearize_set) s
1: for each linearization expressidimearize(l;) € linearize_set  8:
do 9:
2: for each procedure; € procedure_set do 10:
3: intra-procedural analysis olinearize(l;) in p; 11:
without considering the effect of call-sites 12:
4: end for
5. pick-up p in which [; is first define
6: ppa'rent = Pcurrent = P 13:
7. if I; € global variablesthen 14:
8: pparent = Peurrent =main
9: end if 15:
10: analyzepcurv‘ent, ppa'rent) 16:
11:  for each procedure; € procedure_set do 17:
12: final insertion and deletion 18:
13:  end for 19:
14: end for 20:
21:

for each nodewode; in peurrent dO
if node; includes procedure then
pparent = pcurrent

pcu'rrent = p
analyze pcur'rent: pparent)
else ifnode; = EXITp,0rrons
|f Pcurrent = pparent then
return {*arrive at the outer-most procedurg*
else if pcurrent 1S cOmpletely transparent with then
return {*nothing is affected}
else if pcurrent iNnCludes modification td; then
mark the availability OfAVINRETURN_SITEPcurrcnt
iN pparent according to the value of
AVOUTEXITPcurrcnt
if linearize(;) is safe at theb NTRY,,
mark CALL — SITEy,, ..., @S
ANTIN/ANTOUT andCOMP
mark ENTRY,....,..en: 8SAVIN
end if
propagate effect by work-list ipyarent @Nd peurrent
return
end if
end if
end for

then

then

current

Our IPRE method is shown through Algorithms 1 and
2. In our inter-procedural framework, we assume that inter-

procedural pointer-analysis [13] and alias-analysis [A&}ye node 3.2 and the end of the node 5.1. Similarly, lineariratio
been performed in the preprocessing stage and all the esialoperations for the listiusters are placed at the end of the
that point to the same space are labeled with the same namade 5.3 and at the end of the node 6.1.

In order to explain our algorithm, we use K-means example. In next stage, we use the method presented through Algo-
First, an initial placement of the linearization operatien rithm 1 and 2. Initially, intra-procedural analysis is parhed
performed. After this stage, in Figure 5, the linearizatiom the procedure(s) where the initial placement has beeer,don
operations for the lispoints are placed at the beginning of thewithout considering the effect of the functions calls. Digyi



this phase, we apply only Equations 1 through 10 in Figure 12,m is a map function used to map the list definition to
i.e. insertion or deletion logic is not computed. the lattice. For example, the result of(list;) will be type;.
Next, we move to the inter-procedural phase. If the list pdhus, each element ili’ can also be expressed in this form
rameter is anticipable at the entry of current procedurewiie (m(list1), m(lists),...). There is a special map functiom,,
pull this linearization operation out @f and try to propagate it which can initialize the type of the list variable intdNDEF.
further. For example, by thigull out strategy, the linearization ~ Returning to the last element of the four-tupte; V' — vV’
operationlinearize(points)can be pulled from the procedureis the domain for transfer functions. It has an identity fimc
kmeansto kmeansreduction and until themain function. f;, such thatf;(x) = « for all z in V’. Like any standard intra-
Finally, we will mark the node 1.4 in Figure 5 &8OM P procedural data flow algorithm, we can consider two levels:
and ANTOUT (stronger thalSPANTOUT) by the line of within basic block and interbasic block Based upon this, we
14 of the Algorithm 2. From the intra-procedural analysiszan classify the elements i into two groups: working on
we have know that the node 1.4 has already been markedstatements within &dasic blockand working onbasic blocks
-SPAVIN. Based on all of these, we can know that the findlhe rules for the former case, denoted fas can be defined
insertion forlinearize(points)can happen at the beginning ofas follows:
the node 1.4. All others placements will be deleted since we1) |f the statements) is irrelevant to the given listf, is

have already marked them a3/ I N (apcording to the line 15 the identity functionf;;

of the Algorithm 2 and the propagation operation), and there2) |f s is relevant to the given list/ist,, then for any

are no further modifications tpoints. list; # listq, fs(m(list;)) = m(list;), and forlist,,
For a procedure capp from the current procedurg.,,rent, m/(listy) = fs(m(listy)).

we consider two possibilities. First, jf is completely trans-  \ye further consider the following cases:
parentrelative to the parameter list of the copy statement, no 1) if s is a member function call without adding any new el-

further analysis is done op. Second, ifp is not transparent, . . ! 7 _
we just need to copy the availability from the Exit point ;r?ﬁgs)',n the list, such dést,.remove(), m'(lista) =
ajs

of p. For example, in Figure 5, in the Exit node of the A : ;

procedureupdate clusters linearize(clustersjs not available, 2) gssl '|sta memtc)l((ar)fugrctllpr; Ca” adt?;ﬂng )an gl(tlamtent,_such

so in the node 3.8, it is also not available, which will cause V5la pPENA\L), O 1151a AMSETLIR, L), T {115 a) =
m(listy) A typeof(z);

linearize(clusters)s —AVIN in the node 3.5. Subsequently, : : . .
we can infer that the final insertion fiinearize(clustersill 3) gl esrmlasntai Zo&catﬁnatlﬁna%pgga;g)dn,toa?r? éigorethéhrgn 1
1 . " 1) 27 A a

Cvﬁfgzneﬁ%?&%%gmmng ofthe node 3.5 and ather placements are two cases: i) if the type of the new list is already
_ TR . . ) calculated asype’, thenm/(list,) = m(list,) Atype’,
K-means application is an iteration process: before the and ii) if this is not the case, examine the type of new

reduction loop, the input data spointsis initialized without
TP ; elements bytype’ = typeof(x1) A typeof(xza) A ...,
any further modification during the whole process, and the and thenm/(list,) — m(lists) A type’.

output data setlustersis updated in each loop. From Figure 5,
it is easy to know that after our elimination, the final plaggm

; . A : TABLE |
of linearize(points)is out of the reduction loop, and the HOMOGENEITY DECISION EXPRESSION(GLOBAL LEVEL)
placement oflinearize(clusters)s within the reduction loop,
which is coherent to the basic logic as above. [ [ Non-Hom decision Expression (Global Level)
. . . Domain Sets of Basic Blocks
C. Checking Homogeneity of a List Birection Forward
One of the requirements for converting a dynamic dafarransfer Function fs =2 A LOCIB]
structure to an array is that each element of the origina st Boundary OUT[ENTRY]=0
is of the same type. In this section, we describe an algorithm — Meet(\) Defined as above
we have developed for this purpose. Equations IN[B] = Apprea(s)OUTTP];
Our description here assumes a list structure, though the OUT[B] = fs(IN[B])
algorithm can easily be applied to any other dynamic ddta Initialization ouT[B] =0

structure. This decision algorithm is modeled asdata
flow analysisproblem, similar to the well-knowrConstant  After applying f; to all statements in eadbasic block we
Propagationproblem, for which many algorithms have beeran get the result for each block at the pointfT'[B]. We
developed [3], [36]. Here, only the intra-procedural versis refer to them a.OC|B]. The rule for the transfer functions
introduced, and the inter-procedural version can be dgeelo working on each basic block, denoted s, are summarized
easily similar to how we developed the IPRE algorithm abovia the Table I.

The entire algorithm can be expressed as a four-tuple
G,D,L',F >, where,G = (N, E) is a control flow graph. IV. LINEARIZATION AND MAPPING ALGORITHM
D is the direction of the data flow, which BORW ARDS The methods presented in the previous section have ex-
here. L’ is a three-tuple< V', A,m >, in which there are plained under what conditions contents of a dynamic data
three elementst’’, A andm. V' is the domain of values, andstructure can be copied into a dense and flat data structure,
each element in it is in this formitypes, types, ...), i.e., a and where the copy operation can be placed. In this section,
cross-product of the basic lattide, in which, UNDEF is the we introducelinearization and mappingalgorithms, with the
top elementT, and NON-HOM s the bottom element.. In goal of translating the high-level dynamic data structures
L', A is a meet operator, which follows the common definitiofython to low-level dense memory buffer in C++. This, in turn

of A for the product lattice, i.e, it is defined as: will allow use of HPC libraries for multi-core and many-core
architectures.
(typer, types, . ..) A (type, type, . ..) Specifically, we need to create a low-level continuous data

storage D,) from the high-level data viewI},). The entire
= (typei A typel, types A typel,...) process can be formally viewed as of computing the following



two functions: 1)F, C {f | f : D, — D}, alinearization Information Collected During Linearlization

function, which can transform the high level data view to theevels = 3;

low level data storage, and 2 C {m | m : D, — D,}, a unitSize[levels] ={unitSize B, unitSize A, sizeof(datatype_al)};
mappingfunction created to enable mapping of the computaunitOffset[levels-1][2] ={{unitOffset B[] }, {unitOffset A[] } };

tions to the low-level data layout. unitOffset B[2] = {0, unitSize_A x n }
unitOffset A[2] = {0, sizeof (data_type_al) x m}
A. Linearization position[levels-1][2] ={{0, 1}, {0, 1}};

{*This should be collected in the accumulate functipn*
mylndex[levels] ={i, j, k};

Algorithm 3 computeLinearizeSiz&(s)

1 size =0 Data access after linearization

2: if Xs.type =isPrimitive then for(i = 0; i <t; i++){

31 size = sizeof(Xs) for(j = 0; j <n; j++){

4: else if X s.type =islterative then for (k = 0; k <m; k++){

6. for zin Xs do L index =computelndexunitSize, unitOffset,

6: size += computeLinearizeSize} mylndex, position, 0, levels);

7. end for ... = linea_points[index]. . .

8: else if X s.type =isStructureType then }

9: for each membefn in Xs do }

10: size += computeLinearizeSize() }

11:  end for i L . '
12: . Fig. 6. The Example of Using Linearization and Mapping Funcdi
13: end if

14: ... - o -

15 Teturn size Algorithm 5 computelndex{nitSize[], unitOf fset[]]],

mylIndex|], position[][], i, levels)

1: > During the linearization phase, collecting necessary information
2: if i < levels — 1 then

Algorithm 4 linearizelt(X s, size) 3 index - unitSizeli]  x  mylndex[i]  +

1: > allocate memory with the size aize unitO f f set[i][position[i][]]

2: if Xs.type =isPrimitive then 4: index += computelndex{nitSize[], unitOf fset[]]],

3:  copy(Xs) mylndex[], position[][], i++, levels)

4: else if X s.type =islterative then 5: else

5. for z in Xs do 6: index = unitSize[i] X mylIndex|i]

6 linearizelt() 7: end if

7: end for 8: returnindex

8: else if X s.type =isStructureType then

9: for each membern in Xs do

10: linearizelt(n) ) . L . )
11:  end for index information is obtained from the usage loop. The entir
12: ... mapping process is recursive. It starts from the outer-most
13: end if level and terminates with the inner-most level. At each lleve
14: ... we calculate the offset caused by the index and the position
15: return addressO f Linearize Data offset.

The basiclinearization is a two-step algorithm which in- V. IMPLEMENTATION AND EXPERIMENTS

cludes two functions:computeLinearizeSizeshown as Al-

gorithm 3 andlinearizelt, shown as Algorithm 4. The first In this section, we describe a prototype implementation of
function is used to compute the data size while the secofdr framework and evaluate it by generating code for exeauti
one is used to copy the actual data to the continuous memé@fydata-intensiveapplications on a multi-core system, and
space. computation-intensivapplications on a GPU.

Let us revisit the code from Figure 1, where a very COMMOR  |mplementation Overview
example of using the user defined input data structure in
Python was shown. Figure 6 shows information that needsPython code was translated to C++ using an existing tool,
to be collected during the linearization process to enabtiec Shedskin [8]. Our transformations were implemented on top
generation for the usage of the linearized data structure. of the ROSE compiler infrastructure [32]. ROSE is a power-
. ful tool that supports program analysis and source-to€ur
B. Mapping transformations for C/C++, FORTRAN, and other languages.
The mapping algorithm can be divided into two stagesAfter the transformations are applied, low-level HPC litea
in the first stage, collecting the necessary informatiorirdur are invoked to support mapping on the multi-core and many-
the linearization process; in the second stage, computing treore libraries. Particularly, we used a data mining middle-
projected index of the low level data storadge, from the ware for mapping data-intensive applications to multiecor
collected information and the original index P, by the architectures, and used existing libraries to executaliafge-
recursive strategy in algorithm 5. The parameters used isy tbra operations on GPUs [23]. All these libraries/middlerava
algorithm are summarized in Table II. expect the data to be in multi-dimensional arrays, and danno
Figure 6 shows the information that should be collecteslipport processing of nested or dynamic data structures. Th
to apply the mapping algorithm. Most of the informatiorcode generation was based on our earlier work, and the sletail
should be collected during th@nearization stage, while the are not presented here.



TABLE Il
DESCRIPTIONS OF THEPARAMETERS IN MAPPING ALGORITHM
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— s

Collected During Linearization 0 o
unitSize]] ¥ 1

1-Dimensional Array. It stores the unit size of the elements 8 300}
in each level with unitSizégvels — 1] storing the inner-most gzso’
elements. =
unitO f fset]][] S 200

2-Dimensional Array. It stores the offsets of the variables at 2 150l
each level. The first dimension is used to indicate the level i
and the second one indicates the start positions of the variables 100¢ 1
at current level. sol |
position]][] HH Ilﬂﬂ

2-Dimensional Array. It provides the position information for 0 1 2 P 8
calculating theunitO f f set. # of Cores
levels Fig. 8. K-means: Comparison of Performance of Different Versi¢800

The total number of levels of the data. MB datasetk = 100, iter = 10)
Collected From D,
mylndez]] . For example, even to a much smaller data set (8 MB), the
_ 1-Dimensional Array. It records the index for each level. | .5)cyjation time of théPythoncode interpreted bPython 2.4
! An indicator to show the current level. Normallv. it starts is 109.60 seconds for 1 iteration and 1122.96 seconds for 10
from 0 indicating that the current level is'the outer)f’most. iterations. For the .data set of 800MB, th_e eX?CU“O” time of

the Gen C++ code is 59.28 seconds for 1 iteration and 593.06

seconds for 10 iterations.
: In Figure 7 and Figure 8, we report the calculation time of
— gl the code transformed by our framework. From Figure 7, we
T can see that comparing to tiigen C++ code, the efficiency
of the sequential version of our transformed code for 1
iteration is improved by more thaB0% even including the
linearization overhead of the input data Sét@PREversion).
Comparing with theWPREversion, we found that IPRE can
help overcome nearly 50% of the linearization overheadctvhi
is consistent to our analysis in Section Ill. In K-means guse
the centroid set is a frequently accessed data structure, we

1 can also linearize and apply the IPRE on it as described in
HH IIH 1 Section Ill, resulting in a version we refer to &PT. By
) ‘ ]
2 4 8

N
a
T

Execution Time (sec)
N
o

.
o
T

comparing the versiol®PTandManual we can see that their
performance is very similar to each other, and the overhead
_ , _ _ caused by linearization and mapping is within 30% for 1
Fig. 7. K-means: Comparison of Performance of Different Versi¢800 jtaration. On the other hand, by comparing the sequential
MB datasetk = 100, iter = 1) versions of OPT and Gen C++, we can see that by our
] optimization framework, the efficiency of the compiled code
B. Evaluation Goals and Platforms can be improved by a factor of more than 2 for the sequential
The objective of our evaluation is to compare the executioférsion, and furthermore, we have enabled use of a parallel
time of the original Python codéython), Shedskin generated library.
C/C++ code Gen C++), transformed code with and without From the comparison of Figure 7 and Figure 8, we can
IPRE optimization (WOPREandWPRE respectively), and the see that the linearization overhead can be reduced to a large
hand-written C/C++ with library functionsManual). extent by our IPRE method when there are multiple iterations
Our experiments are conducted on the following platform&inally, for the sequential version, the overhead of @eT
A multi-core machine with AMD Opteron(tm) Processor (2.&¢€rsion is around 10% of the best version, which is mainly
GHZ frequency) and main memory size of 32 GB was usawused by thenappingoperations and scalable to the number
for data-intensive applications. The GPU used for computef processors. That is why we see good scalability of the
intensive applications was a Quadro FX 5800 GPU, with 240PT version. The relative impact of our optimizations is even

|
1

# of Cores

cores and 4 GB memory. more significant for parallel versions, since linearizatis
. . , L performed sequentially.
C. Experiments with Data-Intensive Applications The datasets used for PCA experiments has 1000 rows

We invoked a data-intensive computing library from transand 100,000 columns. The calculation time of tRgthon
formed C++ code, and compare the performance of differecdde is very long, for example, even to a much smaller
versions we listed earlier. We used two popular data minirtata set 1000 x 1000) it takes 634.45 seconds. THeen
applications, which are K-means clustering and PCA. C++ code is also relatively slow, for example, to the data

An 800 MB representative dataset was used for K-mearset of 1000 x 100,000 it takes 3280 seconds. By using our
In our experiments, we control the computation workload byamework, the efficiency can be improved obviously, howgeve
modifying the iteration numbers. Very similar to the DGEMMhe IPRE optimization must be applied to the linearization
example in Section Il, the calculation time of the Pythonesodof the input data set. Without the IPRE algorithm, the lin-
which uses a list as the main input data structure, is muehrization is inserted in the inner-most loops, resulting i
longer than the generated code and the transformed co@¢row?) times copy operations to the input data set that is a
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Fig. 11. Experiment Results for Tensor Multiplication

In this application, the IPRE optimization is mainly used

187-‘wopRE‘ to eliminate the linearization overhead during the matrix
[ weRE dimension validation. Since there is no modification betwee
16| [__JManual

[
I
T

this stage and the main loop computation, there is no need
to linearize the input matrices multiple times. This is also

-
N
T

applied to the next experimental case. From the comparison
between the versions &WPREand WOPREin Figure 10, we
can see that the linearization overhead can be reduced & mor
than 50% by using IPRE. And also the linearization overhead
becomes less significant with the increase in the data s&g,siz
and when the size of the kerneld800 x 7000, the linearization
overhead is reduced to be less than 15% with our IPRE method
comparing to the bestlanual version.

The second linear algebra kernel is tensor contractionghwhi
is a multi-dimensional matrix multiplication. In pure Pyt
if we want to perform such a computation, a highly nested list
structure needs to be used, which decreases the performance
very large overhead. In Figure 9, we compare the calculatiégverely. Thus, our transformations are even more crutie.
time of the WPREversion generated by our framework andollowing expression was used in our work:
Manualversions. As stated above/OPREversion data is not result[hs, h1, ha, ps, pa, ps]+ = @[h7, pa, ps, ha] xy[hs, ha, pe, h7]
shown, because it is extremely slow. From the comparison,Figure 11 illustrates the execution time for different dats
we can see that the efficiency of tNéPREversion is very Of increasing sizes. BotWOPREandWPREare the versions
similar to theManual version, and the overhead caused by trgenerated by our framework and thdanual one is the
linearization and mapping operation is around 10% to 20% fgersion written manually to feed into the Code Generator.
both sequential and parallel versions. Especially, theasifty Again, the Pythonand Gen C++ codes are very slow, i.e.
of the sequentiaWPREversion is improved by a factor of 10 even forconfiglthey run for 261.39 seconds, 16.85 seconds,
comparing to theGen C++ code. respectively. Details of both these versions are not shown

] ] o ) here. The effect of the IPRE optimization is shown in this

D. Scaling Compute-Intensive Applications with a GPU  experiment by comparing the versions\WWOPREand WPRE

GPU has been gaining popularity in recent years becaubat the linearization overhead is decreased by around 50%.
of their very favorable performance to cost ratio. Many GPBrom the comparison between the transformed cdd®ORRE
related libraries and automatic code generators have bewrd WPRE and theManual version in Figure 11, we can
developed in recent years. In our experiments, CUBLASee that the linearization overhead is very large when tiee da
libraries [28] and tensor contractions [23] generated codet is relatively small. However, the overhead reduces with
are used for accelerating the execution of two linear aklgehincreasing in dataset sizes. For instancesanfig7 comparing
kernels written in Python. the versions ofWPREandManual the linearization overhead

The first linear algebra kernel is DGEMM. The implemenis already smaller than 20% with IPRE.
tation from the CUBLAS library can be invoked to replace
the sequential computations in the Python implementation. V1. RELATED WORK
Because the mapping function is not needed in this caseWe now compare our work with related research efforts.
the mapping overhead is not considered in this and the nexiGiven the popularity of Python, there have been several ef-
example. We experimented with seven datasets, which rariges focusing on improving Python's efficiency. These &#o
from 1000 1000 to 7000 x 7000. The results of the experimentcan be classified into two groups, which are adding extension
are shown in Figure 10. By comparing the results on tHibraries or constructs t®ure Python, and compiling Python
1000 x 1000 dataset with the example in Section I, we can sde other languages, such as C/C++ or even CUDA. NumPy
that the performance of the CUBLAS version is much bettand SciPy [29], [15] are examples of the former, where the
than thePython code (more than 1000 times speedup) andefficiency caused by the dynamic data structure usageri pu
Gen C++ code (around 163 times speedup), even before tRgthon is substantially reduced by adding an N-dimensional
optimizations are applied. array object. For multi-processing, these efforts havenbee

Execution Time (sec)
o] B

"1 272 343 4+4 5%5 6%6 ™7
Kernel Size (1000*1000)

Fig. 10. Experiment Results for DGEMM
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SPANTOUT; = Z _SPANTIN; otherwise
jEsuce(i) J

9
FALSE if "SAFFEIN;,
ANTLOC; + SPANTOUT; - TRANSP; otherwise

(10)
INSERT; = COMP; - SPANTOUT; - (-TRANSP; + -SPAVIN;), (11)

PANTIN; = {

INSERT(; jy = ~SPAVOUT; - SPAVIN; - SPANTINj, (12)
iy = ANTLOC; - (SPAVIN; + TRANSP;- SPANTOUT;), (13)
REPLACE; = COMP; - (SPANTOUT; + TRANSP; - SPAVIN;), (14)

Fig. 12. Basic Intra-procedural PRE Data Flow Equations

TABLE Il
TERMSUSED IN THEPRE DATA FLOW EQUATIONS

VIIl. A PPENDIX

Symbols

This section summarizes the main steps in the Partial Re=T1, Boolean conjunctions;

dundancy Elimination method developed by Paédral. [30].

+, >: Boolean disjunctions;

While this algorithm uses most of the same ideas as

€. Boolean negation.

original algorithm by Morel and Renvoise [27], as well a

Local properties

the subsequent algorithms by Dhamdhere [6] and Knebp

al. [17], it is conceptually simpler and has other properties, |, nodes, if the operands of the expression are not modified:;

TRANSP;: transparent

like the fact that it does not require any splitting of edges.
The data-flow equations of this algorithm are shown in
Figure 12, and the terms are explained in Table IlI.
This algorithm can be divided into two phases: tbeal

COM P;: locally available

In nodes, if there is at least one computation of the
expressionF, andincluding and after thdast computation
there is no modification of the operands Bf

phaseand theglobal phase The local phase is applied to
eachbasic blockto reduce the redundancy within eabhsic
block After it, only thefirst and thelast computation of the
expression in this block will be considered.

ANTLOC;: locally anticipable

In nodes, if there is at least one computation of the
expressionE, and before thdirst computationthere is no
modification of the operands df.

Focusing now on the global phase, from Equation 1, we caiGlobal properties

know an expression is available at the entry diasic block
if it is available at the exit of all the predecessor blocksa A

AVIN,/JAVIOUT;
The expression is available at the entry/exit of nade

expression is available at the exit ofbasic block if it is
locally available or available at the entry of the curréaisic

ANTIN,/JANTIOUT;
The expression is anticipable at the entry/exit of node

block without any operands modification in it (Equation 2)|.
Similarly, from Equation 3 and Equation 4, we can know &
expression is anticipable at the exit ofbasic blockif it is

>

SAFEIN;,/SAFEOUT,

The entry/exit of node is safe. A pointp is safe for some
expressionF, if we insert a computation of/ at p without
introducing any new value on any path through

anticipable at the entry of all the successor blocks, while a
expression is anticipable at the entry ofbasic blockif it

SPAVIN;/ISPAVOUT;
The expression is safe partial available at the entry/exit of

is locally anticipable or anticipable at the exit of the ant
basic blockwithout any operands modification in it.
The most interesting part of this algorithm is that it focsise

SPANTIN;,/SPANTOUT;
The expression is safe partial anticipable at the entry/exit of

on thesafepoints (SAFEIN and SAFEOUT), the points where

we can insert the computation of some expression WithQUiast computatiorin nodei; or on the edge between nodeand j;

INSERT,/INSERT,; ;,
The computation of the expression should be placed before

introducing a new value along any path. The final insertig NREPLACE;,IREPLACE,
points and replace points are decided by Equations 11 to|14 The replacement of the expression should be happened

based on the operators and terms in Table llI.

to thefirst / last computation in node.

the



