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Abstract—Programmer productivity considerations are in-
creasing the popularity of interpreted languages like Python. At
the same time, for applications where performance is important,
these languages clearly lack even on uniprocessors. In addition,
the use of dynamic data structures in a language like Python
makes it very hard to use emerging libraries for enabling the
execution on multi-core and many-core architectures.

This paper presents a framework for compiling Python to use
multi-core and many-core libraries. The key component of our
framework involves a suite of algorithms for replacing dynamic
and/or nested data structures by arrays, while minimizing unnec-
essary data copying costs. This involves a novel use of an existing
partial redundancy elimination algorithm, development of a new
demand-driven interprocedural partial redundancy algorithm, a
data flow formulation for determining that the contents of the
data structure are of the same type, and a linearization algorithm.

We have evaluated our framework using data mining and
two linear algebra applications written in pure Python. The key
observations were: 1) the code generated by our framework is
only 10% to 20% slower compared to the hand-written C code
that invokes the same libraries, 2) our optimizations turn out to
be significant for improving the performance in most cases, and
3) we outperform interpreted Python and the C++ code generated
by an existing tool by one to two orders of magnitude.

Keywords-Python; Redundancy Elimination, Compilation for
multi-core and many-core

I. I NTRODUCTION

The problem of scaling applications to large input sizes is
becoming increasingly harder. This can be attributed to two
important trends: first, starting from the last 6-7 years, itis no
longer possible to improve computing speed by simply increas-
ing clock frequencies. As a result, multi-core architectures
and accelerators like GPUs have become cost-effective means
for scaling performance. However, each of these imposes a
programmabilitychallenge, and existing sequential programs
cannot directly benefit from these.

Second, as programmer productivity is becoming extremely
important, there is a growing trend towards very high-level
languages. Languages like MATLAB, Python, Perl, and Ruby
are often simpler to learn (especially, for programmers in
certain domains), and result in much more concise code. Thus,
they can ease application development. But, because of their
interpreted nature and the use of high-level constructs, they
also often result in poor performance, besides being not able
to exploit parallelism on multi-cores and GPUs.

Clearly, it will be very desirable if translators can be built to
automatically or semi-automatically translate programs written
in high-level languages for scalable execution on multi-cores
and/or GPUs. This paper describes one such system. Our work

is driven by the growing popularity of Python, and the need
for scaling numerical computations on multi-cores and GPUs,
using the existing libraries.

Though projects likeNumPy [29] and SciPy [15] have
tried improving the suitability of Python for HPC applications
by providing support for arrays and array-based operations,
compute-intensive and data-intensive applications in Python
continue to be written inpure Python, using more dynamic
structures. For example, consider the implementations of K-
means clustering, one of the most popular data mining algo-
rithms, from web-sources12. These implementations use lists
in Python to flexibly manage dataset of any size.

With current interpreters and translation systems, such ap-
plications perform poorly, i.e. the programmers are clearly
trading performance for programmability. Even though a
translation system like Shedskin [8] can translate Python
applications to C++, allow existing C++ compilers to be used,
the resulting compiled code is still quite slow.

Besides the performance problems associated with high-
productivity languages in general, and applications that use
dynamic data structures in Python in particular, another impor-
tant factor is the support for use of multi-core and many-core
architectures. There is a growing trend towards libraries that
can support a specific class of applications on multi-core or
many-core architectures. Examples of classes of applications
for which libraries have been developed include data-intensive
applications [14] and linear algebra applications [23], [28].
These libraries expect parameters to be multi-dimensional
arrays, and cannot be directly invoked when the application
is based on dynamic data structures.

We have developed a Python based compilation system
that can replace dynamic data structures with arrays, and
invoke libraries for multi-core and many-core architectures
for specific types of computations. To enable such support
efficiently, we have developed several new algorithms. The
key contributions include ademand-driveninter-procedural
version of an existing Partial Redundancy Elimination (PRE)
algorithm [30], and an algorithm for determining homogeneity
of a list.

We have applied our framework to compile two data mining
applications and two linear algebra applications. We demon-
strate that by our translation and optimization framework,we
are able to generate code which is only 10-20% slower than
the hand-written C code that uses the same libraries. Thus,
we have demonstrated that the productivity of a language like
Python can be combined with performance, and furthermore,

1http://www.fantascienza.net/leonardo/so/kmeans/kmeans.html
2http://www.daniweb.com/software-development/python/threads/31449



multi-core and many-core architectures can be exploited start-
ing from high productivity languages.

The rest of the paper is organized as follows. Section II
describes the challenges in Python and gives an overview
of our work. Interprocedural PRE and related algorithms are
presented in Sections III and IV. In Section V, we outline our
implementation and report results from a detailed experimental
evaluation. We compare our work with related research efforts
in Section VI and conclude in Section VII.

II. CHALLENGES AND OVERVIEW OF OUR WORK

In this section, we will introduce the performance issues of
Python, and give an overview to our translation framework.

A. Python and Performance Issues

While our work is applicable to all languages where dy-
namic data structures are used, the techniques we have de-
veloped and implemented have been motivated by features of
Python. Python has been rapidly gaining popularity becauseof
its support for high productivity and easy learning curve. This
enables programmers to focus on developing and expressing
algorithms, rather than programming itself. While it provides
high productivity, performance efficiency of the applications
developed using Python is not very good. Thus, for HPC
applications, where performance is an important issue, the
use of Python creates several challenges. At the same time,
programmer productivity has become an important concern
within HPC as well, promoting use of Python and similar lan-
guages, including specialized parallel languages like X10[5].
One approach is to use language extensions and/or low level
libraries to help improve performance. Successful projects
in this area includeNumPy [29], SciPy [15], PyMPI [26],
PyCUDA, andPyOpenCL[16], among others.

The reasons for the low efficiency of Python arise because of
multiple related reasons. The fact that Python is interpreted and
not compiled is clearly a big factor. Moreover, one of the most
attractive features of Python, the rich support for dynamicdata
structures, likelist, dictionaries, and others, adds significant
overheads. Dynamic typing, which further gives flexibilityto
programmers, also adds to the execution time overheads.

To look at the overheads in more details, let us take thelist
data structure supported in Python as an example. An attractive
feature of a Python list is that the users can store differentdata
types as different elements of the list. However, now dynamic
type checking has to be applied to each element of the list.
Moreover, since the list only stores pointers to the objects,
rather than the actual objects themselves, the data is not stored
continuously. As a result, data locality and cache usage is
negatively impacted.

To quantify these overheads, we performed the following
experiment. We implemented a linear algebra routine,Double
GEneral Matrix Multiplication (DGEMM), in Python. We
compared the execution time for Python program, executing
using Python 2.4.3, with automatically translated C++ code
(using Shedkin [8]), and a hand-written C code. InPython
code, thelist is used as the input data structure.C++ code is
generated from Python after data type inference is performed,
and a user-defined vector-like container is used as the input
data structure. The hand-written C code uses the primitive
array as the input data structure.

It turned out that the calculation time of the pure Python
(484.46 sec) is around 8 times higher than the generatedC++
code (59.56 sec). This is primarily because in the C++ code,
all the type inference and type checking is performed at the
compilation stage. However, the wrapper functions around this
user-defined data structure still incur significant overheads.

Thus, the hand-written C program (11.96 sec) is 5 times faster
than the generated C++ code, and overall, 40 times faster than
the interpreted execution of Python.

In addition to the performance issues noted here, there is
another challenge. For obtaining performance, it is increas-
ingly becoming important to parallelize execution on multi-
core and many-core architectures. Complex data structures
pose significant challenges in parallelization. Moreover,the
most common way of parallelizing computational steps is to
use existing libraries. These libraries, however, are based on
flatter data structures, like multi-dimensional arrays. Thus, the
use of nested and dynamic data structures can prohibit the
use of these libraries, and the application cannot benefit from
parallelization on multi-core or many-core architectures.

B. Overview of Our Translation Framework

We now give an overview of the approach we have devel-
oped in this paper. As a motivating example, we use the Python
code in Figure 1. The nested loop shown at the bottom of the
Figure is similar to the computation performed in DGEMM
example.

Before Linearization

#Data set structure definition

class A:

def _init_ (self, a1):

self.a1 = a1

self.a2 = len (a1)

class B:

def _init_ (self, b1):

self.b1 = b1

self.b2 = len (b1)

points = []

#Data set initialization

for i in range (t):

b1 = []

for j in range (n):

a1 = []

for k in range (m):

a1.append (...)

b1.append (A (a1))

points.append (B (b1))

#Data access before linearization

for i in range (t):

for j in range (n):

for k in range (m):

= points[i].b1[j].a1[k] ...

Fig. 1. Python Code to Illustrate Translation Challenges

As stated earlier, we can significantly improve performance
over interpreted execution of Python code by using existing
tools for translating the code to C++. However, dynamic data
structures still impose a significant performance penalty,and
disallow the use of existing libraries for multi-code and many-
core systems. One approach for addressing this problem could
be to copy the data to aflatter data structure, just before the
execution of the main computational loop. This way, the main
computation step may operate at an efficiency that is similar
to that of the hand-written C code. Moreover, the arrays can
be passed to the existing libraries that would allow parallel
execution of the main loop.

While this idea seems simple, it still involves several
challenges. First, flattening nested dynamic data structures
may not be trivial, and we need a mechanism to perform the
translation and for maintaining the correspondence between
the two sets of data structures. Second, the copying step
itself can be expensive, especially, if the procedure has tobe
repeated several times. Thus, we need mechanisms to avoid
unnecessary copying of the data. Third, we can store data in
arrays and operate on it only if the data in the dynamic data
structure ishomogeneous. We need an efficient mechanism to
determine this.

We have developed techniques to address these three chal-
lenges, and have implemented them as part of our overall
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Fig. 2. Overview of the Translation Framework

framework. This framework is shown in Figure 2. There are
three main stages in our translation process. In the first stage,
the Python code is translated into C/C++ code, using the
existing tool, Shedskin. Particularly, this tool transforms high-
level containers in Python to pre-defined container classesin
C++ (similar to those used in a template library like STL).
Type checking and type inferencing is performed during this
step.

In the second stage, the generated C/C++ code is translated
further with an emphasis on the main computational steps.
This is the key novel contribution of the paper, with algorithms
for Homogeneity Decision, Demand-Driven Inter-procedural
Partial Redundancy Elimination, and Linearization involved
in this process. These methods are introduced in Sections III
and IV, and have been implemented using the ROSE infras-
tructure [32].

In the last stage, the transformed C/C++ code with dense
data structures is further analyzed to make appropriate library
calls. This step is based on the existing work [24], [21], and
the details are not described in this paper.

III. I NSERTIONALGORITHM

The objective of the insertion algorithm is to reduce the
overhead caused by thelinearizationoperation, which is done
by reducing the frequency of execution of this statement. Our
overall approach can be viewed as a two-level one:
Level 1: Insert a dense data structure (A, such asarray) just
before any usage of the high level structure (L, such aslist).
We copy the actual objects inL to A and replaceL by A. This
work can be followed by an optional step, in which we reorder
the members in the objects according to our computational
requirement, which can improve the data locality and the
efficiency especially for data-intensive applications.
Level 2: In order to avoid multiple (unnecessary) copy oper-
ations, a powerful redundancy elimination algorithm,inter-
procedural partial redundancy elimination(IPRE), is de-
signed.

Level 1 optimization simply requires an ability tolinearize
the data in the dynamic data structure. The method for this is

presented in the next Section. We focus on the second level
optimization in the next 2 subsections.

A. Intra-procedural PRE Algorithm

Our Level 2 optimization involves a novel use of an ex-
isting partial redundancy elimination (PRE) algorithm, and its
extension into ademand-driveninter-procedural algorithm. We
initially show why our problem is related to PRE.

Along a certain control flow path, if a computation is
performed more than once without any modification to its
operands between them, it will be considered as partially
(or fully) redundant. Over the last 30+ years, several PRE
algorithms [27], [6], [17] can be applied to optimize the code.
Similarly, in our work, if a copy operation is performed more
than once along a certain path without any modification to the
relative data elements, the copy operation can be treated as
partially (or fully) redundant.

In order to explain the basic idea of the traditional PRE,
Figure 3 shows an intra-procedural example. In the left-hand-
side of this figure, aControl Flow Graph is given, while
the transformed code by PRE is introduced in the right-
hand-side. In our work, the IPRE algorithm is derived from
an existing intra-procedural algorithm that is summarizedin
the Appendix [30]. This algorithm is chosen because of its
conceptual simplicity.

a = 1

b = 2

if(someCond)

y = a + b

T

y = 0

F

z = a + b

a = b + 1

x = 100

if(someCond)

v = a + b

x = x - v

T

x = 0

F

a = 1

b = 2

if(someCond)

t = a + b

y = t

T

y = 0

t = a + b

F

z = t

a = b + 1

x = 100

t = a + b

if(someCond)

v = t

x = x - v

T

x = 0

F

Fig. 3. An Example to Illustrate Basic PRE: Before (left) and After (right)

B. Inter-procedural PRE algorithm

For even a modest-sized application, the overheads of
linearization cannot be reduced without applying PRE inter-
procedurally. Though there have been a couple of efforts on
developing an inter-procedural PRE algorithm [1], [18], we
have developed ademand-driveninter-procedural algorithm,
which analyzes procedures only if it is needed for placement
of the linearization operations. In our applications, the key
data structures are not modified frequently, so normally, there
should be only a few linearization operations placement in-
volved. Thus, our demand-driven algorithm results in analysis
of only a small number of procedures from the application.

Our algorithm is based on theinter-procedural control-
flow graph (ICFG), which has been widely used for inter-
procedural analysis. This ICFG contains the control flow
graphs (CFG) for the individual procedures. For each pro-
cedurep, an entry nodeEntryp and an exit nodeExitp
are defined. Eachcall-site to p is represented by two nodes:



void main (){
List points;
Initial points (points);
kmeansreduction (points);

}
void kmeans reduction (List points){

List clusters;
Initial clusters (clusters, points);
for (i = 0; i < iterations; i++){

kmeans (points, clusters);
updateclusters (clusters);

}
}
void kmeans (List points, List clusters){

for (point p in points){
//min cluster is the closest centroid
min cluster.min distance = max (double);
min cluster.min position = 1;
for (cluster c in clusters){

min cluster = find closestcentroid (p, c);
}
updatereduction object (min cluster);

}
}
void update clusters (List clusters){

for (cluster c in clusters){
//update the centroid by pre-defined reduction object
c = . . . reductionobject . . . ;

}
}

Fig. 4. The C-like Pseudo-code for K-means Application

Call− sitep andReturn− sitep. If a basic block contains a
Call−sitep, it will be split into two basic nodesB1 andB2.
There is an edge fromB1 to the entry node of the procedure
p, (B1, Entryp), and similarly, there is an edge from the exit
node of the procedurep to B2, (Exitp, B2). In Figure 5,
we show ICFG for the K-means application listed earlier in
Figure 4.

Algorithm 1 analyzeall (procedure set, linearize set)
1: for each linearization expressionlinearize(li) ∈ linearize set

do
2: for each procedurepj ∈ procedure set do
3: intra-procedural analysis onlinearize(li) in pj

without considering the effect of call-sites
4: end for
5: pick-up p in which li is first define
6: pparent = pcurrent = p
7: if li ∈ global variablesthen
8: pparent = pcurrent =main
9: end if

10: analyze(pcurrent, pparent)
11: for each procedurepj ∈ procedure set do
12: final insertion and deletion
13: end for
14: end for

Our IPRE method is shown through Algorithms 1 and
2. In our inter-procedural framework, we assume that inter-
procedural pointer-analysis [13] and alias-analysis [12]have
been performed in the preprocessing stage and all the variables
that point to the same space are labeled with the same name.

In order to explain our algorithm, we use K-means example.
First, an initial placement of the linearization operationis
performed. After this stage, in Figure 5, the linearization
operations for the listpoints are placed at the beginning of the

1 main

1.1 ENTRY

1.2 Call-site2

1.3 Return-site2

1.4 Call-site3

1.5 Return-site3

1.6 Exit

2 Initial_points

2.n EXIT

...

2.1ENTRY

3 kmeans_reduction

3.9 EXIT

3.2Call-site4

3.1ENTRY

3.3Return-site4

3.4 loop-header

3.5 Call-site5

3.7 Call-site6

3.6 Return-site5

3.8 Return-site6

4 Initial_clusters

4.n EXIT

...

4.1ENTRY

5 kmeans

5.9 EXIT

5.2 loop-header

5.1ENTRY

5.3 min_cluster = ...

...

5.4 loop-header

5.5 Call-site7

5.6 Return-site7

5.7 Call-site8

5.8 Return-site8

6 update_clusters

6.4 EXIT

6.2 loop-header

6.1ENTRY

6.3 c = ...

5.1ENTRY

3.5 Call-site5

linearize(points)

linearize(clusters)

Original

Placement

Final

Placement

Intermediate

Placement

Original

Placement

Final

Placement

Intermediate

Placement

Not

Available

Fig. 5. The ICFG for K-means Application

Algorithm 2 analyze (pcurrent, pparent)
1: for each nodenodei in pcurrent do
2: if nodei includes procedurep then
3: pparent = pcurrent

4: pcurrent = p
5: analyze (pcurrent, pparent)
6: else if nodei = EXITpcurrent then
7: if pcurrent = pparent then
8: return{*arrive at the outer-most procedure*}
9: else if pcurrent is completely transparent withli then

10: return{*nothing is affected*}
11: else if pcurrent includes modification toli then
12: mark the availability ofAV INRETURN−SITEpcurrent

in pparent according to the value of
AV OUTEXITpcurrent

13: if linearize(li) is safe at theENTRYpcurrent then
14: mark CALL − SITEpcurrent as

ANTIN/ANTOUT andCOMP
15: mark ENTRYpcurrent asAV IN
16: end if
17: propagate effect by work-list inpparent andpcurrent

18: return
19: end if
20: end if
21: end for

node 3.2 and the end of the node 5.1. Similarly, linearization
operations for the listclusters are placed at the end of the
node 5.3 and at the end of the node 6.1.

In next stage, we use the method presented through Algo-
rithm 1 and 2. Initially, intra-procedural analysis is performed
in the procedure(s) where the initial placement has been done,
without considering the effect of the functions calls. During



this phase, we apply only Equations 1 through 10 in Figure 12,
i.e. insertion or deletion logic is not computed.

Next, we move to the inter-procedural phase. If the list pa-
rameter is anticipable at the entry of current procedure, wewill
pull this linearization operation out ofp, and try to propagate it
further. For example, by thispull out strategy, the linearization
operationlinearize(points)can be pulled from the procedure
kmeansto kmeansreduction, and until themain function.
Finally, we will mark the node 1.4 in Figure 5 asCOMP
andANTOUT (stronger thanSPANTOUT ) by the line of
14 of the Algorithm 2. From the intra-procedural analysis,
we have know that the node 1.4 has already been marked as
¬SPAV IN . Based on all of these, we can know that the final
insertion for linearize(points)can happen at the beginning of
the node 1.4. All others placements will be deleted since we
have already marked them asAV IN (according to the line 15
of the Algorithm 2 and the propagation operation), and there
are no further modifications topoints.

For a procedure callp from the current procedurepcurrent,
we consider two possibilities. First, ifp is completely trans-
parent relative to the parameter list of the copy statement, no
further analysis is done onp. Second, ifp is not transparent,
we just need to copy the availability from the Exit point
of p. For example, in Figure 5, in the Exit node of the
procedureupdate clusters, linearize(clusters)is not available,
so in the node 3.8, it is also not available, which will cause
linearize(clusters)is ¬AV IN in the node 3.5. Subsequently,
we can infer that the final insertion forlinearize(clusters)will
happen at the beginning of the node 3.5 and other placements
will be eliminated.

K-means application is an iteration process: before the
reduction loop, the input data setpoints is initialized without
any further modification during the whole process, and the
output data setclustersis updated in each loop. From Figure 5,
it is easy to know that after our elimination, the final placement
of linearize(points) is out of the reduction loop, and the
placement oflinearize(clusters)is within the reduction loop,
which is coherent to the basic logic as above.

C. Checking Homogeneity of a List

One of the requirements for converting a dynamic data
structure to an array is that each element of the original dataset
is of the same type. In this section, we describe an algorithm
we have developed for this purpose.

Our description here assumes a list structure, though the
algorithm can easily be applied to any other dynamic data
structure. This decision algorithm is modeled as adata
flow analysisproblem, similar to the well-knownConstant
Propagationproblem, for which many algorithms have been
developed [3], [36]. Here, only the intra-procedural version is
introduced, and the inter-procedural version can be developed
easily similar to how we developed the IPRE algorithm above.

The entire algorithm can be expressed as a four-tuple<
G,D,L′, F >, where,G = (N,E) is a control flow graph.
D is the direction of the data flow, which isFORWARDS
here. L′ is a three-tuple< V ′,∧,m >, in which there are
three elements:V ′, ∧ andm. V ′ is the domain of values, and
each element in it is in this form:(type1, type2, . . .), i.e., a
cross-product of the basic latticeLi, in which, UNDEF is the
top element⊤, andNON-HOM is the bottom element⊥. In
L′, ∧ is a meet operator, which follows the common definition
of ∧ for the product lattice, i.e, it is defined as:

(type1, type2, . . .) ∧ (type′
1
, type′

2
, . . .)

= (type1 ∧ type′
1
, type2 ∧ type′

2
, . . .)

m is a map function used to map the list definition to
the lattice. For example, the result ofm(listi) will be typei.
Thus, each element inV ′ can also be expressed in this form
(m(list1),m(list2), . . .). There is a special map function,m0,
which can initialize the type of the list variable intoUNDEF.

Returning to the last element of the four-tuple,F : V ′ → V ′

is the domain for transfer functions. It has an identity function
fi, such thatfi(x) = x for all x in V ′. Like any standard intra-
procedural data flow algorithm, we can consider two levels:
within basic block, and interbasic block. Based upon this, we
can classify the elements inF into two groups: working on
statements within abasic blockand working onbasic blocks.
The rules for the former case, denoted asfs, can be defined
as follows:

1) If the statement (s) is irrelevant to the given list,fs is
the identity functionfi;

2) If s is relevant to the given list,lista, then for any
listi 6= lista, fs(m(listi)) = m(listi), and for lista,
m′(lista) = fs(m(lista)).

We further consider the following cases:
1) if s is a member function call without adding any new el-

ements in the list, such aslista.remove(), m′(lista) =
m(lista);

2) if s is a member function call adding an element, such
as lista.append(x), or lista.insert(k, x), m′(lista) =
m(lista) ∧ typeof(x);

3) if s is a concatenation operation, and more than 1
element, i.e.,[x1, x2, . . .] are added to thelista, there
are two cases: i) if the type of the new list is already
calculated astype′, thenm′(lista) = m(lista)∧type′,
and ii) if this is not the case, examine the type of new
elements bytype′ = typeof(x1) ∧ typeof(x2) ∧ . . .,
and thenm′(lista) = m(lista) ∧ type′.

TABLE I
HOMOGENEITY DECISION EXPRESSION(GLOBAL LEVEL)

Non-Hom decision Expression (Global Level)
Domain Sets of Basic Blocks
Direction Forward

Transfer Function fB = x ∧ LOC[B]
Boundary OUT [ENTRY ] = Ø
Meet(∧) Defined as above

Equations IN [B] = ∧P,pred(B)OUT [P ];
OUT [B] = fB(IN [B])

Initialization OUT [B] = Ø

After applyingfs to all statements in eachbasic block, we
can get the result for each block at the point ofOUT [B]. We
refer to them asLOC[B]. The rule for the transfer functions
working on each basic block, denoted asfB, are summarized
in the Table I.

IV. L INEARIZATION AND MAPPING ALGORITHM

The methods presented in the previous section have ex-
plained under what conditions contents of a dynamic data
structure can be copied into a dense and flat data structure,
and where the copy operation can be placed. In this section,
we introducelinearization and mappingalgorithms, with the
goal of translating the high-level dynamic data structuresin
Python to low-level dense memory buffer in C++. This, in turn,
will allow use of HPC libraries for multi-core and many-core
architectures.

Specifically, we need to create a low-level continuous data
storage (Ds) from the high-level data view (Dv). The entire
process can be formally viewed as of computing the following



two functions: 1)Ft ⊆ {f | f : Dv → Ds}, a linearization
function, which can transform the high level data view to the
low level data storage, and 2)M ⊆ {m | m : Dv → Ds}, a
mappingfunction created to enable mapping of the computa-
tions to the low-level data layout.

A. Linearization

Algorithm 3 computeLinearizeSize(Xs)
1: size = 0
2: if Xs.type = isPrimitive then
3: size = sizeof(Xs)
4: else if Xs.type = isIterative then
5: for x in Xs do
6: size += computeLinearizeSize(x)
7: end for
8: else if Xs.type = isStructureType then
9: for each memberm in Xs do

10: size += computeLinearizeSize(m)
11: end for
12: . . .
13: end if
14: . . .
15: return size

Algorithm 4 linearizeIt(Xs, size)
1: ⊲ allocate memory with the size ofsize
2: if Xs.type = isPrimitive then
3: copy(Xs)
4: else if Xs.type = isIterative then
5: for x in Xs do
6: linearizeIt(x)
7: end for
8: else if Xs.type = isStructureType then
9: for each memberm in Xs do

10: linearizeIt(m)
11: end for
12: . . .
13: end if
14: . . .
15: returnaddressOfLinearizeData

The basiclinearization is a two-step algorithm which in-
cludes two functions:computeLinearizeSize, shown as Al-
gorithm 3 andlinearizeIt, shown as Algorithm 4. The first
function is used to compute the data size while the second
one is used to copy the actual data to the continuous memory
space.

Let us revisit the code from Figure 1, where a very common
example of using the user defined input data structure in
Python was shown. Figure 6 shows information that needs
to be collected during the linearization process to enable code
generation for the usage of the linearized data structure.

B. Mapping
The mapping algorithm can be divided into two stages:

in the first stage, collecting the necessary information during
the linearization process; in the second stage, computing the
projected index of the low level data storageDs from the
collected information and the original index inDv by the
recursive strategy in algorithm 5. The parameters used by this
algorithm are summarized in Table II.

Figure 6 shows the information that should be collected
to apply the mapping algorithm. Most of the information
should be collected during thelinearization stage, while the

Information Collected During Linearlization
levels = 3;
unitSize[levels] ={unitSize B, unitSize A, sizeof(datatype a1)};
unitOffset[levels-1][2] ={{unitOffset B[]}, {unitOffset A[] }};
unitOffset B[2] = {0, unitSize A × n }
unitOffset A[2] = {0, sizeof(data type a1) × m}
position[levels-1][2] ={{0, 1}, {0, 1}};
{*This should be collected in the accumulate function*}
myIndex[levels] ={i, j, k};

Data access after linearization
for (i = 0; i <t; i++){

for (j = 0; j <n; j++){
for (k = 0; k <m; k++){

index = computeIndex(unitSize, unitOffset,
myIndex, position, 0, levels);

. . . = linea points[index]. . .
}

}
}

Fig. 6. The Example of Using Linearization and Mapping Functions

Algorithm 5 computeIndex(unitSize[], unitOffset[][],
myIndex[], position[][], i, levels)

1: ⊲ During the linearization phase, collecting necessary information
2: if i < levels − 1 then
3: index = unitSize[i] × myIndex[i] +

unitOffset[i][position[i][]]
4: index += computeIndex(unitSize[], unitOffset[][],

myIndex[], position[][], i++, levels)
5: else
6: index = unitSize[i] × myIndex[i]
7: end if
8: return index

index information is obtained from the usage loop. The entire
mapping process is recursive. It starts from the outer-most
level and terminates with the inner-most level. At each level,
we calculate the offset caused by the index and the position
offset.

V. I MPLEMENTATION AND EXPERIMENTS

In this section, we describe a prototype implementation of
our framework and evaluate it by generating code for execution
of data-intensiveapplications on a multi-core system, and
computation-intensiveapplications on a GPU.

A. Implementation Overview

Python code was translated to C++ using an existing tool,
Shedskin [8]. Our transformations were implemented on top
of the ROSE compiler infrastructure [32]. ROSE is a power-
ful tool that supports program analysis and source-to-source
transformations for C/C++, FORTRAN, and other languages.
After the transformations are applied, low-level HPC libraries
are invoked to support mapping on the multi-core and many-
core libraries. Particularly, we used a data mining middle-
ware for mapping data-intensive applications to multi-core
architectures, and used existing libraries to execute linear alge-
bra operations on GPUs [23]. All these libraries/middle-ware
expect the data to be in multi-dimensional arrays, and cannot
support processing of nested or dynamic data structures. The
code generation was based on our earlier work, and the details
are not presented here.



TABLE II
DESCRIPTIONS OF THEPARAMETERS IN MAPPING ALGORITHM

Collected During Linearization
unitSize[]

1-Dimensional Array. It stores the unit size of the elements
in each level with unitSize[levels − 1] storing the inner-most
elements.
unitOffset[][]

2-Dimensional Array. It stores the offsets of the variables at
each level. The first dimension is used to indicate the level
and the second one indicates the start positions of the variables
at current level.
position[][]

2-Dimensional Array. It provides the position information for
calculating theunitOffset.
levels

The total number of levels of the data.
Collected From Dv

myIndex[]
1-Dimensional Array. It records the index for each level.

i
An indicator to show the current level. Normally, it starts

from 0 indicating that the current level is the outer-most.
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Fig. 7. K-means: Comparison of Performance of Different Versions (800
MB dataset,k = 100, iter = 1)

B. Evaluation Goals and Platforms

The objective of our evaluation is to compare the execution
time of the original Python code (Python), Shedskin generated
C/C++ code (Gen C++), transformed code with and without
IPRE optimization (WOPREandWPRE, respectively), and the
hand-written C/C++ with library functions (Manual).

Our experiments are conducted on the following platforms.
A multi-core machine with AMD Opteron(tm) Processor (2.6
GHZ frequency) and main memory size of 32 GB was used
for data-intensive applications. The GPU used for compute-
intensive applications was a Quadro FX 5800 GPU, with 240
cores and 4 GB memory.

C. Experiments with Data-Intensive Applications

We invoked a data-intensive computing library from trans-
formed C++ code, and compare the performance of different
versions we listed earlier. We used two popular data mining
applications, which are K-means clustering and PCA.

An 800 MB representative dataset was used for K-means.
In our experiments, we control the computation workload by
modifying the iteration numbers. Very similar to the DGEMM
example in Section II, the calculation time of the Python code,
which uses a list as the main input data structure, is much
longer than the generated code and the transformed code.
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Fig. 8. K-means: Comparison of Performance of Different Versions (800
MB dataset,k = 100, iter = 10)

For example, even to a much smaller data set (8 MB), the
calculation time of thePythoncode interpreted byPython 2.4
is 109.60 seconds for 1 iteration and 1122.96 seconds for 10
iterations. For the data set of 800MB, the execution time of
theGen C++ code is 59.28 seconds for 1 iteration and 593.06
seconds for 10 iterations.

In Figure 7 and Figure 8, we report the calculation time of
the code transformed by our framework. From Figure 7, we
can see that comparing to theGen C++ code, the efficiency
of the sequential version of our transformed code for 1
iteration is improved by more than30% even including the
linearization overhead of the input data set (WOPREversion).
Comparing with theWPREversion, we found that IPRE can
help overcome nearly 50% of the linearization overhead, which
is consistent to our analysis in Section III. In K-means, because
the centroid set is a frequently accessed data structure, we
can also linearize and apply the IPRE on it as described in
Section III, resulting in a version we refer to asOPT. By
comparing the versionsOPTandManual, we can see that their
performance is very similar to each other, and the overhead
caused by linearization and mapping is within 30% for 1
iteration. On the other hand, by comparing the sequential
versions of OPT and Gen C++, we can see that by our
optimization framework, the efficiency of the compiled code
can be improved by a factor of more than 2 for the sequential
version, and furthermore, we have enabled use of a parallel
library.

From the comparison of Figure 7 and Figure 8, we can
see that the linearization overhead can be reduced to a large
extent by our IPRE method when there are multiple iterations.
Finally, for the sequential version, the overhead of theOPT
version is around 10% of the best version, which is mainly
caused by themappingoperations and scalable to the number
of processors. That is why we see good scalability of the
OPTversion. The relative impact of our optimizations is even
more significant for parallel versions, since linearization is
performed sequentially.

The datasets used for PCA experiments has 1000 rows
and 100,000 columns. The calculation time of thePython
code is very long, for example, even to a much smaller
data set (1000 × 1000) it takes 634.45 seconds. TheGen
C++ code is also relatively slow, for example, to the data
set of 1000 × 100, 000 it takes 3280 seconds. By using our
framework, the efficiency can be improved obviously, however,
the IPRE optimization must be applied to the linearization
of the input data set. Without the IPRE algorithm, the lin-
earization is inserted in the inner-most loops, resulting in
Θ(row2) times copy operations to the input data set that is a



1 2 4 8
0

50

100

150

200

250

300

350

400

# of Cores

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

 

 
WPRE
Manual

Fig. 9. PCA: Comparison of Performance of Different Versions (row =

1000, column = 100, 000)
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Fig. 10. Experiment Results for DGEMM

very large overhead. In Figure 9, we compare the calculation
time of theWPREversion generated by our framework and
Manualversions. As stated above,WOPREversion data is not
shown, because it is extremely slow. From the comparison,
we can see that the efficiency of theWPREversion is very
similar to theManualversion, and the overhead caused by the
linearization and mapping operation is around 10% to 20% for
both sequential and parallel versions. Especially, the efficency
of the sequentialWPREversion is improved by a factor of 10
comparing to theGen C++ code.

D. Scaling Compute-Intensive Applications with a GPU
GPU has been gaining popularity in recent years because

of their very favorable performance to cost ratio. Many GPU
related libraries and automatic code generators have been
developed in recent years. In our experiments, CUBLAS
libraries [28] and tensor contractions [23] generated code
are used for accelerating the execution of two linear algebra
kernels written in Python.

The first linear algebra kernel is DGEMM. The implemen-
tation from the CUBLAS library can be invoked to replace
the sequential computations in the Python implementation.
Because the mapping function is not needed in this case,
the mapping overhead is not considered in this and the next
example. We experimented with seven datasets, which range
from 1000×1000 to 7000×7000. The results of the experiment
are shown in Figure 10. By comparing the results on the
1000×1000 dataset with the example in Section II, we can see
that the performance of the CUBLAS version is much better
than thePython code (more than 1000 times speedup) and
Gen C++ code (around 163 times speedup), even before the
optimizations are applied.
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Fig. 11. Experiment Results for Tensor Multiplication

In this application, the IPRE optimization is mainly used
to eliminate the linearization overhead during the matrix
dimension validation. Since there is no modification between
this stage and the main loop computation, there is no need
to linearize the input matrices multiple times. This is also
applied to the next experimental case. From the comparison
between the versions ofWPREandWOPREin Figure 10, we
can see that the linearization overhead can be reduced by more
than 50% by using IPRE. And also the linearization overhead
becomes less significant with the increase in the data set sizes,
and when the size of the kernel is7000×7000, the linearization
overhead is reduced to be less than 15% with our IPRE method
comparing to the bestManual version.

The second linear algebra kernel is tensor contraction, which
is a multi-dimensional matrix multiplication. In pure Python,
if we want to perform such a computation, a highly nested list
structure needs to be used, which decreases the performance
severely. Thus, our transformations are even more crucial.The
following expression was used in our work:
result[h3, h1, h2, p5, p4, p6]+ = x[h7, p4, p5, h1]×y[h3, h2, p6, h7]

Figure 11 illustrates the execution time for different datasets
of increasing sizes. BothWOPREandWPREare the versions
generated by our framework and theManual one is the
version written manually to feed into the Code Generator.
Again, the Python and Gen C++ codes are very slow, i.e.
even forconfig1they run for 261.39 seconds, 16.85 seconds,
respectively. Details of both these versions are not shown
here. The effect of the IPRE optimization is shown in this
experiment by comparing the versions ofWOPREandWPRE
that the linearization overhead is decreased by around 50%.
From the comparison between the transformed code (WOPRE
and WPRE) and theManual version in Figure 11, we can
see that the linearization overhead is very large when the data
set is relatively small. However, the overhead reduces with
increasing in dataset sizes. For instance, inconfig7, comparing
the versions ofWPREandManual, the linearization overhead
is already smaller than 20% with IPRE.

VI. RELATED WORK

We now compare our work with related research efforts.
Given the popularity of Python, there have been several ef-

forts focusing on improving Python’s efficiency. These efforts
can be classified into two groups, which are adding extension
libraries or constructs toPure Python, and compiling Python
to other languages, such as C/C++ or even CUDA. NumPy
and SciPy [29], [15] are examples of the former, where the
inefficiency caused by the dynamic data structure usage in pure
Python is substantially reduced by adding an N-dimensional
array object. For multi-processing, these efforts have been



integrated with PyMPI [26]. PyCUDA and PyOpenCL [16]
are two library extensions where GPU code can be invoked
from Python. More recently, Catanzaroet al. [4] developed
a data parallel language named Copperhead which is based
on Python. Compared to the above efforts, our goal is clearly
different, in the sense that we start with pure Python, and
automatically replace dynamic data structures with arrays.

In efforts that compile Python to other languages, prominent
ones include Cython [2] and Pyrex [9], where type-annotated
Python is compiled to C, and Shedskin [8], where a subset of
Python is compiled to C++. To use multi-core or many-core
system, Garget al. [10] developed a framework to compile
Python code to a hybrid CPU-GPU environment. The initial
application is assumed to use array-based constructs in their
work.

Applications with irregular pointer-based data structures
have also received much attention. Pingaliet al. [11], [31],
[19] focus on exploring the nature of the irregular algorithms
and improve their parallelism and efficiency. The application
we target, in comparison, have regular data parallelism. Lattner
et al. [20] proposed anautomatic pool allocationmethod to
manage the data structure layout in the heap to optimize the
pointer intensive programs. Speket al. [35], [34] developed
a way to transform the recursive pointer-based data structure
and related loops to the array-based data structure and counted
loop structure that can be optimized by traditional methods.

There is significant research about linearization and reorga-
nization of data and operations to reduce the cache misses or
memory latency. Luk and Mowry [22] invented aLineariza-
tion method somewhat similar to our linearization method to
support data prefetching. Ding and Kennedy [7] proposed a set
of algorithms, including locality grouping and dynamic data
packing, to improve the cache performance. Stroutet al. [33]
designed a compile-time framework to compose run-time data
and iteration reordering transformation. Zhonget al. [37]
proposed a structure splitting and array regrouping strategy
based on the concept ofWhole Program Reference Affinity.
Mannarswamyet al. [25] presented aRegion Based Structure
Layout transformation method to reorganize the linked list-
based data structures to increase the cache line utilization.

VII. CONCLUSIONS

In order to bridge the gap between the productivity and the
performance in HPC applications, this paper has presented a
framework to compile pure Python to invoke existing multi-
core and many-core libraries. To enable such optimizations,
a demand-driven inter-procedural algorithm has been devel-
oped. We have also developed a novelHomogeneity Checking
algorithm, and a set ofLinearization-Mappingschemes. By
these algorithms, dynamic data constructs in Python can be
transformed into dense memory buffer that can be accepted
by the low level libraries.

Two data-intensive and two linear algebra applications were
used to evaluate our framework. The evaluation results show
that the code generated by our framework is only 10%
to 20% slower than the hand-written C code that invokes
the same libraries. IPRE optimization we perform turns out
to be significant for improving performance in most cases.
Moreover, the code generated by our framework outperforms
interpreted Python and the C++ code generated by an existing
tool by one to two orders of magnitude.
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VIII. A PPENDIX

This section summarizes the main steps in the Partial Re-
dundancy Elimination method developed by Paleriet al. [30].
While this algorithm uses most of the same ideas as the
original algorithm by Morel and Renvoise [27], as well as
the subsequent algorithms by Dhamdhere [6] and Knoopet
al. [17], it is conceptually simpler and has other properties,
like the fact that it does not require any splitting of edges.

The data-flow equations of this algorithm are shown in
Figure 12, and the terms are explained in Table III.

This algorithm can be divided into two phases: thelocal
phaseand theglobal phase. The local phase is applied to
eachbasic blockto reduce the redundancy within eachbasic
block. After it, only the first and thelast computation of the
expression in this block will be considered.

Focusing now on the global phase, from Equation 1, we can
know an expression is available at the entry of abasic block,
if it is available at the exit of all the predecessor blocks. An
expression is available at the exit of abasic block, if it is
locally available or available at the entry of the currentbasic
block without any operands modification in it (Equation 2).
Similarly, from Equation 3 and Equation 4, we can know an
expression is anticipable at the exit of abasic blockif it is
anticipable at the entry of all the successor blocks, while an
expression is anticipable at the entry of abasic block if it
is locally anticipable or anticipable at the exit of the current
basic blockwithout any operands modification in it.

The most interesting part of this algorithm is that it focuses
on thesafepoints (SAFEIN and SAFEOUT), the points where
we can insert the computation of some expression without
introducing a new value along any path. The final insertion
points and replace points are decided by Equations 11 to 14
based on the operators and terms in Table III.

AV INi =

{

FALSE if i = s,
∏

j∈pred(i)
AV OUTj otherwise, (1)

AV OUTi = COMPi + AV INi · TRANSPi. (2)

ANTOUTi =

{

FALSE if i = e,
∏

j∈succ(i)
ANTINj otherwise, (3)

ANTINi = ANTLOCi + ANTOUTi · TRANSPi. (4)

SAFEINi = AV INi + ANTINi, (5)

SAFEOUTi = AV OUTi + ANTOUTi. (6)

SPAV INi =

{

FALSE if i = s or ¬SAFEINi,
∑

j∈pred(i)
SPAV OUTj otherwise, (7)

SPAV OUTi =

{

FALSE if ¬SAFEOUTi,
COMPi + SPAV INi · TRANSPi otherwise.

(8)

SPANTOUTi =

{

FALSE if i = e or ¬SAFEOUTi,
∑

j∈succ(i)
SPANTINj otherwise,

(9)

SPANTINi =

{

FALSE if ¬SAFEINi,
ANTLOCi + SPANTOUTi · TRANSPi otherwise.

(10)
INSERTi = COMPi · SPANTOUTi · (¬TRANSPi + ¬SPAV INi), (11)

INSERT(i,j) = ¬SPAV OUTi · SPAV INj · SPANTINj , (12)

REPLACEif
= ANTLOCi · (SPAV INi +TRANSPi ·SPANTOUTi), (13)

REPLACEil
= COMPi · (SPANTOUTi + TRANSPi · SPAV INi), (14)

Fig. 12. Basic Intra-procedural PRE Data Flow Equations

TABLE III
TERMS USED IN THE PRE DATA FLOW EQUATIONS

Symbols
·, Π: Boolean conjunctions;
+, Σ: Boolean disjunctions;
¬: Boolean negation.
Local properties
TRANSPi: transparent

In nodei, if the operands of the expression are not modified;
COMPi: locally available

In nodei, if there is at least one computation of the
expressionE, and including and after thelast computation,
there is no modification of the operands ofE;
ANTLOCi: locally anticipable.

In nodei, if there is at least one computation of the
expressionE, and before thefirst computation, there is no
modification of the operands ofE.
Global properties
AV INi/AV IOUTi

The expression is available at the entry/exit of nodei;
ANTINi/ANTIOUTi

The expression is anticipable at the entry/exit of nodei;
SAFEINi/SAFEOUTi

The entry/exit of nodei is safe. A pointp is safe for some
expressionE, if we insert a computation ofE at p without
introducing any new value on any path throughp;
SPAV INi/SPAV OUTi

The expression is safe partial available at the entry/exit ofi;
SPANTINi/SPANTOUTi

The expression is safe partial anticipable at the entry/exit ofi;
INSERTi/INSERT(i,j)

The computation of the expression should be placed before the
last computationin nodei; or on the edge between nodesi andj;
REPLACEif

/REPLACEil

The replacement of the expression should be happened
to thefirst / last computation in nodei.


