
Fine-Grained Parallel Traversals of Irregular Data
Structures

Bin Ren,
∗

Gagan Agrawal
Dept. of Computer Science and Engineering

The Ohio State University
{ren,agrawal}@cse.ohio-state.edu

James R. Larus, Todd Mytkowicz,

Tomi Poutanen
†

, Wolfram Schulte
Microsoft Research

{larus,toddm,tomipout,schulte}@microsoft.com

ABSTRACT

Fine-grain data parallelism is increasingly common in mainstream

processors in the form of long vectors and on-chip GPUs. This pa-

per develops compiler and runtime support to exploit such data par-

allelism for non-numeric, non-graphic, irregular parallel tasks that

perform simple computations while traversing many independent,

irregular data structures, like trees and graphs. We vectorize the

traversal of trees and graphs by treating a set of irregular data struc-

tures as a parallel control-flow graph and compiling the traversal

into a domain-specific bytecodes. We produce a SIMD interpreter

for these bytecodes, so each lane of a SIMD unit traverses one ir-

regular data structure. Despite the overhead of interpretation, we

demonstrate significant increases in single-core performance over

optimized baselines.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: [Concurrent Programming —

Parallel Programming]

Keywords

Irregular Data Structure, Fine Grained Parallelism, SIMD

1. INTRODUCTION
Fine-grain, data parallelism is increasingly prevalent in main-

stream processors (e.g. x86 and ARM), as the width of vector in-
structions increases and GPUs are integrated on chip. Fine-grained
data-parallel hardware is widely used in programs that have regu-

lar data access patterns (e.g. graphics, image and video processing,
signal processing, etc.).

In general, programs that rely on irregular, pointer-based data
structures, such as trees and graphs, benefit little from SIMD exe-
cution because of the mismatch between the strict, lockstep behav-
ior of SIMD parallelism and the dynamic, data-driven behavior of
programs that manipulate irregular data structures.

This paper starts to bridge this gap by demonstrating an approach
to speeding up important, latency-sensitive algorithms using SIMD
execution. In general, our approach is able to speed up applica-
tions that independently traverse many instances of pointer-based
data structures. These applications arise in domains as diverse as
machine learning (e.g. random forests), compilation (e.g. parsing),
intrusion detection (e.g. regular expressions).

∗Work completed while intern at Microsoft Research
†Affiliation: Microsoft

Copyright is held by the author/owner(s).
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA.
ACM 978-1-4503-1182-3/12/09.

Effective parallelization of independent traversals of irregular
data structures on a SIMD unit requires addressing two key chal-
lenges. First, to reduce the memory bottlenecks that choke per-
formance of modern processors, we demonstrate how to organize
many irregular data structures in memory so as to increase spa-
tial locality. Second, to enable SIMD execution, we demonstrate
how to turn fine-grained task parallelism—in the form of traversing
many irregular data structures—into fine-grained data parallelism
by emulating a MIMD machine in SIMD hardware.

In this paper, we develop compiler and runtime support to ad-
dress these challenges and demonstrate that our approach is effec-
tive by speeding up two random forest implementations by over
10X across many inputs.

2. IRREGULAR DATA STRUCTURES
Many programs perform simple data-driven traversals of irregu-

lar trees and graphs. When these programs visit a node of the tree
or graph, they optionally perform an operation on a node and then
might evaluate an expression to select the next node to visit. We
will denote the operation(s) performed at a leaf node (e.g. one that
does not have children) n as W(n) and the computations at the
non-leaf, or internal node, as T (n).

To make this concrete, consider a binary tree traversing: each
node of a binary tree is either an internal node or a leaf node.
At an internal node (n), a traversal executes T (n) := input <

n.threshold and branches to the left or right child depending on
whether input is less than node n’s threshold. Likewise, at a leaf
node (n), the traversal terminates by storing a node n’s value field
into a global variable (e.g. W(n) := counter ← n.value).

2.1 Parallel Traversal of Fine-Grained Tasks
It is difficult to exploit fine-grained data parallelism when travers-

ing a single irregular data structure because there is little paral-
lelism within a single traversal. However, when traversing many ir-
regular data structures we can execute T (n) andW(n) in parallel.
For example, when traversing two binary trees, we could execute
T (n) for the two trees in a single SIMD unit; T (n) is a simple
comparison of two concrete values and each lane of a SIMD unit
could do that comparison in parallel.

To accomplish this, we execute all of the sequential traversals in
parallel; we first execute T (n) for all root nodes n giving us a set
of successor nodes ns. Next we evaluate T (n) for all n in ns, and
so on, until we reach leaf nodes. At a leaf node n, we evaluate
W(n). Since different traversals might have different lengths, at
certain levels a mixture of T andW can occur.

In effect, we turn fine-grained task parallelism (e.g. each traver-
sal of a single irregular data structure is one task) into fine-grained
data parallelism by executing T (n) and W(n) in lockstep in the
SIMD unit.



2.2 SIMD Interpretation of T (n) and W(n)

To traverse many independent fine-grained data structures in par-
allel, we build a traversal-specific virtual machine, where the inter-
mediate language or bytecodes of the virtual machine, are opera-
tions from T (n) and W(n). For example, when traversing two
binary trees, the two operations map to SIMD implementations of
compare for internal nodes and store for leaf nodes. For each bi-
nary tree, we build a syntax-directed compiler to traverse the trees
and re-write every internal node into a bytecode that implements
T (n) = compare (parameterized by the node’s threshold) and
any leaf node into a bytecode that implementsW(n) = store (pa-
rameterized by the value contained in the leaf node), resulting in an
executable program.

To execute this program, the virtual machine simultaneously vis-
its the first node for all fine-grained tasks and executes their respec-
tive first instruction, resulting in the second node for all tasks, and
so on, until all tasks have reached and evaluated a leaf. In other
words, the virtual machine executes every T (n) in parallel across
all root nodes. Because of the SIMD hardware, the virtual ma-
chine must execute each bytecode type (e.g. T (n) andW(n)) as
it cannot assume all SIMD lanes contain the same type of instruc-
tions. The virtual machine then masks away the results of byte-
codes whose types are not represented by the current operation.

In effect, the virtual machine is using interpretation to emulate
a MIMD machine with SIMD, a topic that has been studied in the
past [5, 2, 1, 4].

3. EXPERIMENTAL EVALUATION
In this section we demonstrate the efficacy of our SIMD inter-

preter by demonstrating that it significantly speeds up two random
forest applications. Random forests are a popular machine learn-
ing technique which traverse many independent decision trees in
order to classify an input. We apply our approach to two imple-
mentations of random forests: one used in a latency critical capac-
ity (online-service) at Microsoft and ALGLIB, a widely used open
source implementation.

Methods: We conduct experiments on an Intel Xeon E5420 CPU
(2.5GHz frequency and SSE-4). We use the Intel ICC (Intel Paral-
lel Composer 2011) compiler and for each experiment, we run the
program 30 times and calculate the mean.

Data: We evaluate the impact of our approach by comparing
our SIMD implementation against the baselines listed above. To
compare against ALGLIB, we use four datasets from UCI Machine
Learning Repository[3]—Poker, Shuttle, Abalone, and Satellite.
To compare against the Microsoft product we use production data
for that product.

For both applications, we use the respective applications to train
random forests and then compile those forests into bytecodes to
execute on our SIMD interpreter.

SIMD Interpreter: Our SIMD interpreter traverses 4 trees in
parallel, one for each lane of the SIMD unit. To improve spatial
locality during the traversals, we design three new data layouts to
take advantage of any bias in a traversal. By bias we mean a node
is more likely to traverse to one child over the other. The random
forests created from Shuttle and Satellite have a slight left bias,
while the Microsoft dataset has a severe left bias.

Our layouts are: LL (Level by Level layout across many trees),
SLL (Sorted Level by Level layout by separating the left part and
the right part of each level across many trees), and DLL (Depth
first Level by Level layout by organizing the left most of all trees
together while keeping the right part in a depth first manner).

Evaluation: Our SIMD interpreter provides a significant single-
core performance benefit (Figure 1 (a)). A bar on this graph gives
the speedup (y-axis) of our approach over ALGLIB and Microsoft’s
random forest implementation, respectively for each of our five

poker shuttle abalone satellite microsoft

0

5

10

15

20

S
p
e
e
d
u
p
 o

ve
r 

A
L
G

L
IB

 /
 M

ic
ro

s
ft Baseline

SEQ+DF

SSE+SLL

SSE+LL

SSE+DLL

(a)

poker shuttle abalone satellite microsoft

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p
 o

ve
r 

s
e
q
u
e
n
ti
a
l

SLL

LL

DLL

(b)

Figure 1: (a) Speedup with Our Approach (over Baseline Imple-

mentations and (b) SSE Speedups with Different Data Layouts)

datasets (x-axis). Each data set has five bars, one bar for each of
memory layout of the irregular data structure. The baseline (dark-
est bar per dataset) provides the performance of the baselines (AL-
GLIB and Microsoft, respectively). The SEQ+DF bar refers to a
sequential version of our interpreter evaluated on a depth first lay-
out (DF) of the random forest nodes. We use a DF layout because
that is the layout used by both of the baselines and allows us to
evaluate the overhead of our sequential interpreter. The other three
bars per dataset refer to the SIMD interpreter running on the other
data layouts.

Figure 1 (a) demonstrates that our transformed dense layouts and
SIMD interpreter provide significant speedups over the baseline
implementations of this irregular application: we see more than
a 10X speedup over the baseline implementations on all 5 datasets.
We include the SEQ+DF implementation because we are interested
in showing how much speedup we get from SIMD after lineariza-
tion; on the UCI datasets SIMD increases performance by a factor
of 3, while on the internal dataset SIMD increases performance by
a factor of more than 2.

Impact of SIMD: To understand the impact of our SIMD inter-
preter we compare the runtime of our sequential interpreter against
our SIMD version. To ensure this comparison is fair, we hold the
layout constant. A bar on Figure 1 (b) shows the speedup of our
SIMD interpreter over our sequential one (y-axis) for each dataset
(x-axis). The speedup from SIMD (with 4 SIMD lanes) range
between 2 and 2.8, demonstrating significant speedups from our
SIMD implementation.

4. CONCLUSIONS
This paper shows how to extract SIMD parallelism from ap-

plications that traverse irregular data structures such as trees and
graphs. As SIMD execution units become more common and ca-
pable in the near future, it becomes increasingly pressing to find
general techniques to exploit the power of this hardware in new and
broader contexts. This paper describes one such approach, which
is to traverse and compute on multiple, independent, irregular data
structures in parallel using a targeted virtual machine running on a
SIMD vector processor.

5. REFERENCES
[1] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein,

and Marco Zagha. Implementation of a portable nested data-parallel language.

Journal of Parallel and Distributed Computing, 21(1):4–14, April 1994.

[2] H. G. Dietz and W. E. Cohen. A massively parallel mimd implemented by simd

hardware? Technical report, Purdue University, 1992.

[3] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[4] Jonathan C. Hardwick. An efficient implementation of nested data parallelism

for irregular divide-and-conquer algorithms. In Proceedings of the First

International Workshop on High-Level Programming Models and Supportive

Environments, pages 105–114, April 1996.

[5] Reinhard von Hanxleden and Ken Kennedy. Relaxing simd control flow

constraints using loop transformations. In PLDI, pages 188–199, 1992.


