
MicroSpec: Speculation-Centric Fine-Grained
Parallelization for FSM Computations

Junqiao Qiu, Zhijia Zhao
Department of Computer Science & Engineering

University of California, Riverside
jqiu004@ucr.edu, zhijia@cs.ucr.edu

Bin Ren
Department of Computer Science
The College of William and Mary

bren@wm.edu

ABSTRACT
Finite state machines (FSMs) are basic computation models
that play essential roles in many applications. Enabling ef-
ficient parallel FSM execution is critical to the performance
of these applications. However, they are very challenging
to parallelize due to their inherent data dependencies that
occur at each step of computations.

Existing efforts on FSM parallelization either explore coarse-
grained speculative parallelism or leverage parallel prefix-
sum. The former ignores prevalent fine-grained hardware
parallelism on modern processors (such as ILP or SIMD par-
allelism) while the latter limits the benefits of fine-grained
parallelism mainly to state enumeration.

This work presents MicroSpec, a set of parallelization tech-
niques that, for the first time, expose fine-grained specula-
tive parallelism to FSM computations. Based on a rigorous
analysis of three types of parallelism at fine-grained level,
MicroSpec consists of a list of four fine-grained speculative
parallelization approaches along with a speculation-oriented
data transformation. Experiments on a large set of real-
world FSM benchmarks show that MicroSpec achieves sub-
stantial performance improvement over the state-of-the-art.

Keywords
Program Parallelization, Finite State Machine, FSM, SIMD,
Speculative Parallelization, Vectorization

1. INTRODUCTION
Exposing parallelism is key to computing efficiency and

scalability of software applications. Modern microprocessors
feature a variety of hardware parallelism from instruction
level to on-chip multiprocessors. Effectively leveraging such
rich hardware parallelism critically affects the performance.

This work focuses on exposing effective fine-grained paral-
lelism to Finite State Machine (FSM)-based computations,
a class of computations that are frequently used in a wide
range of applications, including deep packet inspection in
network intrusion detection system (NIDS) [60, 15, 34, 39],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PACT ’16, September 11-15, 2016, Haifa, Israel
c© 2016 ACM. ISBN 978-1-4503-4121-9/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2967938.2967965

BA

F E

CD

0

1
0 0

1

0

0 1
1

1

0

1
E B
B C
B D
D A
E F
F A

0 1

A
B
C
D
E
F

(a) FSM (b) Transition Table

0 1 1 0 …

(c) Dependences

A E F A

Figure 1: An FSM Example

motif searching in biological databases (e.g., Genebank and
Prosite) [53, 11, 59, 8], Huffman decoding in image and video
compression [3, 54, 24, 32], path queries and validation in
semi-structural data stream [44, 9, 19, 58], and model check-
ing in software engineering [45, 49, 10, 4], among others.

FSMs are extremely challenging to parallelize, formerly
known as ”embarrassingly sequential” computations [5]. The
challenges lie in the inherent data dependencies among state
transitions. Figure 1 shows an example FSM with six states.
The valid transitions in an FSM can be represented as a ta-
ble, called transition table. Given an input string, the execu-
tion of an FSM starts from a predefined state (called initial
state). Each time it reads one symbol from the input string.
The FSM looks up the transition table based on the current
state and the read symbol to find and transition to the next
state. The dependence between the current state and next
state exists at every transition step. These dependencies
form a tight dependence chain, inherently preventing any
parallelism from being exposed.
State of The Art. Given their fundamental importance in
computing theory and their broad range of real-world ap-
plications, recent years have seen growing interests in paral-
lelizing FSM computations, leading to some significant ad-
vancements. In general, they fall into two groups based on
the types of parallelism that they explore: (1) speculative
parallelization [61] and (2) parallel prefix-sum [40] . The
former breaks the dependencies by predicting future states.
In the cases that some predictions fail, reprocessing might
be needed to ensure correctness. In comparison, the latter
needs no prediction at all. Instead, it enumerates all the
possible states, which always cover the actual one. With
either of the two ways, an input string now is allowed to be
partitioned into segments and processed in parallel.

Even though they break the barrier of making FSM com-
putations run parallel, none of them has released the full po-

tential of processing power in today’s processors. The former
relies on sophisticated prediction and only works at thread
level; while the latter only exposes fine-grained parallelism
to state enumeration – making transitions for each possible
state. None of them can further shorten the critical execu-
tion path of an individual input segment (see Section 3.2).

To address these concerns, this work introduces two new
dimensions of parallelism, multi-state speculation and multi-
level speculation. The former extends the speculation from
commonly used single-value prediction to multi-value pre-
diction, while the latter expends the speculative parallelism
across different layers of hardware parallelism. Based on
a rigorous analysis on parallel prefix-sum and the two new
types of parallelism, this work presents MicroSpec, a set of
speculation-centric parallelization methods that maximize
the efficiency of FSM computations by effectively exploit-
ing fine-grained speculative parallelism. Specifically, Mi-
croSpec consists of a list of four fine-grained speculation
techniques as well as a speculation-oriented data layout opti-
mization. Together, they are able to effectively exploit both
Instruction-Level Parallelism (ILP) and Single Instruction
Multiple Data (SIMD) parallelism 1.

Our evaluation of MicroSpec on a set of 17 FSM bench-
marks from four application domains demonstrates its effec-
tiveness in accelerating FSM computations, yielding about
14X speedup on 13 benchmarks, boosting the state-of-the-
art by up to a factor of four.

In sum, this work makes the following contributions.

• It proposes two new dimensions to explore the fine-
grained parallelism for FSM computations: multi-state
speculation and multi-level speculation, which makes
the parallelization design more flexible.

• Through a rigorous analysis on three types of paral-
lelism for fine-grained FSM parallelization, it theoreti-
cally reveals the efficiency issue in the state-of-the-art
and offers guidelines for the design of efficient FSM
parallelization techniques.

• It designs and implements four speculation-centric fine-
grained parallelization techniques which, for the first
time, enable fine-grained speculative parallelization.

• It evaluates the proposed techniques on a large group
of real-world benchmarks, demonstrating significant
advancement over the state-of-the-art.

2. BACKGROUND AND PROBLEM

2.1 FSM and Its Dependences
FSMs form the backbone of a variety of applications, rang-

ing from intrusion detection and data decompression to com-
pilation and pattern searching. The core computation of
these applications can be formulated as an abstract machine
with a finite number of possible states. Transitions are al-
lowed among certain states when satisfying given conditions.
FSMs can be deterministic or non-deterministic depending
on if a condition can lead to a unique following state. This
work focus on deterministic ones for their better efficiency 2.

1This work focuses on vectorization on CPUs, but general
ideas are applicable to SIMD parallelism on GPUs as well.
2Non-deterministic FSM can be converted to deterministic
ones through subset construction.

Parallelizing FSM computations are extremely difficult
due to their inherent sequential characteristics — depen-
dencies exist between every consecutive state transitions, as
illustrated by Figure 1 (c). A natural way to parallelize its
execution is to partition the input string into to segments,
and let thread process segments concurrently, one segment
per thread. However, the starting states are unknown except
the first thread (which starts from initial state ‘A’). A start-
ing state for a segment is essentially the ending state of the
previous segment. These dependencies form a chain struc-
ture, preventing any concurrent execution among threads.

Existing work to solve this problem mainly follow two di-
rections: speculative parallelization and parallel prefix-sum.
Zhao and others [61] followed the first direction and pro-
posed a coarse-grained speculative parallelization approach
to circumvent the dependencies. Instead of speculation,
Todd and others [40]’s approach enumerates all the possi-
ble cases to leverage classic parallel prefix-sum. They im-
plemented with both coarse-grained and fine-grained par-
allelism to take advantage of different levels of hardware
parallelism. However, each of them has its own limitations.
The former is only able to explore coarse-grained thread-
level parallelism, leaving widely available fine-grained hard-
ware parallelism (such ILP and SIMD) unused. The latter
uses fine-grained hardware parallelism only for enumerating
different cases. None of them fully take advantage of the
computing power of today’s microprocessors.

Hence, the goal of this work is to maximize the parallel
efficiency on modern processors by exposing more effective
fine-grained parallelism to FSM computations. However,
challenges exist at several levels. First, fine-grained par-
allelism is notoriously more difficult to expose comparing
to coarse-grained thread-level parallelism due to the lack of
friendly programming models. For example, programming
with Intel SSE instruction set requires knowledge about mi-
croarchitecture and is more error-prone. Second, different
types of parallelism exist for FSM computations, it is non-
trivial to find out which ones are more effective at fine-
grained levels. Third, fine-grained hardware parallelism varies
across different architectures. For example, some microar-
chitectures may not support gather instruction, which is
critical for fine-grained FSM parallelization (see Section 4.2).

2.2 Coarse-Grained Speculative Parallelization
As this work mainly follows the first direction – speculation-

based parallelization, we briefly summarize its ideas for self-
containedness. At high-level, there are four major steps in
coarse-grained speculative FSM parallelization. To make it
easier to follow, we use Algorithm 1 to illustrate its basic
ideas, followed by a step-by-step explanation.

Algorithm 1 Coarse-Grained Speculative Parallelization

1: Π = coarse grained partition(Ncore); /* Step 1 */
2: for thread 1 · · · Ncore do
3: Sstart(i) = predict (suffix of Π(i− 1)); /* Step 2 */
4: process(Π(i), Sstart(i)); /* Step 3 */

5: thread join();
6: for partition 1 · · · Ncore do /* Step 4 */
7: if validate(Sstart(i)) == FALSE then
8: reprocess(Π(i));

1. Partitioning. Given an input string of length L, it
first cuts it evenly into Ncore segments, where Ncore is
the number of available cores.

2. Predicting Starting States. For each segment (ex-
cept the first one), it predicts its starting state with
a technique called lookback. For segment i, lookback
examines the suffix of its prior segment i− 1 and uses
it as conditions to rule out impossible states or states
with low chances to be the correct starting state (more
details in [61]). Later, a single state is selected as the
predicted starting state.

3. Parallel Execution. With predicted starting states,
it then executes each segment of length Lseg = L/Ncore

in parallel. For each individual segment, this execution
is the same as a sequential FSM execution.

4. Validation and Reprocessing. At last, it validates
the correctness of the predicted starting states after
the parallel execution. The validation compares the
predicted starting state of segment i with the ending
state of segment i − 1, if they are different (i.e., pre-
diction fails), segment i would be reprocessed.

Three things are important to note. First, According to
prior results [61], the prediction accuracy highly depends
on segment suffix, rather than how far it is away from the
input beginning. Second, in Step 4, validations among dif-
ferent segments need to be in sequential order to ensure the
correctness; Third, the reprocessing of a segment may stop
earlier thanks to the state convergence property that widely
exists in many FSMs. We elaborate this property using the
example in Figure 2.

1 1 0 0 1 … 0

A B C B B C … D
D A B B B C … D

Input

Path 1
Path 2

Figure 2: Example of State Convergence.

Consider processing a piece of an input string, starting
with two different states A and D. There are two paths
of state sequence, each for a different starting state. Af-
ter processing the first three symbols 110, both paths get
into the same state B. Since then, these two paths would
keep producing the same state sequence as they will observe
the same symbols. This phenomenon is referred to as State
Convergence [61, 40].

In the context of reprocessing, as long as the predicted
(wrong) state converges with the actual starting state before
reaching the end of the segment, the reprocessing can safely
stop since the remaining states would be the same as the
correct ones. In fact, state convergence is not only useful for
speculative FSM parallelization, but also for parallel prefix-
sum, where paths from different starting states may also
converge and hence maintaining one of them is sufficient.
We elaborate the details shortly in Section 3.2.

3. FINE-GRAINED PARALLELISM
Fine-grained parallelism is becoming increasingly preva-

lent in mainstream microprocessors, in a variety of forms,
such as deep pipelining, multi-instruction issue, and SIMD
vector units. For example, Intel’s recent microarchitectures,
Haswell, supports Advanced Vector Extensions 2 (AVX2)
which features 256-bit vector units that can process 8 integer-
typed data in parallel.

Effectively utilizing such fine-grained hardware parallelism
is critical to maximizing the efficiency of various applica-

tions. In this section, we first discuss three types of paral-
lelism that can be used in fine-grained level, two of which
are proposed by this work. Then, we compare their effec-
tiveness with a rigorous analysis, which in turn guides the
design of FSM parallelization techniques.

3.1 Three Dimensions
The only fine-grained parallelism that has been seen in

prior work comes from associative parallelism [35, 40]. We
propose two other types of parallelism that are applicable
to fine-grained levels, namely, multi-state speculation and
multi-level speculation. We next elaborate each of them.
For convenience, we refer to them as P1, P2, and P3.

P1: Parallelism in Associative Operations

Computations with associative operations can be trivially
parallelized, such as multiplying a sequence of matrices. In
fact, an FSM execution on an input sequence c1c2 · · · cL can
also be associative. This is achieved by enumerating all the
states in the FSM and making transitions for each of them,
referred as prefix-sum parallelism by Ladner and Fischer [35].

In practice, as described in [40], it first cuts the input
into T segments, then it enumerates all the n states for each
segment except the first segment (which starts from initial
state) to start transitions. After a segment has been pro-
cessed, a mapping between each starting state and its end-
ing state would be available. With the known initial state, it
finally goes through every resulted mapping in order and se-
lects the correct path. Clearly, it brings in n−1 times extra
computations, where n is the number of states. It may be
beneficial when the available hardware parallelism is more
than n. However, with state convergence optimization, the
extra cost can be dramatically reduced [40] (see Section 2.2).

P2: Parallelism in Multi-State Speculation

Existing work on speculative parallelization of FSMs parti-
tion the input based on the number of CPU cores and predict
a single starting state for each segment, the one with the
highest potential to minimize the misspeculation penalty.
A straightforward extension to this approach is speculat-
ing multiple starting states for each segment, instead of one.
The intuition is that the more candidates are used for predic-
tion, the more likely the correct starting state gets covered
and the more likely the misspeculation penalty gets reduced.
Such extension enables new parallelism as each one of the
speculated starting states can start its own path indepen-
dently. We refer to it as multi-state speculative parallelism.
The difference between single-state and multi-state specula-
tion is significant because most previous work was based on
single-value prediction, such as the BOP system [29].

Essentially, multi-state speculative parallelism provides a
tradeoff between single-state speculative parallelization and
parallel prefix-sum. It offers more flexibility to deal with
FSMs that are hard to speculate and FSMs that are hard to
enumerate due to a large number of states.

P3: Parallelism in Multi-Level Speculation

The third way to expose parallelism is further partitioning
the Ncore input segments into Ncore ∗ W l−1 finer-grained
segments recursively, assuming that W is the degree of par-
allelism at fine-grained levels (l is the number of levels). We
refer to this type of parallelism as Multi-Level Speculation.

Since hardware parallelism is also hierarchical – a CPU
has multiple computing cores, each with its own SIMD units

– multi-level speculation offers a natural mapping from soft-
ware parallelism to hardware parallelism. For example, the
first level speculative parallelism can be mapped to coarse-
grained thread-level hardware parallelism (i.e., multicores),
while the second level can be mapped to fine-grained ILP
or SIMD parallelism. Note that such parallelism is not free;
it may bring more overhead as it involves more speculation.
We will shortly prove that it is still more efficient than the
first two types of parallelism when used properly.

3.2 Efficiency Analysis
We next analyze the efficiency of the three types of paral-

lelism theoretically. To facilitate our analysis, we bring two
commonly used metrics into the context of FSM execution.

• Expected Critical Path Length (ECPL). This is the ex-
pected number of state transitions on the longest tran-
sition path of an FSM execution.

• Degree of Parallelism (DoP). This is the number of
processing units that can be effectively used by an FSM
execution.

For example, in a sequential execution, an FSM proceeds
on a single transition path. Hence, ECPL(seq) = L, where
L is the input length. As only one processing unit is used
for all the transitions, we have DoP (seq) = 1.

Since state convergence is used by recent work [61, 40]
for its large efficiency boost, we assume that it is applied in
our discussion. Without loss of generality, we also assume
that the input is partitioned into two segments at a coarse-
grained level and the following analysis is on the second
segment.

To analyze the effects of state convergence, we introduce
two concepts: convergence length and convergence matrix.

Definition 1. Given an input string I and two different
starting states si and sj. The convergence length between
si and sj on I is the least number of transitions for each of
them to take in order to transition to the same state, denoted
as LI(si, sj). If by end of I, they end at different states, set
LI(si, sj) =∞.

Consider the example in Figure 2, we have LI(A,D) = 3.
Based on this, we define convergence matrix as follows.

Definition 2. Given an FSM with n states, the conver-
gence matrix over an input I is an n×n matrix, where each
element is the convergence length between states si and sj
on input I (i.e., LI(si, sj)), denoted as ML.

ML =

LI(s1, s1) LI(s1, s2) . . . LI(s1, sn)
LI(s2, s1) LI(s2, s2) . . . LI(s2, sn)

...
...

. . .
...

LI(sn, s1) LI(sn, s2) . . . LI(sn, sn)

 (1)

ML has some properties: (i) It is symmetric as LI(si, sj) =
LI(sj , si); (ii) LI(si, si) = 0; (iii) If LI(si, sj) = l1, l1 ≤ ‖I‖
and LI(sj , sk) = l2, l2 ≤ ‖I‖, then LI(si, sk) = max{l1, l2},
where ‖·‖ means the length or number of transitions.

Convergence matrix embodies information about how states
converge at each step during an FSM execution, it hence can
help us reason about the reprocessing cost for P2 and P3.

In P1, each state starts its own transition path (denoted as
Path(si)). Once a path finds that it converges with another

path, one of the two paths would be killed (stopped), the
other one would be kept live. Hence, the length of Path(si)
is the shortest convergence length between si and any other
states, supposing that si converges with at least one of other
states. Otherwise, its length would equal to the length of
the input. Formally, we have

‖Path(si)‖ = min{LI(si, S − {si}), ‖I‖} (2)

where si converges with S −{si} when si converges with at
least one state from S − {si}. Correspondingly, LI(si, S −
{si}) = min{LI(si, sj)|sj ∈ S − {si}}.

By definition, it is possible that ‖Path(si)‖ < ‖I‖ for ev-
ery si. To finish the whole input, one of the transition paths
Path(si), si ∈ S, has to continue ‖I‖ - max1≤i≤n{‖Path(si)‖}
transitions. Hence, the ECPL of P1 is simply the input
length.

Lemma 1. Given an input I, the ECPL of P1 is

ECPL(P1) = ‖I‖ (3)

On the other hand, the DoP of P1 may vary as the FSM
executes depending on state convergence. Starting from all
states S, when the number of live paths at the j-th input
symbol, live(S, j), exceeds the number of processing units,
PU , the DoP equals to PU ; Otherwise, the DoP drops to
live(S, j).

DoP (P1) = min{live(S, j), PU}, where 1 ≤ j ≤ ‖I‖ (4)

In P2, suppose K states, denoted as SK , are selected as
the prediction. Since the selection does not change the path
length of any state, if SK covers the correct state, then
ECPL equals to the input length. Otherwise, it needs to
reprocess the input until the correct state converges with
one of selected K states. The reprocessing length is

‖redo‖ = min{LI(si, s
∗)|si ∈ SK , s∗ is the true state} (5)

Assuming that the reprocessing in P2 runs sequentially,
we have Lemma 2 holds for P2.

Lemma 2. Given an input I, the ECPL of P2 is

ECPL(P2) = ‖I‖+ (1− Pk) · ‖redo‖ (6)

where Pk is the probability that SK covers the true state s∗.

Before reprocessing, the DoP of P2 is similar to P1; Dur-
ing reprocessing, the DoP (P2) drops to one.

DoP (P2) =

{
min{live(Sk, j), PU} 1 ≤ j ≤ ‖I‖
1 redo

(7)

In P3, the input segment is further cut into PU finer-
grained chunks, each of them is processed with a predicted
starting state ŝi, 1 < i ≤ PU . Suppose the probability of
each predicted starting state is p(ŝi) and the corresponding
reprocessing length is redo(ŝi), then the expected amount
of reprocessing is∥∥redo∥∥ =

PU∑
i=2

(1− p(ŝi)) · ‖redo(ŝi)‖ (8)

Note that the reprocessing of different chunks runs se-
quentially, since the correctness validation of chunk i de-
pends on the validation of chunk i − 1. This is also true
at coarse-grained level. Hence, the expected reprocessing
length for the whole input should include the reprocessing
at both coarse-grained and fine-grained levels, that is, re-
placing PU in Equation 8 with PU · (T − 1), where T is the
number of threads at coarse-grained level.

Putting them together, we have Lemma 3 for P3.

Lemma 3. Given an input I, the ECPL of P3 is

ECPL(P3) = ‖I‖ /PU +
∥∥redo∥∥ (9)

According to Lemma 3, any misspeculation has the poten-
tial to lengthen the critical path, compromising the benefits
of speculative parallelization. In the worst case, when all
prediction fails, ECPL(P3) would equal to the input length,
the same as a sequential execution.

As each processing unit processes a different input chunk,
no state convergence would happen. Hence, the DoP of P3
equals to PU before reprocessing and drops to one during
reprocessing.

DoP (P3) =

{
PU 1 ≤ j ≤ ‖I‖
1 redo

(10)

Discussion. Based on the above analysis, we compare the
three types of parallelism in terms of both ECPL and DoP .

First, ECPL captures the expected execution length. For
P1 and P2, since enumerating all states or a set of states do
not shorten the critical path, ECPL(P1) and ECPL(P2)
at least equals to the segment length. In comparison, by
cutting the segment into finer-grained chunks, P3 have the
chances to further shorten the critical path length. However,
due to the dependence in reprocessing, the ECPL of P3
could be as long as the whole input length, which happens
when all prediction fails.

Second, DoP captures the utilization of fine-grained hard-
ware parallelism. DoP (P1) and DoP (P2) start dropping
when the number of live paths goes below the number of
processing units PU . In another word, some of the pro-
cessing units become idle. Unfortunately, DoP (P3) cannot
guarantee full utilization all the time neither, due to possi-
bility of sequential reprocessing.

Overall, the efficiency of a type of parallelism depends
on the properties of FSMs and hardware architecture (e.g.,
PU). In this work, we choose P3, mainly based on our
observation that the reprocessing lengths are usually short
thanks to the quick state convergence. This has two positive
consequences. First, it ensures that ECPL(P3) is usually
much shorter than segment length (see Section 5). Second,
it guarantees high hardware utilization by keeping DoP (P3)
mostly as high as PU .

4. MICROSPEC
Guided by the analysis in Section 3, we design and imple-

ment MicroSpec, a library that leverages multi-level specula-
tion to maximize the efficiency of parallel FSM execution on
modern processors. We first describes its major techniques,
then introduces an optimization to facilitate its use.

4.1 Overview
At high-level, MicroSpec consists of four speculation-centric

parallelization techniques (denoted as S1 - S4) plus a speculation-
oriented data transformation. The parallelization techniques
are able to expose fine-grained speculative parallelism to
FSM computations while the data transformation automat-
ically re-layouts the input for better locality.

Predicting Starting States. Since starting states prediction
is not the focus of this work, we simply choose a relatively
straightforward prediction, named simple lookback, which
has been used by prior work [61, 1]. Basically, it starts from
the suffix of a prior segment with a random state, then uses
its ending state after processing the suffix as the predicted

starting state. More advanced predictions can be ported to
MicroSpec. However, there will be a tradeoff between accu-
racy and overhead, which remains to be investigated. In the
following, we elaborate these four major techniques and the
optimization in details.

4.2 Techniques
In multi-level speculation, each level follows a speculative

parallelization scheme that is similar to the one in Algo-
rithm 1. The key differences lie in the implementations.
In the following, we consider two cases: two-level specula-
tion and three-level speculation. For the first level, that is,
the coarse-grained level, we simply follow the coarse-grained
speculative parallelization in Algorithm 1. For the second
and third levels, we mainly focus on ILP and SIMD paral-
lelism, both of which are common features owned by modern
processors. As the first level is given in Section 2, in the fol-
lowing, we only show the algorithms in the second and third
levels. Next, we first present two two-level speculations, fol-
lowed by two three-level ones.

S1: Speculative SIMD Gather
We first consider SIMD parallelism only for the second-

level speculation. Algorithm 2 shows the pseudo-code of this
approach. As this approach mainly relies on SIMD operation
gather, we refer to it as Speculative Gather.

Algorithm 2 Speculative SIMD Gather

1: π = fine grained partition(W);
2: S = predictInitStates(π);
3: for (i=0; i < Lseg/W , i++) do
4: I = readInputVec(i);
5: F = S × Nsym + I;
6: S = gather(T , F);

7: end

Basically, given an input segment of length Lseg from the
first-level speculation, speculative gather partitions it based
on the SIMD width W (e.g., W = 8 for 256-bit integer
operations) (Line 1). Then, it predicts the starting states
for the W smaller segments with simple lookback (Line 2).
Since there are no dependencies among predictions, they can
be vectorized with SIMD operations as well.

With the predicted starting states, stored in a vector S, it
goes through W smaller segments in parallel with SIMD op-
erations, as shown through Lines 3 to 6 in Algorithm 2. The
readInputVec() can be implemented either in SIMD oper-
ation or a sequence of non-SIMD read operations. To find
next states, it accesses the transition table T , which is stored
in a state-major one-dimensional array. This is finished in
two steps. First, it calculates the address of next states and
stores them in the offset vector F . Then it leverages a single
gather operation to load W next states to vector S.

To illustrate the functionality of gather, consider the run-
ning example. Suppose the SIMD width W = 8, current
state vector S = [D, C, A, C, F, A, E, B] (i.e., [3, 2, 0, 2, 5,
0, 4, 1]), input vector I = [1, 0, 0, 1, 1, 0, 1, 0], then offset
vector F = S × 2 + I = [7, 6, 0, 5, 11, 0, 9, 2]. The next
state vector would be S = gather(base, F) = [A, B, E, D,
A, E, F, B].

S2: Speculative Unrolling

Alternatively, we can also consider unrolling for the second-
level speculation. Unrolling is one of the major ways to ex-
pose ILP. However exposing such low-level parallelism is not

straightforward. In fact, by default, due to the tight depen-
dencies across state transitions, unrolling does not provide
any benefits. As shown in Figure 3, the performance of after
unrolling is almost the same as the default version. This is
mainly because the state transition dependencies turn into
instruction dependencies, making most unrolled instructions
incapable of executing in parallel.

To overcome the above difficulty, we apply the idea of
speculation to unrolling, aiming to break the most depen-
dencies among the unrolled instructions. We refer to it as
Speculative Unrolling, illustrated by Algorithm 3.

Algorithm 3 Speculative Unrolling

1: π = fine grained partition(R);
2: s[0 · · ·R− 1] = predictInitStates(π);
3: B = Lseg/R;
4: for (i=0; i < B, i++) do
5: c[0] = readInput(i);
6: s[0] = T[s[0]][c[0]];
7: c[1] = readInput(i+B);
8: s[1] = T[s[1]][c[0]];
9: · · · · · ·

10: c[R-1] = readInput(i+B ∗ (R− 1));
11: s[R-1] = T[s[R-1]][c[R-1]];

12: end

The basic idea of speculative unrolling is as follows. At
first, it takes a coarse-grained input segment and partitions
it into finer-grained segments according to the unrolling fac-
tor, R. Then it predicts the starting state for each fine-
grained segment. So far, it is the same as S1, speculative
SIMD gather. The difference is in the next. Instead of using
some SIMD operations, it unrolls the loop body R times,
with a goal to bring in artificial ILPs. Note that, with start-
ing state prediction, the unrolled loop iterations do not have
any dependencies, hence, can be executed in parallel and op-
timized by microprocessors.

A key question in speculative unrolling is the selection of
unrolling factor R. If choosing R too high, it takes more
risks of bringing in misspeculated segments; If choosing R
too low, it may not fully utilize the potential of ILPs in
microprocessors. In Section 5, we will examine this with
experiments.
Discussion. Note that both of the above approaches rely
on speculation to expose fine-grained parallelism. The for-
mer exposes SIMD parallelism while the latter exposes ILP.
They are essentially orthogonal, hence, might be combined
to expose even richer parallelism, the third-level speculative
parallelism, pushing the utilization of microprocessor to the
extreme. Depending on the order that they are combined,
we refer to the combined approaches as Speculative SIMD
Gather+ and Speculative Unrolling+, respectively. We elab-
orate them next, namely, S3 and S4.

S3: Speculative SIMD Gather+

Intuitively, this approach applies speculative unrolling to
speculative SIMD gather. This essentially requires more
speculation, in particular, W ×R times of speculation for a
coarse-grained input segment, where W is the SIMD width
and R is the unrolling factor. Algorithm 4 describes this ap-
proach. Basically, the loop body in Algorithm 2 is unrolled
R times as that in Algorithm 3. Note that the number of
loop iterations drops to Lseg/W/R.

Similarly to speculative unrolling, it also needs to select
the loop unrolling factor R. An interesting question is whether

0	 200	 400	 600	 800	

dna	

protn	

snort	

performance	 (ms)

naïve	 unroll	

default	

Figure 3: Performance of Naive Unrolling

it has a smaller optimal R comparing to that of speculative
unrolling. We show our findings to this question in Section 5.

Algorithm 4 Speculative SIMD Gather+

1: π = fine grained partition(W ×R);
2: S[0 · · ·R− 1] = predictInitStates(π);
3: B = Lseg/W/R;
4: for (i=0; i < B, i++) do
5: I[0] = readInputVec(i);
6: F [0] = S[0] × Nsym + I[0];
7: S[0] = gather(T , F [0]);
8: I[1] = readInputVec(i+B);
9: F [1] = S[1] × Nsym + I[1];

10: S[1] = gather(T , F [1]);
11: · · · · · ·
12: I[R− 1] = readInputVec(i+B ∗ (R− 1));
13: F [R− 1] = S[R− 1] × Nsym + I[R− 1];
14: S[R− 1] = gather(T , F [R− 1]);

15: end

S4: Speculative Unrolling+

Different from S3, speculative unrolling+ first applies spec-
ulative unrolling to the second level of speculation, then ap-
plies speculative gather to the third level. The pseudo-code
of this approach is illustrated as in Algorithm 5. Each for-
loop corresponds to the unrolling as in S2. Within each
for-loop, a segment is further partitioned into W segments
to initiate speculative gather. Similarly to S3, S4 also aims
to realize the maximal utilization of the processing power by
aggressively increasing the amount of speculation.

In sum, S1 and S2 are based on two-level speculation,
while S3 and S4 are based on three-level speculation. The
total number of partitions increases from W and R in the
former cases to W ×R in the latter cases.

4.3 Optimization
For coarse-grained speculative parallelization, the input

is partitioned evenly into coarse-grained segments based on
the number of cores. Each thread sequentially accesses its
own segment which is stored in a piece of continuous mem-
ory (since inputs are arrays). In this case, the locality is
ideal. However, when multi-level speculation is used, the
accessing pattern is not sequential any more, instead, it be-
comes stride-based. Even worse, the width of stride is typi-
cally large (i.e., the length of a fine-grained segment). This
non-coalesced memory accessing pattern could drag the per-
formance benefits down.

To overcome this, we propose a speculation-oriented data
transformation that re-layouts the data according to the ac-
cessing pattern in multi-level speculation scheme to mini-
mize the memory accessing delays. Basically, it transforms

Algorithm 5 Speculative Unrolling+

1: π = fine grained partition(W × R);
2: S[0 . . . R− 1] = predictInitStates(π);
3: B = Lseg/R ;
4: for (i=0; i < B/W ; i++) do
5: I[0] = readInputVec(i);
6: F [0] = S[0] × Nsym + I[0];
7: S[0] = gather(T , F [0]);

8: end
9: for (i=B; i < B +B/W ; i++) do

10: I[1] = readInputVec(i);
11: F [1] = S[1] × Nsym + I[1];
12: S[1] = gather(T , F [1]);

13: end
14:
15: for (i=B ∗ (R− 1); i < B ∗ (R− 1) +B/W ; i++) do
16: I[R− 1] = readInputVec(i);
17: F [R− 1] = S[R− 1] × Nsym + I[R− 1];
18: S[R− 1] = gather(T , F [R− 1]);

19: end

0 1 … 1 0 0 … 0 0 1 … 1 0 1 … 0

0 0 0 0 1 0 1 1 … … 1 0 1 0

W = 4; B = Lseg/W;

for (i = 0; i < B; i++) /* before transformation */
{ I = (in[i],in[i+B],in[i+2B],in[i+3B]);

 …
}

for (i = 0; i < Lseg; i = i + W) /* after trans. */
{ I = (in[i],in[i+1],in[i+2],in[i+3]);

 …
}

Figure 4: Spec.-Oriented Data Transformation

the big stride-based accessing to simple sequential accessing.
It does this by moving each group of stride-based accessed
data next to each other, as shown in Figure 4.

Consider S1, speculative SIMD gather 3. Suppose the
SIMD width W = 4, a coarse-grained input segment with
length of Lseg is further partitioned into four fine-grained
segments, each with a length of B = Lseg/W . To get an
input vector I (as in Algorithm 2), the original memory
accessing has a stride width of B. After the data transfor-
mation, the memory accessing becomes strictly sequential.

Speculation-oriented data transformation can either work
offline (pre-layout) or online (on-the-fly re-layout). In many
scenarios, the whole dataset is available and stable and dif-
ferent FSMs are executed over the same dataset many times.
A typical example is biological sequence analysis, which may
search different patterns on the same sequence database mul-
tiple times. Though the database may be updated some-
times, it is expected that updating rate is much lower than
accessing rate. For scenarios like this, it is reasonable to do
offline data transformation as the cost of data transforma-
tion will be amortized across different FSM executions.

4.4 Implementation
We prototyped MicroSpec as a C library using Pthread

and Intel’s AVX2 instruction set. The library provides a uni-
form interface to various FSMs through a set of APIs, which

3Similar analysis is applicable to other three fine-grained
speculation techniques in MicroSpec.

implement both the four speculative parallelization methods
and the data transformation. The major arguments to the
APIs include the FSM FSM* and input char*. Other pa-
rameters such as the number of threads are automatically
configured. In terms of FSM formats, it supports both tran-
sition table and dot file (a graphical FSM representation).
It can also take regular expressions as arguments with the
help of some off-the-shelf regular expression processors.

The compilation of MicroSpec depends on the use of the
APIs. Since S1 does not include any SIMD instructions,
it can be compiled even on machines without AVX2 using
standard C compilers, such as GCC or ICC. In comparison,
the implementations of S2-S4 use _mm256_i32gather_epi32

instruction from AVX2, hence need to be compiled on recent
Intel microarchitectures, such as Haswell and its successors.
We implement the data transformation in two versions: an
API call that can be invoked by S1-S4 at runtime and a
standalone tool that runs the transformation offline.

5. EVALUATION
In this section, we evaluate the effectiveness of MicroSpec

using a set of real-world FSM applications that are manually
collected from different domains, including motif searching
in Bioinformatics, rule matching in NIDS, and Huffman de-
coding in data decompression, among others.

5.1 Methodology
The evaluation of MicroSpec includes all four speculation-

based fine-grained parallelization techniques as well as the
speculation-oriented data transformation. Table 1 summa-
rizes them and lists their abbreviation used in the evaluation.

Table 1: MicroSpec Framework
Techniques in MicroSpec Abbreviation

S1: Speculative SIMD Gather SpecGather
S2: Speculative Unrolling SpecUnroll
S3: Speculative SIMD Gather+ SpecGather+
S4: Speculative Unrolling+ SpecUnroll+
Spec.-Oriented Data Trans. SpecTrans

We compare MicroSpec with prior techniques, the coarse-
grained speculative parallelization [61] and parallel prefix-
sum [40], including both state convergence and range co-
alescing optimizations. For convenience, we refer to them
as coarseSpec and prefixSum, respectively. Our implementa-
tions are based on our best understanding of their papers.

Our major experiments run on a quad-core machine equipped
with Intel 2.8GHz Xeon E5-1603 v3 processor with AVX2.
The machine runs CentOS Linux 7.2.1511 and has GCC
4.8.5. For comparison, we also tested a machine without
AVX2 supports. It is a quad-core machine equipped with
Intel 3GHz Xeon CPU E5-1607 v2 processor with SSE 4.2.
It runs Ubuntu 14.04.4 LTS and has GCC 4.9.3.

All programs are compiled with “-O3” optimization flag.
The timing results reported are the average of 10 repetitive
runs with all runtime cost included. We do not report 95%
confidence interval of the average when the variation is not
significant. In fact, we found that the measurements are
usually stable since FSM executions involve a large amount
of repetitive but similar computations.

5.2 Benchmarks
The benchmarks are selected to cover a wide range of FSM

applications with different levels of complexities. We first

Table 2: Protein Motifs. [·] means alternative symbols; ‘x’ means any symbol; (·) is the number of repetition.
Bench Description and Regular Expression

protn1 IQ calmodulin-binding motif. [FILV]Qx(3)[RK]Gx(3)[RK]x(2)[FILVWY]
protn2 Hemopexin domain signature. [LIFAT]ILx(2)Wx(2,3)[PE]xVF[LIVMFY][DENQS][STA][AV][LIVMFY]
protn3 P-type ’Trefoil’ domain signature. [KRH]x(2)Cx[FYPSTV]x(3,4)[ST]x(3)Cx(4)CC[FYWH]

Table 3: Snort Rules.
Bench Description and Regular Expression

snort1 (\xff{32})|([0-9A-F]{22})|(Color|Motion)
snort2 (\xFF\x41)|(Start)|(\/999)
snort3 (admin|axis2)|(\x3d?\x3d\r\n)|([rs]{4})
snort4 (\x2F\d{10})|(L\d\d\x00)|(POST\s)
snort5 (asp\x5C)|(2x\/.*php)|(htr\x5C)
snort6 snort1 | snort2 | snort3 | snort4 | snort5

elaborate them by groups, then summarize their statistics.
Biological Sequence Analysis. Pattern searching is a ba-
sic way to analyze biological sequences, such as DNA se-
quences or protein sequences. For example, a DNA motif
is a short pattern of nucleic acid, while a protein motif is a
pattern of amino acids. Usually, protein patterns are repre-
sented as regular expressions. Table 2 lists three protein pat-
terns randomly selected from a widely used protein database
PROSITE [13]. For DNA motifs, they are more commonly
represented with Hamming distances. In our benchmarks,
dna1 is a DNA motif ATCGGTCC(8,3), which means three
of the eight preceding symbols can be different as specified.
Similarly, dna2 and dna3 are two other DNA motifs TC-

GAGGACCA(10,4) and AGGGTAAA(8,1), respectively. We con-
verted the above protein and DNA motifs to FSMs using
standard regular expression transformation algorithms.

Intrusion Detection Rule Matching. Network Intrusion
Detection Systems (NIDSs) use regular expressions (called
signatures) to detect malicious activities on the internet traf-
fic. Among various NIDSs, Snort [52] is arguably the most
widely used open source NIDS. It has a rich body of signa-
tures/rules, most of them have a pcre field, where a Perl-
compatible regular expression is used to specify the pattern
interested.

In our evaluation, we randomly chose a set of 15 PCRE
patterns from 15 signatures in Snort version 2.9.8.0 as our
benchmarks. They are then randomly put into 5 groups,
each with 3 patterns. We created the 6th group by putting
all the 15 PCRE patterns together. Each group then is com-
piled to a single FSM using off-of-shelf PCRE to FSM tools.
Table 3 lists the 6 groups with their PCRE patterns. The
inputs to the Snort FSMs are network traffic trace collected
from a Linux server and a laptop via tcpdump.

Mixed FSM benchmarks. This group contains a mixed
set of FSM benchmarks, including Huffman decoding, math-
ematical testing and a couple of searching patterns.

For its optimality, Huffman algorithm has been widely
used for encoding and decoding digital data (e.g., text, JPEG
and MPEG). During the decoding stage, an FSM is em-
ployed to automate the decoding process. Basically, a Huff-
man decoding FSM contains a set of accept states, each of
them corresponding to a code. It runs over an encoded (bi-
nary) file. Each time it reaches an accept state, a code is
recognized. Note that this work targets the decoding phase,
as the encoding phase is embarrassingly parallel [23].

Our Huffman FSM benchmark huff is built based on a
collection of e-books downloaded from Project Gutenberg
(as of Dec 15th, 2015). To make the decoding FSM more
applicable, we created a single Huffman tree and a single
decoding FSM that are capable of encoding any text files
with ASCII symbols and decoding them, respectively. Since
extended ASCII contains 256 symbols, there are 256 accept
states (i.e., leaf nodes of Huffman tree). Together with 255
non-accept states, huff consists of 511 states. The inputs to
huff are binary files that encode a large collection of e-books.

Mathematical testing benchmarks include div and even-
odd. The former tests if a binary sequence is divisible by
seven while the latter tests if a text file of {a, b, c, d} satis-
fies that |a|+ |b| is even and |c|+ |d| is odd, where | · | means
the number of appearances in the file.

We also include two searching patterns that are more chal-
lenging to speculate, namely, commadot and likeapple. Their
patterns are ((.+, . + \.){4}|(. + \,){4}|(. + \.){4}){3} and
(. ∗ l. ∗ i. ∗ k. ∗ e){6} | (. ∗ .a. ∗ .p. ∗ .p. ∗ .l. ∗ .e){5}.

Table 4 summarizes the benchmarks used in our evalu-
ation, including the total number of states, the number of
accept states, state visiting frequency range and the state
range after range coalescing optimization [40].

Table 4: Summary of FSM Benchmarks.
Bench #States #Accept FRange CRange

dna1 371 76 0 - 3.6% 133
dna2 2871 583 0 - 2.1% 953
dna3 40 5 0 - 32.9% 15
protn1 69 6 0 - 73.4% 31
protn2 281 14 0 - 24.7% 99
protn3 832 48 0 - 61.9% 509
snort1 86 4 0 - 56.0% 32
snort2 10 1 0 - 99.4% 4
snort3 15 2 0 - 91.3% 5
snort4 19 1 0 - 98.7% 13
snort5 20 3 0 - 91.3% 5
snort6 299 22 0 - 44.7% 72
huff 511 256 0 - 11.3% 255
div 7 1 14.28% 7
evenodd 4 1 25% 4
commadot 130 7 0 - 97.1% 81
likeapple 495 1 0 - 88.3% 494

5.3 Results
Unrolling Factor. Since the selection of the unrolling fac-
tor R may affect the performance of MicroSpec, we first dis-
cuss it. Table 5 shows the execution time of dna4 on a small
testing input using different unrolling factor values. The re-
sults answer the question in Section 4.2 – the best R varies
across methods, 6 or 8 for SpecUnroll, 2 for SpecGather+
and SpecUnroll+. This implies that the ILP for SIMD oper-
ations is less effective than the one for non-SIMD operations.
Since we found that the best Rs are stable across different
benchmarks, we empirically set R = 8 for SpecUnroll and
R = 2 for SpecGather+ and SpecUnroll+ in the following.
Group A: Motif Searching. Figure 5 shows the perfor-

Table 5: Unrolling Factor Selection
exec. time(ms) unrolling factor
method 1 2 4 6 8

SpecUnroll 397.3 199 100.7 73.3 75.6
SpecGather+ 145.6 97.6 188 484.1 251.7
SpecUnroll+ 147.9 94.6 129.7 299.6 210

0
2
4
6
8

10
12
14
16

specUnroll specGather specGather+ specUnroll+ coarseSpec prefixSum

(MicroSpec) (asplos14a) (asplos14b)

Sp
ee

du
p

dna1 dna2 dna3 protn1 protn2 protn3

Figure 5: Speedups for Biological Benchmarks

mance results for motif searching benchmark group. Over-
all, the performance of four speculation-based methods in
MicroSpec outperform previous two methods substantially,
achieving about 14X speedups among all six benchmarks.

More specifically, specUnroll yields the best speedups among
all tested methods. This implies that even though mod-
ern processors come with highly optimized ILP, they can
be barely utilized by the default version. specGather yields
about 8X speedup on average, also exceeding prior meth-
ods. It demonstrates the benefits of utilizing gather intrin-
sic from Intel AVX2 for FSM computations. However, on
the other hand, it barely reaches around 60% performance
of specUnroll, which indicates that the limitation of cur-
rent gather compromises the speculation benefits. Meth-
ods specGather+ and specUnroll+, yield similar speedups,
higher than specGather but lower than specUnroll.

Note that prefixSum yields inconsistent speedups across
different benchmarks. The reason is that its performance
depends on the properties of FSMs. For FSMs with fast
convergence length and less number of states, it tends to
perform much better. For example, it gets about 7X speedup
on benchmark dna3, which has only 40 states. These states
converge quickly to a single state within 50 transitions. In
comparison coarseSpec shows consist but limited speedups
due to its unawareness of fine-grained parallelism.
Group B: Snort Rules Matching. Figure 6 shows the
performance results for Snort rules benchmarks. In gen-
eral, the results are similar to those in the first group. The
main differences come from prefixSum, which achieves the
best speedups for two benchmarks snort2 and snort3. The
reason is that both benchmarks have less than 16 states,
smaller than the maximal number of states that a single
SIMD shuffle (_mm_shuffle_epi8) can handle. This means
it only needs a single shuffle instruction for each transi-
tion. Hence, this shows the optimal speedup of prefixSum.
Comparing with specGather, this also validates that shuffle
is much more efficient than gather on current processors.
Group C: Mixed FSM benchmarks. Figure 7 shows
the performance results of the last benchmark group, which
are mixed with Huffman decoding (huff) and some hard-

0
2
4
6
8

10
12
14
16

specUnroll specGather specGather+ specUnroll+ coarseSpec prefixSum

(MicroSpec) (asplos14a) (asplos14b)

Sp
ee

du
p

snort1 snort2 snort3 snort4 snort5 snort6

Figure 6: Speedups for Snort Benchmarks

0

5

10

15

huff div evenodd commadot likeapple
Sp

ee
du

p

specUnroll specGather specGather+
specUnroll+ asplos14a asplos14b

Figure 7: Speedups for Mixed FSM Benchmarks

to-speculate FSM benchmarks div, evenodd, commadot, and
likeapple. After range coalescing, huff has a state range of
255. Though it can be executed by prefixSum using a mix of
shuffle and blend operations, it hardly gets any benefits
due to the large number of SIMD operations involved. In
comparison, the four methods from MicroSpec show similar
speedups on huff as those in the previous two groups.

The other four benchmarks in this group are more dif-
ficult to speculate due to their special structures. For div
and evenodd, no states converge no matter what input se-
quences they are given. In this case, MicroSpec either shows
limited improvement, about 2X speedup on evenodd or even
performance degradation, about 10% slowdown on div. In
comparison, prefixSum reaches 1.39X and 14X speedups, re-
spectively, thanks to its speculation-free property and the
small number of states in these two benchmarks (7 and 4).
The other two benchmarks, commadot and likeapple, have
relatively large number of states, meanwhile most states take
long distances to converge (often exceeding 10K transitions).
In this situation, MicroSpec gets about 8-9X speedup on av-
erage. Note that specUnroll+ and specGather+ all get sim-
ilar or better performance than their counterparts, demon-
strating the potential of combining SIMD gather and with
speculation unrolling. In comparison, prefixSum could not
get any speedups due to a large number of states in these
two benchmarks (130 and 495).
Optimization specTrans. Table 6 shows the cost of spec-
Trans optimization. In fact, the cost is quite comparable to
the FSM execution time, about 1/3 of the sequential FSM
execution time for input size of 100MB. Hence, it is rec-
ommended to used only offline, where the same datasets are
reused across different FSM executions, such as different mo-

0

5

10

15

sp
ec

Un
ro

ll

sp
ec

Ga
the

r

sp
ec

Ga
the

r+

sp
ec

Un
ro

ll+

sp
ec

Un
ro

ll

sp
ec

Ga
the

r

sp
ec

Ga
the

r+

sp
ec

Un
ro

ll+

sp
ec

Un
ro

ll

sp
ec

Ga
the

r

sp
ec

Ga
the

r+

sp
ec

Un
ro

ll+

sp
ec

Un
ro

ll

sp
ec

Ga
the

r

sp
ec

Ga
the

r+

sp
ec

Un
ro

ll+

dna4 snort3 huff commadot

Sp
ee

du
p

w/o specTrans w/ specTrans

Figure 8: Performance Improvements of specTrans

0

5

10

15

div commadot protn1 snort3 huff

Sp
ee

du
p

Haswell Sandy Bridge-EP

Figure 9: Performance on Different Machines

tif queries to the same DNA or protein sequence database.
Figure 8 shows the improvements of specTrans optimization.
On average, it brings about 8.5% extra speedup.

Table 6: Cost of specTrans (ms)
num. of chunks

input size 2 4 8 16

10MB 15 13 13 12
100MB 122 105 93 99
1GB 63K 63K 83K 64K

Comparison on Different Architectures. Finally, we
also tested MicroSpec on an architecture without SIMD gather.
In this case, only S2, specUnroll is experimented. Figure 9
summarizes the results. Haswell has AVX2, which supports
an 8-way integer SIMD gather (_mm256_i32gather_epi32).
In comparison, Sandy Bridge EP only comes with an earlier
version of instruction set AVX. Overall, the performance
on Sandy Bridge EP is slightly less than Haswell; but both
follow a similar pattern. This demonstrates the potential of
MicroSpec in a larger scope, across different architectures.

6. RELATED WORK
Program parallelization in general has received many ef-

forts from various aspects, including but not limited to lan-
guage design (e.g. Cilk [17], X10 [7]), hardware support
(e.g., TLS [55, 21]) and programming models (e.g., STM [2,
6]). This section focuses the studies that are closed to FSM
and speculative parallelization.
FSM and Speculative Parallelization. Traditional ways
to parallelize FSM are through parallel prefix-sum or its vari-
ations [35]. Todd and others [40] implement this method on

machines with vector units with a couple of optimizations.
Some other FSM parallelization work focus on a few spe-
cific FSM applications, such as browser front-end [27] and
JPEG decoder [31]. The basic ideas in these work were later
formalized by Zhao and others [61] by introducing a con-
cept called principled speculation. Other examples include
hot state prediction for FSMs in intrusion detection [38] and
speculative parsing [28]. For non-FSM applications, specula-
tive parallelization has been studied for many years, includ-
ing designing new language constructs [47] and paralleliza-
tion frameworks [50, 12, 48, 56, 14]. Some of these studies
have explored parallelism in irregular programs [33, 20, 46],
which provide useful insights for exploiting parallelism in
FSM computations, given that FSMs essentially run on an
irregular data structure (a graph). They are mainly based
on coarse-grained speculative parallelism. Some other prior
work have explored bit-parallel fine-grained parallelism for
FSMs by converting FSM computations into a sequence of
bit operations [41, 36]. In comparison, this work uses both
fine-grained and coarse-grained speculative parallelism. In-
tegrating such bit-level parallelism to MicroSpec would be
an interesting research topic that remains to be studied.
Vectorization and GPU. Vector extensions, such as SSE,
have been widely used in many applications such as graph-
ics [25], scientific applications [18], and signal processing [16].
Based on such vector extensions, many efforts have been put
into auto-vectorization [42, 43, 57, 22]. However, there are
still computations that are difficult to vectorize, due to irreg-
ular data structures, heavy branch operations, and noncon-
tinuous memory access. To address these, prior work have
vectorized binary tree search [30], tree traversal [26], irregu-
lar tree forest and multiple graphs traversal [51], and sparse
matrix-vector multiplication [37]. The basic principles of
vectorizing irregular applications include both improving the
cache performance by careful data layout and resolving the
branch operations. FSM parallelization has also been stud-
ied on GPU platform in the context of NFAs [62] which natu-
rally run in parallel. Since FSMs are also irregular structure,
the results of this work would provide valuable insights to
the parallelization of other irregular computations.

7. CONCLUSION
This paper provides a rigorous analysis among three types

of parallelism that can be exposed at fine-grained levels for
FSM computations. It deepens the understanding to the
efficiency of different FSM parallelization schemes. Guided
by the analysis, it presents MicroSpec, a set of speculation-
centric parallelization techniques that expose fine-grained
speculative parallelism into FSM computations, along with
a data transformation optimization. MicroSpec extends the
available parallelism in FSM computations to a new level.
Experiments show that MicroSpec outperforms the state-of-
the-art by up to a factor of four, demonstrating the benefits
of fine-grained speculative parallelism.

8. ACKNOWLEDGMENTS
We thank all anonymous reviewers for their constructive

comments and our paper shepherd Keshav Pingali for his
great help with the final version preparation.

9. REFERENCES
[1] Browsing web 3.0 on 3.0 watts: Why browsers will be

parallel and implications for education. invited talk at
The 3rd Workshop on Software Tools for MultiCore
Systems, April, 2008.

[2] M. Abadi, A. Birrell, T. Harris, and M. Isard.
Semantics of transactional memory and automatic
mutual exclusion. In Proceedings of ACM Symposium
on Principles of Programming Languages, 2008.

[3] T. Algra. Fast and efficient variable-to-fixed-length
coding algorithm. Electronics Letters,
28(15):1399–1401, 1992.

[4] R. Alur and M. Yannakakis. Model checking of
hierarchical state machines. ACM Trans. Program.
Lang. Syst., 23(3):273–303, May 2001.

[5] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, et al. The
landscape of parallel computing research: A view from
berkeley. Technical report, Technical Report
UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, 2006.

[6] B. Carlstrom, A. McDonald, H. Chafi, J. Chung,
C. Minh, C. Kozyrakis, and K. Olukotun. The atomos
transactional programming langauges. In Proceedings
of ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2006.

[7] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar. X10: an object-oriented approach to
non-uniform cluster computing. In OOPSLA, 2005.

[8] Y. Chen, D. Che, and K. Aberer. On the efficient
evaluation of relaxed queries in biological databases. In
Proceedings of the Eleventh International Conference
on Information and Knowledge Management, CIKM
’02, pages 227–236, New York, NY, USA, 2002. ACM.

[9] C. Chitic and D. Rosu. On validation of XML streams
using finite state machines. In Proceedings of the
Seventh International Workshop on the Web and
Databases, WebDB 2004, June 17-18, 2004, Maison
de la Chimie, Paris, France, Colocated with ACM
SIGMOD/PODS 2004, pages 85–90, 2004.

[10] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. Nusmv 2: An opensource tool for
symbolic model checking. In Computer Aided
Verification, pages 359–364. Springer, 2002.

[11] S. Datta and S. Mukhopadhyay. A grammar inference
approach for predicting kinase specific phosphorylation
sites. PLoS ONE, 10(4):e0122294, 2015.

[12] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and
C. Zhang. Software behavior-oriented parallelization.
In PLDI, 2007.

[13] L. Falquet, M. Pagni, P. Bucher, N. Hulo, C. J.
Sigrist, K. Hofmann, and A. Bairoch. The prosite
database, its status in 2002. Nucleic acids research,
30(1):235–238, 2002.

[14] M. Feng, R. Gupta, and Y. Hu. Spicec: Scalable
parallelism via implicit copying and explicit commit.
In Proceedings of the ACM SIGPLAN Symposium on
Principles Practice of Parallel Programming, 2011.

[15] D. Ficara, S. Giordano, G. Procissi, F. Vitucci,

G. Antichi, and A. D. Pietro. An improved DFA for
fast regular expression matching. Computer
Communication Review, 38(5):29–40, 2008.

[16] F. Franchetti and M. Puschel. A SIMD vectorizing
compiler for digital signal processing algorithms. In
IPDPS, pages 7–pp, 2002.

[17] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language.
In Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation,
1998.

[18] C. Garćıa, R. Lario, M. Prieto, L. Piñuel, and
F. Tirado. Vectorization of multigrid codes using
SIMD ISA extensions. In IPDPS, pages 8–pp, 2003.

[19] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML streams with deterministic automata.
In Database Theory - ICDT 2003, 9th International
Conference, Siena, Italy, January 8-10, 2003,
Proceedings, pages 173–189, 2003.

[20] M. Herlihy and E. Koskinen. Transactional boosting:
A methodology for highly-concurrent transactional
objects. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, PPoPP ’08, 2008.

[21] M. Herlihy and J. E. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA), 1993.

[22] K. Hou, H. Wang, and W.-c. Feng. Aspas: A
framework for automatic simdization of parallel
sorting on x86-based many-core processors. In
Proceedings of the 29th ACM International Conference
on Supercomputing (ICS), pages 383–392. ACM, 2015.

[23] P. G. Howard and J. S. Vitte. Parallel lossless image
compression using huffman and arithmetic coding. In
Data Compression Conference, 1992. DCC’92., pages
299–308. IEEE, 1992.

[24] D. A. Huffman. Notes on information-lossless
finite-state automata. Il Nuovo Cimento (1955-1965),
13:397–405, 1959.

[25] N. Ide, M. Hirano, Y. Endo, S. Yoshioka,
H. Murakami, A. Kunimatsu, T. Sato, T. Kamei,
T. Okada, and M. Suzuoki. 2.44-GFLOPS 300-MHz
floating-point vector-processing unit for
high-performance 3D graphics computing. volume 35,
pages 1025–1033, 2000.

[26] Y. Jo, M. Goldfarb, and M. Kulkarni. Automatic
vectorization of tree traversals. In PACT, pages
363–374, 2013.

[27] C. Jones, R. Liu, L. Meyerovich, K. Asanovic, and
R. Bodik. Parallelizing the web browser. In HotPar,
2009.

[28] B. Kaplan. Speculative parsing path.
http://bugzilla.mozilla.org.

[29] C. Ke, L. Liu, C. Zhang, T. Bai, B. Jacobs, and
C. Ding. Safe parallel programming using dynamic
dependence hints. In ACM SIGPLAN Notices,
volume 46, pages 243–258. ACM, 2011.

[30] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D.
Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt, and
P. Dubey. FAST: fast architecture sensitive tree search
on modern CPUs and GPUs. In ACM SIGMOD

International Conference on Management of data,
pages 339–350, 2010.

[31] S. Klein and Y. Wiseman. Parallel huffman decoding
with applications to jpeg files. Jounal of Computing,
46(5), 2003.

[32] S. T. Klein and Y. Wiseman. Parallel huffman
decoding with applications to JPEG files. Comput. J.,
46(5):487–497, 2003.

[33] M. Kulkarni, K. Pingali, B. Walter,
G. Ramanarayanan, K. Bala, and L. P. Chew.
Optimistic parallelism requires abstractions. In
Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’07, 2007.

[34] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and
J. S. Turner. Algorithms to accelerate multiple regular
expressions matching for deep packet inspection. In
Proceedings of the ACM SIGCOMM 2006 Conference
on Applications, Technologies, Architectures, and
Protocols for Computer Communications, Pisa, Italy,
September 11-15, 2006, pages 339–350, 2006.

[35] R. E. Ladner and M. J. Fischer. Parallel prefix
computation. J. ACM, 27(4):831–838, Oct. 1980.

[36] D. Lin, N. Medforth, K. S. Herdy, A. Shriraman, and
R. Cameron. Parabix: Boosting the efficiency of text
processing on commodity processors. In High
Performance Computer Architecture (HPCA), 2012
IEEE 18th International Symposium on, pages 1–12.
IEEE, 2012.

[37] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey.
Efficient sparse matrix-vector multiplication on
x86-based many-core processors. In ACM conference
on International conference on supercomputing, pages
273–282, 2013.

[38] D. Luchaup, R. Smith, C. Estan, and S. Jha.
Multi-byte regular expression matching with
speculation. In RAID, 2009.

[39] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C.
Rinard. Chisel: reliability- and accuracy-aware
optimization of approximate computational kernels. In
Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems
Languages & Applications, OoarticloOPSLA 2014,
part of SPLASH 2014, Portland, OR, USA, October
20-24, 2014, pages 309–328, 2014.

[40] T. Mytkowicz, M. Musuvathi, and W. Schulte.
Data-parallel finite-state machines. In ASPLOS ’14:
Proceedings of 19th International Conference on
Architecture Support for Programming Languages and
Operating Systems. ACM Press, 2014.

[41] G. Navarro. Nr-grep: a fast and flexible
pattern-matching tool. Software: Practice and
Experience, 31(13):1265–1312, 2001.

[42] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization
of interleaved data for SIMD. In PLDI, volume 41,
pages 132–143. ACM, 2006.

[43] D. Nuzman and A. Zaks. Outer-loop vectorization:
revisited for short SIMD architectures. In PACT,
pages 2–11, 2008.

[44] Y. Pan, Y. Zhang, K. Chiu, and W. Lu. Parallel XML
parsing using meta-dfas. In Third International
Conference on e-Science and Grid Computing,

e-Science 2007, 10-13 December 2007, Bangalore,
India, pages 237–244, 2007.

[45] A. Petrenko. Fault model-driven test derivation from
finite state models: Annotated bibliography. In
Modeling and verification of parallel processes, pages
196–205. Springer, 2001.

[46] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher,
M. A. Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth,
R. Manevich, M. Méndez-Lojo, D. Prountzos, and
X. Sui. The tao of parallelism in algorithms. In
Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’11, 2011.

[47] P. Prabhu, G. Ramalingam, and K. Vaswani. Safe
programmable speculative parallelism. In Proceedings
of ACM SIGPLAN Conference on Programming
Languages Design and Implementation, 2010.

[48] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and
D. I. August. Speculative parallelization using software
multi-threaded transactions. In Proceedings of the
international conference on Architectural support for
programming languages and operating systems, 2010.

[49] R. K. Ranjan, A. Aziz, R. K. Brayton, B. Plessier,
and C. Pixley. Efficient bdd algorithms for fsm
synthesis and verification. IWLS95, Lake Tahoe, CA,
253:254, 1995.

[50] L. Rauchwerger and D. A. Padua. The LRPD test:
Speculative run-time parallelization of loops with
privatization and reduction parallelization. In
Proceedings of the ACM SIGPLAN’95 Conference on
Programming Language Design and Implementation
(PLDI), La Jolla, California, USA, June 18-21, 1995,
pages 218–232, 1995.

[51] B. Ren, G. Agrawal, J. R. Larus, T. Mytkowicz,
T. Poutanen, and W. Schulte. SIMD parallelization of
applications that traverse irregular data structures. In
CGO, pages 1–10, 2013.

[52] M. Roesch et al. Snort: Lightweight intrusion
detection for networks. In LISA, volume 99, pages
229–238, 1999.

[53] I. Roy and S. Aluru. Finding motifs in biological
sequences using the micron automata processor. In
2014 IEEE 28th International Parallel and Distributed
Processing Symposium, Phoenix, AZ, USA, May
19-23, 2014, pages 415–424, 2014.

[54] P. Shankar, A. Dasgupta, K. Deshmukh, and B. S.
Rajan. On viewing block codes as finite automata.
Theoretical Computer Science, 290(3):1775–1797,
2003.

[55] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry.
The STAMPede approach to thread-level speculation.
ACM Transactions on Computer Systems,
23(3):253–300, 2005.

[56] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy
or discard execution model for speculative
parallelization on multicores. In Proceedings of the
International Symposium on Microarchitecture, 2008.

[57] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and
I. Rosen. Polyhedral-model guided loop-nest
auto-vectorization. In PACT, pages 327–337, 2009.

[58] R. van Engelen. Constructing finite state automata for
high-performance XML web services. In Proceedings of

the International Conference on Internet Computing,
IC ’04, Volume 2 & Proceedings of the International
Symposium on Web Services & Applications, ISWS
’04, Las Vegas, Nevada, USA, June 21-24, 2004,
pages 975–981, 2004.

[59] Z. G. Wang, J. Elbaz, F. Remacle, R. D. Levine, and
I. Willner. All-DNA finite-state automata with finite
memory. Proc. Natl. Acad. Sci. U.S.A.,
107(51):21996–22001, Dec 2010.

[60] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H.
Katz. Fast and memory-efficient regular expression
matching for deep packet inspection. In Proceedings of
the 2006 ACM/IEEE Symposium on Architecture for
Networking and Communications Systems, pages
93–102, 2006.

[61] Z. Zhao, B. Wu, and X. Shen. Challenging the
”embarrassingly sequential”: Parallelizing finite state
machine-based computations through principled
speculation. In ASPLOS ’14: Proceedings of 19th
International Conference on Architecture Support for
Programming Languages and Operating Systems. ACM
Press, 2014.

[62] Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng,
and Q. Dong. Gpu-based nfa implementation for
memory efficient high speed regular expression
matching. In PPoPP ’12: Proceedings of the ACM
SIGPLAN symposium on Principles and practice of
parallel programming, pages 129–140, 2009.

