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Abstract
The pursuit of computational efficiency has led to the prolifera-
tion of throughput-oriented hardware, from GPUs to increasingly
wide vector units on commodity processors and accelerators. This
hardware is designed to efficiently execute data-parallel computa-
tions in a vectorized manner. However, many algorithms are more
naturally expressed as divide-and-conquer, recursive, task-parallel
computations. In the absence of data parallelism, it seems that such
algorithms are not well suited to throughput-oriented architectures.
This paper presents a set of novel code transformations that ex-
pose the data parallelism latent in recursive, task-parallel programs.
These transformations facilitate straightforward vectorization of
task-parallel programs on commodity hardware. We also present
scheduling policies that maintain high utilization of vector resources
while limiting space usage. Across several task-parallel benchmarks,
we demonstrate both efficient vector resource utilization and sub-
stantial speedup on chips using Intel’s SSE4.2 vector units, as well
as accelerators using Intel’s AVX512 units.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: [Concurrent Programming — Parallel Programming]

General Terms Algorithms, Performance

Keywords Recursive Programs, Task Parallelism, Vectorization

1. Introduction
As energy efficiency and power consumption become increasingly
relevant issues for processor and accelerator designers, hardware
resources for parallelism are shifting from general-purpose multi-
cores to throughput-oriented computing with GPUs, accelerators
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at Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PLDI’15, June 13–17, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/2737924.2738004

(e.g., Intel’s Xeon Phi), and increasingly wide single instruction
multiple data (SIMD) units on commodity processors providing
efficient, vector-based parallel computation. In fact, because SIMD
extensions on commodity processors tend to require relatively little
extra hardware, executing a SIMD instruction is essentially “free”
from a power perspective, making vectorization an attractive option.

Vector designs are well suited to executing data-parallel algo-
rithms, where the same computation is performed on each of a
series of data items, and modern vectorizing compilers do a reason-
able job of finding parallelism in simple, data-parallel loops and
mapping that parallelism to vector units on general-purpose proces-
sors [23, 25]. In addition, programming models, such as CUDA and
OpenCL simplify the task of mapping data-parallel computations to
vector hardware on GPUs [26, 34]. Unfortunately, many algorithms
are more naturally expressed as divide-and-conquer, recursive, task-
parallel computations. Such programs do not naturally decompose
into data-parallel representations—there are no dense, vectorizable
loops. Hence, it seems that existing vector hardware is a poor target
for such programs.

To address this shortcoming, there have been many proposals to
map coarse-grained tasks to commodity GPUs [1, 36] or to modify
GPU hardware to better accommodate recursive parallelism with
fine-grained tasks [17, 29, 33]. In this paper, we consider the prob-
lem of effectively mapping fine-grained, recursive, parallel appli-
cations to commodity vector units. Addressing this problem would
allow programmers to adopt a standard, task-parallel programming
model and easily adapt existing applications to leverage the oth-
erwise unused computational resources that exist on most general
processors, as well as in newer accelerators such as Intel’s Xeon
Phi.

This paper focuses on exploiting vector parallelism on a single
core. We propose code transformations that restructure recursive,
task-parallel applications to expose their latent data parallelism
that allows for efficient vectorization. A typical divide-and-conquer
application can be thought of as a computation tree, with each
interior node in the computation tree representing work done prior
to making a recursive call, children of a node in the tree representing
the work done during each recursive call, and leaf nodes representing
work done during the base case. Figure 1 shows an abstract recursive
code—the paper’s running example—and its associated computation
tree. An execution of the application is equivalent to a valid tree walk.
In particular, the normal sequential execution of this computation
can be represented by a depth-first walk of the tree.
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1 void foo ( i n t x )
2 i f ( i s B a s e ( x ) )
3 baseCase ( )
4 e l s e
5 l 1 = i n d u c t i v e W o r k 1 ( x ) / / l 1 = x / 2
6 spawn foo ( l 1 )
7 l 2 = i n d u c t i v e W o r k 2 ( l 2 ) / / l 2 = x / 2
8 spawn foo ( l 2 )

(a) Simple recursive code. spawn creates new tasks.
foo(8)

foo(4)

foo(4)

foo(2)

foo(2) foo(2)

foo(2)

(b) Computation tree. Black boxes are baseCase computations, dark
gray boxes are inductiveWork1 computations, and light gray boxes
are inductiveWork2 computations.

Figure 1: Recursive, task-parallel code and computation tree.

Contributions: The key contributions of this paper are code
transformations that create a tree walk that can be efficiently
vectorized. The transformations handle three important issues: (1)
expose data-parallel computation by performing a breadth-first
expansion of the computation tree; (2) reduce the amount of space
used and the number of cache misses by switching to depth-first
execution when enough parallelism has been generated; and (3)
when irregularities in the computation tree cause reduction in
available parallelism, regenerate parallel work using re-expansion.
In addition, we develop block management schemes, including a
novel stream compaction algorithm to ensure that parallel work and
data accesses remain structured for efficient SIMDization.

In our experimental evaluation, we observe that our techniques
can find vectorization opportunities in all of the benchmarks con-
sidered, ranging from small microbenchmarks to larger kernels. On
two hardware platforms, an Intel Xeon E5 with the SSE4.2 instruc-
tion set and an Intel Xeon Phi with the AVX512 instruction set, we
could obtain up to 12.23× speedup. We also discovered that our
scheduling policy is effective at maintaining high SIMD utilization
while bounding space usage and incurring relatively low overheads.
Overall, this paper presents the first set of techniques for mapping
application segments that constitute general, recursive, task-parallel
kernels to commodity vector hardware. Our approach allows pro-
grammers to leverage the “free” execution resources available in
SIMD units even for programs and kernels that do not appear to be
amenable to data-parallel vectorization.

2. Preliminaries

Specifying recursive, task-parallel programs: This paper targets
the vector parallelization of recursive, task-parallel applications. To
clarify the types of applications we transform and parallelize, we
consider a language for specifying recursive, task-parallel programs,

v ∈Z [Values]

b ∈{true, false} [Booleans]

p ∈{p1, p2, . . . , pk} [Parameters]

l ∈{l1, l2, . . . } [Locals]

r ∈{r1, r2, . . . } [Reducers]

eb ∈ BExprs ::= fb(e1, e2, . . .)

e ∈ Exprs ::= v | l | p | eb | fv(e1, e2, . . .)
sb ∈ BaseStmts ::= return | sb; sb | l := e

| if eb then sb else sb | while (eb) sb

| reduce(r, e)

si ∈ IndStmts ::= return | si; si | l := e

| if eb then si else si | while (eb) si

| spawnf(e1, e2, . . . , ek)

m ∈ Method ::= f(p1, . . . , pk) if eb then sb else si

Figure 2: Language for recursive, task-parallel methods.

defined in Figure 2. The language is a variant on Cilk [4, 10]. We
emphasize this language to clarify the types of programs we tackle.
In our implementations, we transform and evaluate programs written
in C that conform to this language’s restrictions.

A k-ary recursive method evaluates a conditional (a function
returning a boolean) to decide whether or not to execute the base
case or inductive case. The base case is used to produce computa-
tion results. Base case statements can assign expression results to
local variables (note that expressions can include calls to arbitrary,
stateless, non-recursive functions), perform branching or loops, or
perform reductions over one of a set of global reducer objects [11].
These associative, commutative updates to global state are used
in lieu of return values. Of note, this means that the execution of
multiple base case tasks can be readily parallelized. While using re-
duction objects instead of return values may seem limiting, we have
found that many recursive methods can be written in this manner.

The inductive case can perform additional computations and
make recursive calls using the spawn directive, which binds expres-
sion values to the arguments of the subsequent recursive invoca-
tion. As in Cilk, spawned methods can be executed in parallel with
(and are assumed to be independent of) any subsequent work in
the spawning method. This is the source of task parallelism in our
language.1

There is an implicit synchronization at the end of each method:
all spawned (callee) methods must return before their parent (caller)
method can return. Unlike in Cilk, our language does not have an
explicit sync keyword. No additional work can be performed after
spawned tasks “rejoin” execution. All computations expressed in
our language can be viewed as computation trees: spawns create
children of the current task, and base case computations, which do
not perform spawns, are leaves of the computation tree.

In terms of our language description, Figure 1(a) can be in-
terpreted as follows: foo defines the recursive method, which
takes one argument. isBase() performs some computation to
decide whether or not to perform the base case, which is defined by
baseCase(). If isBase() returns false, inductiveWork1()
and inductiveWork2() perform the necessary computations to
set up two spawns of recursive tasks. While the running example
only has two children tasks, in general, any number of child tasks
can be spawned in the inductive case.

1 We only consider self-recursive programs in this paper for simplicity. We
also assume the number of spawn calls in a method can be statically bounded.
These are not fundamental limitations of our technique.
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Strawman vectorization: To grasp the difficulties involved in vec-
torizing a recursive application described in our language, it is
helpful to understand why the obvious solution will not work. Con-
sider executing a task-parallel program written in our specification
language using a traditional multicore, work-stealing runtime, as
used by Cilk [4, 8, 10]. In a Cilk-style work-stealing runtime, a
computation tree is run in parallel using a “work-first” scheduling
policy [10], where a thread executes a computation tree depth-first.
When a thread spawns a task, it immediately executes the spawned
task and places the executing task’s “continuation” (the remaining
work of the function) in a local pool. Other threads that need work
may steal continuations to execute the remainder of the computation.
In the absence of work stealing (i.e., if every thread has sufficient
work), this policy results in each thread executing a subtree of the
computation tree in a depth-first manner.

One obvious approach to vectorization is to map this basic
execution strategy to vector units. At a high level, a thread can
be assigned to each SIMD lane of a vector unit, and each thread
picks a node in the computation tree and executes it in a vector-
parallel manner with (some) other nodes in the computation tree
then proceeds to the next node in a depth-first manner.

Implementing this strategy on SIMD units is extremely difficult.
Because each “thread” executes a different portion of the compu-
tation tree, the threads’ stacks grow and shrink at different times.
All of this stack management must be done manually because all of
the SIMD lanes are under the control of a single, actual thread, nec-
essarily incurring extra overhead. Moreover, performing the stack
management in a vector-friendly manner is impossible because the
stacks diverge. Thus, storing/loading data from each thread’s stack
will require scatter and gather operations, which perform poorly on
vector units designed for packed loads and stores.

3. From Task Parallelism to Data Parallelism
This section overviews how a recursive, task-parallel program can
be transformed to enable vector-parallel execution. Rather than im-
plementing our schedulers as runtime components separate from
the task-parallel application, as in traditional multicore implementa-
tions, our approach to vectorization uses code transformations that
integrate scheduling decisions into the (transformed) application
code. That is, we transform the application code to produce par-
ticular execution schedules. We choose this approach to facilitate
vectorizing fine-grained tasks. The overheads of runtime scheduling
are tolerable when parallelism can be achieved by threads that run
large numbers of tasks independently. However, exploiting vector
hardware requires fine-grained parallelism. To be vectorized, op-
erations must be grouped together at the granularity of individual
instructions.

The key insight behind our vectorization strategy is that through
careful code transformations, recursive, task-parallel algorithms
can be transformed into blocked recursive algorithms, which group
together multiple tasks in the original computation tree into blocks
that can be efficiently executed in a vectorized manner with low
overhead. These transformations have two effects: (1) by building
these computation blocks out of tasks in the tree that are all at
the same depth, our transformations avoid the stack management
pitfalls that compromise the naïve solution described previously,
and (2) by creating blocks out of individual fine-grained tasks,
our transformations enable the instruction-by-instruction grouping
necessary for vectorized execution.

Our vectorization strategy consists of three components:

1. We transform the original recursive, task-parallel code into
blocked code that executes the computation tree level-by-level in
breadth-first manner. Breadth-first expansion exposes opportuni-
ties for parallelism. The blocked structure of the code enables

1 void b f s _ f o o ( ThreadBlock t b )
2 ThreadBlock n e x t
3 foreach ( Thread t : t b )
4 i f ( i s B a s e ( t . x ) )
5 baseCase ( )
6 e l s e
7 l 1 = i n d u c t i v e W o r k 1 ( t . x )
8 n e x t . add ( new Thread ( l 1 ) )
9 l 2 = i n d u c t i v e W o r k 2 ( t . x )

10 n e x t . add ( new Thread ( l 2 ) )
11 b f s _ f o o ( n e x t )

Figure 3: Breadth-first version of code in Figure 1(a).

vectorization, and the level-by-level strategy ensures that the
stack frames necessary for vectorized computation can be orga-
nized to support vectorized memory operations.

2. A pure breadth-first execution can consume large amounts of
space (proportional to the computation tree’s width) and lead
to a large number of cache misses due to decreased locality.
Therefore, we produce a second transformed version of the
code that implements a blocked depth-first execution schedule,
essentially spawning “threads” for each task in a block of tasks.
Each thread explores its portion of the computation tree in a
depth-first manner, and the threads execute in lockstep, each
taking identical paths through their respective computation
subtrees. By executing in a depth-first manner, the amount of
storage required for saving state is proportional to the depth
of the tree, and by executing in lockstep, each “thread” is kept
at the same depth of the tree as the other threads in the block,
simplifying stack management.

3. Because some branches of the computation tree are shallower
than others, some threads may “die out” early, reducing SIMD
utilization. To ameliorate this, we have designed a re-expansion
mechanism that toggles between breadth-first execution to gener-
ate more parallel work and depth-first execution to control space
usage.

4. Transformations and Scheduling
This section describes the three techniques discussed in Section 3
in more detail. We focus primarily on the code transformations
necessary to achieve particular scheduling policies. The details
regarding how this transformed code can be efficiently vectorized
are in Section 5.

4.1 Breadth-first Execution to Extract Data Parallelism

Our first transformation produces a breadth-first, level-by-level
traversal of the computation tree to generate large blocks of work
that can be readily vectorized. Figure 3 shows the transformed code
for the code example in Figure 1(a).

The essential idea of the transformation is that each invocation
of bfs_foo executes all of the instances of foo in a given level
of the tree before proceeding to the next level. Each task instance is
assigned to a Thread structure, which contains the information that
would be in the stack frame for that task instance (specifically, any
arguments to the task). A ThreadBlock contains threads for each
task at a given level of the computation tree. bfs_foo is initially
called with a thread block containing a single thread whose x field
is set to the original parameter to foo.

The transformed code is straightforward. At each spawn di-
rective, rather than invoking the next method, the code creates an
additional thread for the next task, with the appropriate arguments,
and places it into the next thread block for the next level of the com-
putation tree. Once all of the computation at the current level of the
tree has been completed, the transformed code invokes bfs_foo
on next, moving to the next level of the computation tree.
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This transformation has several effects. First, consider the loop in
line 3 in Figure 3. This is a dense loop over a vector (of Threads).
Through a combination of loop distribution, inlining, if-conversion,
and other standard compiler transformations, this loop can be
transformed into a series of dense loops over individual instructions,
which then can be readily vectorized. Note that the order in which
tasks at a given level are executed can change after loop distribution.
For instance, all of the left children of the current level can be
added to the next thread block before all of the right children.
This reordering is (a) still compatible with the parallel semantics
of our language and (b) potentially beneficial to vectorization, as
left children behave similarly and right children behave similarly
in many task-parallel applications. The most challenging task in
vectorization is vectorizing the addition of new Threads to the
next block in lines 8 and 10. Section 5 describes a general stream
compaction mechanism that can manage the blocks in an efficient,
vectorized manner.

The second effect of this transformation is that it quickly gener-
ates substantial amounts of parallel work. Although the initial thread
block has only one thread in it, the block gets larger at each level,
creating additional parallel work. While this feature is beneficial for
keeping the vector units busy and maintaining high utilization, the
size of these blocks can get prohibitive for large computation trees.
The total amount of state that must be tracked can get as large as the
width of the computation tree. Moreover, as the thread blocks get
larger, the code begins to suffer from poor cache performance. By
the time execution moves to the next level of the computation tree,
the Threads added to the next thread block will have been evicted
from cache.

4.2 Depth-first Execution to Limit Space Usage

To overcome the space explosion incurred by the breadth-first
execution strategy, we make the following observation. Suppose we
stop the controlled breadth-first execution after a certain level, and
let each thread in the resulting thread block execute its computation
subtree to completion, as in Figure 4(a). In other words, after some
number of rounds of running bfs_foo, we invoked dfs_foo
instead. Thus, each thread at the level where breadth-first execution
is stopped executes its computation subtree in a depth-first manner
by invoking the original recursive code. This execution strategy no
longer increases space usage exponentially. In particular, if there
are T threads in the thread block when dfs_foo is invoked and
the depth of the computation tree is D, the space usage is O(TD).

The downside to this execution strategy is that the loop in line 2
of Figure 4(a) is not as easily vectorizable as the dense loop in
Figure 3. While the loop is still dense, traditional techniques for
vectorizing dense loops do not handle recursive methods. So, a
question emerges: have we merely saved space at the expense of
losing vectorization?

In recent work, Jo and Kulkarni [18] proposed a compiler
transformation called point blocking that targets repeated recursive
traversals of trees. In particular, for code that performs multiple
recursive traversals of a tree in parallel, point blocking transforms
the code so that multiple traversal threads are blocked together, and
the blocks of threads traverse the tree in lockstep. For applications
such as Barnes-hut when multiple traversals are performed in
lockstep, each thread in the block operates on the same part of
the tree structure in close succession, leading to improved locality.
Jo et al. [19] later observed that the code structure generated by point
blocking made such tree traversal codes amenable to vectorization.

The key insight for our transformation is that when each thread
in a block of threads traversing the computation tree executes its
subtree to completion, the block is performing repeated recursive
traversals not of a literal tree (as in Jo and Kulkarni’s work), but of
an abstract computation tree. While each thread does not “traverse”

1 2 3 4

Figure 5: Computation after partial breadth-first execution.

(execute) exactly the same computation tree, they each dynamically
unfold their computation tree by executing the same code. This
is the same as each thread traversing a single tree but performing
slightly different work at each node in the tree. Point blocking can be
directly applied to the code in Figure 4(a) to produce a new, blocked
depth-first execution where all the threads in the block execute their
computation trees in lockstep.

Figure 4(b) shows the result of applying point blocking to the
depth-first code. The key to the transformation is that rather than
creating a single thread block for the next level of computation, a
separate thread block is created for each spawn directive in the
code. Then, the depth-first version of the code is called for each
thread block in succession, so every thread executes its left subtree
(to completion) before executing its right subtree. Figure 4(c) shows
the computation order imposed by the transformation after the first
two levels of the computation tree are executed in a breadth-first
manner. Just as in the breadth-first code, all of the threads in a thread
block are at the same level of the tree. Unlike breadth-first code, the
thread blocks for the next level of the tree can have no more threads
than the thread block at the current level. As such, space usage is
contained.

The transformed code can be vectorized in the same way as the
breadth-first code. As in the breadth-first code, the depth-first code
naturally groups together corresponding children. Each thread block
for the next level only contains children from one spawn directive.
Because different spawns in a task often behave differently, this
scheduling strategy promotes similarity of tasks that are vectorized
together, reducing vector divergence.

There is a downside to blocked depth-first execution: threads can
only be executed in parallel if they both visit the “same” node in their
computation tree (in other words, if the computation trees overlap).
If one thread in a block executes its base case while the other threads
continue recursing, the size of the next level block will be smaller. If
a block becomes too small, there may no longer be enough threads
in the block to keep all of the SIMD lanes in a vector unit occupied,
resulting in underutilization and lost parallelization opportunities.
For example, consider the stylized computation tree in Figure 5 with
the dashed triangles representing the rest of the tree. If breadth-first
expansion has executed the black nodes of the computation tree,
there are now four threads ready to execute the gray portions of the
tree. Blocked depth-first execution will cause the four threads to
execute their code in lockstep. However, threads 1 and 4 in Figure 5
have left-biased computation trees, while 2 and 3 have right-biased
subtrees. While threads 1 and 4 execute their left subtrees, 2 and
3 must sit idle. With only two active threads in a thread block, we
cannot fully use even a four-way vector. The next section describes
a scheduling policy to address this underutilization.

4.3 Re-expansion to Improve Utilization

To mitigate the under-utilization that can arise due to lack of
overlap between different threads’ computation trees, we propose a
scheduling strategy called re-expansion. Essentially, re-expansion
toggles back and forth between breadth-first execution and depth-
first execution: the former to generate work when thread block sizes
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1 void d f s _ f o o ( ThreadBlock t b )
2 foreach ( Thread t : t b )
3 i f ( i s B a s e ( t . x ) )
4 baseCase ( )
5 e l s e
6 l 1 = i n d u c t i v e W o r k 1 ( t . x )
7 foo ( l 1 )
8 l 2 = i n d u c t i v e W o r k 2 ( t . x )
9 foo ( l 2 )

(a) Depth-first execution after breadth-first
execution.

1 void b l o c k e d _ f o o ( ThreadBlock t b )
2 ThreadBlock l e f t , r i g h t
3 foreach ( Thread t : t b )
4 i f ( i s B a s e ( t . x ) )
5 baseCase ( )
6 e l s e
7 l 1 = i n d u c t i v e W o r k 1 ( t . x )
8 l e f t . add ( new Thread ( l 1 ) )

9 l 2 = i n d u c t i v e W o r k 2 ( t . x )
10 r i g h t . add ( new Thread ( l 2 ) )

11 b l o c k e d _ f o o ( l e f t )
12 b l o c k e d _ f o o ( r i g h t )

(b) Blocked depth-first execution.

A

foo(2) foo(2) foo(2) foo(2)

A B A B B A B

(c) Schedule of computation for blocked code after first two
levels have been executed in breadth-first manner. Leaf nodes
with the same label are executed as part of the same block.

Figure 4: Depth-first version and computation schedule.

1 void b f s _ f o o ( ThreadBlock t b )
2 ThreadBlock n e x t
3 foreach ( Thread t : t b )
4 /∗ same as f o r e a c h i n F i gur e 3 l i n e s 4−10∗ /
5 i f ( n e x t . s i z e ( ) < m a x _ b l o c k _ s i z e )
6 b f s _ f o o ( n e x t )
7 e l s e
8 b l o c k e d _ f o o ( n e x t )

10 void b l o c k e d _ f o o ( ThreadBlock t b )
11 ThreadBlock l e f t , r i g h t
12 foreach ( Thread t : t b )
13 /∗ same as f o r e a c h i n F i gur e 4(b) l i n e s 4−10 ∗ /
14 i f ( l e f t . s i z e ( ) > r e e x p a n s i o n _ t h r e s h o l d )
15 b l o c k e d _ f o o ( l e f t )
16 e l s e
17 b f s _ f o o ( l e f t )
18 i f ( r i g h t . s i z e ( ) > r e e x p a n s i o n _ t h r e s h o l d )
19 b l o c k e d _ f o o ( r i g h t )
20 e l s e
21 b f s _ f o o ( r i g h t )

Figure 6: Re-expansion pseudocode.

get too small, and the latter to execute work in bounded space when
thread block sizes get too large. For example, if re-expansion were
applied to the Figure 5 computation tree, then after threads 2 and 3
drop out of the left portion of the depth-first computation, threads 1
and 4 can switch back to breadth-first execution, generating more
work to run in parallel. Intuitively, re-expansion looks for more
parallel work in the subtrees of the “live” threads during depth-first
execution.

Implementing re-expansion is straightforward because both the
breadth-first and blocked depth-first code take thread blocks as ar-
guments, so each can call the other to switch execution strategies.
Figure 6 shows how re-expansion can be integrated into the trans-
formed code.

Re-expansion requires two thresholds: a max_block_size
that triggers depth-first execution when the blocks are getting too
big and a reexpansion_threshold that triggers breadth-first
execution when there is too little parallel work. These thresholds
are application-specific, as they are governed by the computation
tree structure. To set these thresholds, we pick a target space
utilization, Tmax (i.e., the maximum number of threads we want
active at a time), and determine the expansion factor, e, of an
application (the maximum number of spawns in a task). We set
both max_block_size and reexpansion_threshold to
Tmax/e, so that after one round of breadth-first execution, we cannot
create more than Tmax threads.

4.4 Overall Transformation Algorithm

Figure 7 formalizes our transformation strategy using a set of rewrite
rules. The rewrite functions X[[·]] operate on on methods, m, and
inductive statements, si, as specified in Figure 2. Each rewrite rule

X[[return]]µ = continue

X[[si; s
′
i]]µ = X[[si]]µ ; X[[s′i]]µ

X[[spawn[id]f(e1, e2, . . . , ek)]]([m 7→ bfs]) =

next.add(new Thread(e1, e2, . . . , ek))

X[[spawn[id]f(e1, e2, . . . , ek)]]([m 7→ blocked]) =

nexts[id].add(new Thread(e1, e2, . . . , ek))

X[[f(p1, . . . , pk) if b then sb else si]]µ =

struct Thread{typeof(p1) : p1 . . . typeof(pk) : pk}

fbfs(ThreadBlock tb)

ThreadBlock next;

for Thread t : tb

p1= t.p1; . . . pk= t.pk;

if b then sb else X[[si]]([m 7→ bfs])

if (next.size < max_block_size) fbfs(next)

else fblocked(next)

fblocked(ThreadBlock tb)

ThreadBlock nexts[#spawn]

for Thread t : tb

p1= t.p1; . . . pk= t.pk;

if b then sb else X[[si]]([m 7→ blocked])

for ThreadBlock next : nexts

if (next.size > reexpansion_threshold) fblocked(next)

else fbfs(next)

f(p1, . . . , pk)

ThreadBlock init;

init.add(new Thread(p1, . . . , pk));

fbfs(init);

Figure 7: Rewrite rules to implement transformations.

takes a method or statement and rewrites it into a new method or
statement. The rewrite functions take as an argument a state variable
that specifies whether the rewrite is for the breadth-first version
of the code or the blocked version of the code (corresponding to
Figures 3 and 4(b), respectively). Portions of the rewritten code in
bold represent fixed output code, while portions in italics depend on
the details of the statement being rewritten.2

2 As noted in Section 2, all of our benchmarks are written in C restricted to
operations consistent with the specification language. Transforming those C
programs uses analogous rewrites.
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At a high level, the rewrite rules operate as follows. A method
is rewritten into three separate methods: a breadth-first version of
the method, a blocked version of the method, and a method with the
same signature as the original method that invokes the breadth-first
version. We also insert a structure declaration that specifies what an
individual stack frame of a Thread should contain, namely, each of
the parameters to the method call.

The breadth-first and depth-first methods are similar, except the
breadth-first version has one ThreadBlock (a vector of Threads),
called next, while the depth-first version has an array of Thread-
Blocks, nexts, with one ThreadBlock per spawn call (we assume
that each spawn in the original method body has an implicit,
consecutively-assigned identifier, denoted id; #spawn is the total
number of spawn calls). After processing the method bodies for
each Thread in the ThreadBlock, the breadth-first method checks
the re-expansion threshold and invokes itself on the next, while the
depth-first method does so for each block in nexts.

The inductive statement bodies of both methods are rewritten
using similar rules. In both cases, return statements are rewritten
to continues so that all threads in a block can be processed before
returning from the method. Statement composition just recursively
rewrites the two composed statements. All statement types not
shown in Figure 7 (e.g., conditionals and while loops) invoke the
rewrite rules on any sub-statements (as in statement composition)
but leave the rest of the statement unchanged. The key to the
transformations is the rewritten spawn call. It is replaced by a
directive to add a new Thread (i.e., a new stack frame) to the
appropriate next block. In the case of the breadth-first rewrite, we
add the Thread to the single block. In the case of the blocked
rewrite, we add the Thread to the block corresponding to the spawn
being rewritten.

5. Effective SIMD Implementation
Thus far, the discussion has focused on maximizing opportunities
for vectorization by exposing the data parallelism latent in recursive-
parallel programs. In this section, we discuss the mechanisms
employed to translate this opportunity into actual performance. This
involves replacing operations on individual threads with operations
that span the entire thread block, maximizing the use of vector
instructions in place of scalar instructions, and improving the data
and operation structures to enable vectorized execution. We note
how each aspect of a function body—stack management, base case
check, and base case and recursive execution—can be optimized.
We present the implementation and optimization details in terms of
our running examples.

Optimized stack operations: Performing a blocked depth-first
recursive call or a breadth-first re-expansion allows the stack op-
erations of individual threads to be optimized. We exploit the fact
that all recursive calls invoke the same function, merging the stack
frames of individual threads into a thread block, which is allo-
cated and deallocated with a constant number of instructions. The
stack management overhead thus reduces with increasing block size.
Within each thread block, all instances of individual data elements
across all stack frames are stored contiguously. This structure-of-
arrays layout avoids expensive scatter/gather operations and simply
replaces the scalar stores and loads in individual threads with the
corresponding vector instructions. Moreover, the software stack is
further optimized by a reuse strategy. In the breadth-first execution,
our transformation does not handle any return values, and the old
stack blocks are not necessarily preserved while we are working on
the new ones. Thus, we can always reuse the old blocks to further
limit the memory usage. For depth-first execution, because we need
to traverse up and down the computation tree, we keep a block for
each level and reuse it for each access.

Input:'[8,'0,'0,'9,'…]'''''''''Output:'[0,'0,'0,'0,'…]'

mIsLeafL':'[0,'1]''''''''''''''''''mIsLeafH:'[1,'0]'

ptr'''''''''''''''''''''''''''''''''''''''''''ptr'

ShuffleTable'[012]'='[0,'F]'ShuffleTable'[102]'='[1,'F]'

ShuffleFlag'='[0,'(1+2),'F,'F]'='[0,'3,'F,'F]''
advPtr'='AdvPtr[012]'+'AdvPtr[102]'='2'

Input:'[8,'0,'0,'9,'…]'''''''''Output:'[8,'9,'0,'0,'…]'

''ptr''''''''''''''''''''''''''''''''''ptr'+='advPtr'

ShuffleTable'=''
[[0,'1],''
'[0,'F],'
'[1,'F],''
'[F,'F]]'

AdvPtr'=''
[2,'1,'1,'0]'

Figure 8: An illustration simulating four-way SIMD stream com-
paction using two-way SIMD shuffle tables.

AoS to SoA transformation: To generate the structure-of-arrays
layout required by our optimized stack operation, we statically
apply the standard transformation from array-of-structures (AoS)
to structure-of-arrays (SoA) to our software stack blocks if the
whole program meets our language specification, such as fib and
nqueens, in Section 6. If only the kernel meets our language speci-
fication (e.g., uts), this transformation is implemented dynamically
by inserting two transformation functions manually: AoS to SoA
before the kernel and SoA to AoS after the kernel to minimize the
necessary code analysis and maintain the code reuse across other
functions.

Vectorizing operations: The first operation a task performs is to
check whether or not to execute the base or recursive case. This
operation, denoted by isBase(), is performed by all threads and
can be readily vectorized. The code is transformed into an iterative
loop that performs the isBase() computation across all threads
in a block. This loop is then vectorized by the compiler. In general,
we use the compiler’s vectorization support where possible and
introduce explicit vector instructions only where necessary. This
way, we rely on the compiler to manage register allocation, scalar
optimizations, and to choose appropriate instruction sequences.

The result of executing isBase() is a vector of boolean flags
(characters or bits depending on the instruction set) that denotes if
the branch is to be taken by each thread. The base and recursive
cases in the different threads can now be executed using vector
instructions in which elements of the vector are masked using the
boolean flags. However, this would significantly complicate vector
code generation. Not all scalar instructions have equivalent masked
vector counterparts. In addition, such masked execution significantly
degrades vector utilization and performance.

Stream compaction: Utilization can be improved by partitioning
the threads into groups that perform identical actions. All threads
performing the base case need to be separated from those performing
the recursive case. Once grouped, the threads performing the same
action, be it base or recursive case, can be vectorized without
masking. For breadth-first re-expansion, it is also beneficial to sort
the recursive calls based on their spawn identifier (see Section 4.4).
The ordering of the recursive calls is ensured during breadth-first
expansion by enqueuing the i-th recursive call by all threads before
any (i+ 1)-th calls. Grouping the threads into those executing base
case or recursive case is performed using stream compaction:

1 foreach ( Thread t : t b )
2 i f ( t . i s B a s e ) baseCase . add ( t )
3 e l s e r e c u r s i v e C a s e . add ( t )
4 / / v e c t o r i z e d e x e c u t i o n o f baseCase t h r e a d s
5 / / v e c t o r i z e d e x e c u t i o n o f r e c u r s i v e C a s e t h r e a d s

The most efficient approach to vectorizing the stream compaction
operation—the foreach loop in the preceding code snippet—depends
on the instruction set and space requirements. The Xeon E5 supports
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the shuffle instruction that can perform an in-place permutation of
the contents of a vector register. Stream compaction corresponds to
a permutation that gathers the threads taking the same branch path.
This shuffle operation can be encoded as:

1 pos =0
2 s h u f f l e O p = Thread [ t b . s i z e ( ) ]
3 foreach ( Thread t : t b )
4 i f ( t . i s B a s e ) s h u f f l e O p [ pos ++] = t

We further optimize this loop by pre-computing shuffleOp
values for all possible boolean vectors and placing them in a shuffle
table. For a vector width (the number of elements can be processed
by a single vector instruction) t, there are 2t possible entries in
the shuffle table. Stream compaction now involves one lookup into
this table to determine the desired shuffle and executing the vector
shuffle instruction. While efficient in time, the space overhead of the
shuffle table is exponential with the vector width. We address this
by computing the shuffle to be performed using a smaller shuffle
table and a multi-pass algorithm. This is conceptually similar to
factorization-based implementations of various permutation opera-
tions [9, 22, 30].

Let us consider the compaction of a vector X into another vector
Y, denoted by compact(X[0 : N ] → Y [0 : N ]). We observe that
this can be factorized as:

compact(X[0 : m]→ Y [0 : nnz(X[0 : m])]);

compact(X[m+ 1 : N ]→ Y [nnz(X[0 : m]) + 1 : N ])

where nnz(X[a : b]) is the number of predicates of interest (e.g.,
the number of non-zeroes) in vector X between positions a and
b. In addition to the shuffle table, we pre-compute and store the
nnz() function into an advance table, denoting how far the position
of the next compaction must be advanced. Note that the table
size is exponential with the vector width, while the factorized
compaction requires a number of instructions linear in the number
of factorization steps. For example, we can reduce the size of the
shuffle tables by a factor of 256 (from 216 to 28) by using an eight-
way table instead of a 16-way table. This incurs only a few additional
instructions rather than 16 that would be required by a sequential
compaction. As vector width increases, which is expected on future
systems targeting energy-efficient performance improvements, the
benefits from this approach improve even more.

To further clarify our stream compaction algorithm, consider
a simplified example shown in Figure 8. This example shows
how to use two-way SIMD shuffle tables to implement four-way
SIMD stream compaction. In the input array, 0 represents base
tasks (leaf tasks), and non-0 denotes inductive tasks (non-leaf
tasks). The bit masks in leaf masks arrays, mIsLeafL and
mIsLeafH, correspond to [8, 0] and [0, 9] in the input array,
respectively, and 1 indicates base tasks (leaf tasks), while 0 denotes
inductive tasks (non-leaf tasks). In the two-way SIMD shuffle table,
ShuffleTable, 0 and 1 are indexes of the input array, and F
means that no element from input array will be shuffled to this
position. The crucial step of this algorithm is to look up the two-way
SIMD shuffle table (ShuffleTable) according to the two-way
leaf masks (mIsLeafL and mIsLeafH) and combine the two
shuffle arrays with two indexes into one shuffle array with four
indexes. In this step, we must look up another array according to
the leaf masks, AdvPtr, which maps the number of non-leaf
tasks to the leaf mask, to find the combination position, and
add the SIMD width (2 in this case) to the indexes in the second
shuffle table lookup (ShuffleFlag = [0, (1+2), F, F]).
In our real implementation, we use eight-way SIMD shuffle tables
to implement 16-way SIMD stream compaction.

The current generation Xeon Phi does not have a vector shuffle
instruction. However, it has a masked scatter operation that can store
a subset of the elements in the vector into memory. We observe that

the mask for the scatter operation can be computed as an exclusive
prefix sum. An exclusive prefix sum of a vector X into vector Y is
defined as:

Y [i] =

j<i∑
j=0

(X[j] should be compacted ? 1 : 0)

As in the case of the shuffle table, we store the prefix-sum function
into a table. The prefix sum computation can be factorized when
combined with the advance table. Thus, the space overhead can be
reduced at the expense of a few additional instructions to compute
the masked scatter instruction. Therefore, for both Xeon E5 and
Xeon Phi, we can perform stream compaction in a vectorized fashion
with low space and time overhead.

Selective manual vectorization: After applying AoS to SoA
transformation to our software block, theoretically, the blocked
recursive kernel is ready to be vectorized either by compiler or by
hand. Because modern product compilers (e.g., icc) have limited
ability to handle branches and cannot support streaming compaction
operations automatically, we need to manually insert vectorization
intrinsics whenever there are some application-specific branches
in the recursive kernel. We have inserted the stream compaction
function as a prepared code snippet to handle the branches between
the isBase and inductive cases.

6. Evaluation
In empirically evaluating the performance of our techniques across
eight recursive benchmarks, we note that vectorization of recursive
benchmarks introduces overheads of various kinds. The data-parallel
rather than strict depth-first execution can increase register pressure
as well as the cache footprint of each function invocation. As the
block size gets larger, the footprint can exceed the cache sizes,
degrading cache locality. Stream compaction incurs table lookup
costs, additional instructions, and memory operations that introduce
additional overheads. In addition, the benefits of vectorization are
limited by both the availability of enough concurrency (e.g., due to
the presence of scaler instructions that are not effectively vectorized
by the compiler across threads) and the ability of the blocked depth-
first and breadth-first schemes to expose this concurrency in the
form of data parallelism. This section shows that the vectorization
gains from our techniques outweigh the overheads across most of
our benchmarks.

6.1 Evaluation Platform and Benchmarks

We evaluate our transformations on the Intel E5-2670 and Xeon
Phi. The E5 is a 8-core, 2.6 GHz Sandy Bridge processor with 32
KB L1 cache per core, 20 MB last-level cache, and 128-bit SSE
4.2 instruction set3. The Xeon Phi is a 61-core SE10P co-processor
running at 1.1 GHz with 32 KB L1 cache and 512 KB L2 cache per
core, supporting 512-bit AVX512 instructions. Recall that our focus
is single-core vectorization: all of our experiments use a single core
of the target platform.

We evaluated our technique on eight benchmarks, ranging from
microbenchmarks to larger kernels. The benchmarks are written in
C, although each obeys the restrictions of the specification language
in Figure 2, notably that recursive tasks be independent from each
other, all global updates be in the form of reduction operations, and
the body of the recursive method be separable into inductive and
base cases. All benchmarks were compiled with Intel icc-13.3.163
compiler and -O3. The Xeon Phi experiments were conducted in
the native mode with -mmic option. The scalar-to-blocked trans-
formation was implemented as two passes using a modified version

3 We do not use AVX as it does not support shuffle instructions.
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Table 2: Best block size and execution times for different vectorization strategies.
Benchmark Xeon E5 Xeon Phi

Breadth-first No Re-expansion Re-expansion Breadth-first No Re-expansion Re-expansion

only speedup Block Speedup Block Speedup only speedup Block Speedup Block Speedup

knapsack 1.17 212 1.90 211 1.91 OOM 28 5.23 28 5.10
fib 1.67 218* 1.99 29 2.03 0.65 210 3.07 29 3.50
parentheses 1.23 214 1.84 211 1.85 OOM 29 1.32 29 1.39
nqueens 4.38 223 5.10 215 6.33 0.83 222 1.18 212 2.96
graphcol 1.08 221 2.99 28 8.95 0.79 221 1.88 28 12.23
uts 1.68 214 1.69 214 1.68 1.0 214 2.05 214 2.05
binomial 1.14 218 1.38 218 1.39 OOM 211 1.76 29 1.99
minmax 0.83 220 1.79 210 2.17 OOM 213 0.61† 28 0.93†

Geometric mean 1.44 2.13 2.58 0.81 1.78 2.76
* Performance is close to that for 29 block size † The poor performance of minmax is due to excessive cache misses in the Xeon Phi’s small
cache. If the cache is warmed up for the kernel computation, we can achieve a speedup of 1.09 without re-expansion and and 1.49 with (not
counting the warm-up).
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Figure 9: Distribution of tasks in selected benchmarks. x-axis: recursion depth; y-axis: number of all and base case tasks.

Table 1: Benchmarks. All benchmarks use 16-wide vector opera-
tions, except knapsack and UTS on the Xeon E5, which employ
eight-wide and four-wide vector operations, respectively. #Lev is
the number of computational tree levels, #SLoc is the source lines
of code of the base version, and #vSLoc is the SIMD source lines
of code in our vectorized version.

Benchmark Problem #Lev #Task #SLoc #vSLoc Time (s)

E5 Phi

knapsack long 31 2.15B 217 81 8.7 84
fib 45 45 3.67B 29 48 9.0 84
parentheses 19 37 4.85B 37 58 10.5 70
nqueens 13 14 59.8M 64 57 4.9 48
graphcol 3(38-64) 39 42.4M 139 47 31 417.6
uts 20 1572 136K 655 72 21.4 165
binomial C(36,13) 36 4.62B 36 62 8.3 74
minmax 4× 4 13 2.42B 246 224 18.1 121

of SimTree [19] and took hundreds of milliseconds.4 Vectorization
was performed as described in Section 5.

The benchmarks are: (1) knapsack, which computes the op-
timal solution to the knapsack problem [6]5; (2) fib, which com-
putes the 45-th Fibonacci number [6]; (3) parentheses, which
computes the number of well-formed parentheses string combina-
tions with 19 parentheses; (4) nqueens, which counts the number
of valid solutions to the 13-queens problems [2]; (5) graphcol,
which counts the number of valid ways of coloring a 38-node, 64-
edge graph with three colors [17]; (6) uts, which counts the number
of nodes in a probabilistic binomial tree [27]; (7) binomial, which
recursively computes the combination 36C13 [17]; and (8) minmax,
a min-max search for tic-tac-toe on a 4× 4 board.

Table 1 characterizes the benchmarks and their sequential exe-
cution time. We present speedups relative to these sequential times
in the rest of the evaluation. We use the smallest data type possible

4 Available at https://engineering.purdue.edu/plcl/
vectorcilk.
5 We use the “long” input without pruning to ensure determinism.

without loss of generality to maximize vector width (e.g., we define
n in fib as a char on E5 due to the exponential nature of the com-
putation). On the Phi, we use the int data type for all benchmarks
because the IMCI instruction set does not support shorter data types
well. Task-parallel programs typically resort to sequential execution
below a problem size, referred to as task cut-off, to ensure sufficient
task granularity to amortize the runtime scheduling costs. Given
our focus on SIMD execution, we do not employ such cut-off to
maximize vectorization opportunities.

Figure 9 characterizes the structure of each benchmark’s compu-
tation tree. Because binomial and minmax have similar trees to
fib and nqueens, respectively, their characteristics are omitted
because of space constraints. For each benchmark, we show the
number of levels, the total number of tasks in each level, and the
number of tasks executing the base case in each level. knapsack
is a perfectly balanced tree with base case tasks only at the last
level. fib (binomial) and parentheses are more unbalanced
with parentheses having some intermittent shallower branches.
nqueens (minmax) has a large number of leaves at almost all
levels and a large fanout. graphcol and uts have a more uneven
distribution of total tasks and leaves. uts is a deep computation
tree with the fewest number of tasks in each level.

6.2 Overall Speedup from Blocked SIMD Execution

Table 2 shows the overall speedup of our vectorized execution
strategies on the E5 and Xeon Phi architectures.6 Pure breadth-
first execution sometimes runs out of memory on Xeon Phi and, in
general, provides poor performance, likely stemming from the fact
that it has poor cache performance due to large block sizes. With our
hybrid depth-first/breadth-first strategy, without re-expansion, we
achieve speedups of 1.38–5.10× (geometric mean of 2.13×) on the
E5 and a 0.61–5.23× (geometric mean of 1.78×) on the Xeon Phi.
Adding re-expansion elevates speedups to 1.39–8.95× (geometric
mean of 2.58×) on the E5 and 0.93–12.23× (geometric mean of
2.76×) on the Xeon Phi. Using re-expansion typically employs less

6 The results in this section and the next were certified by the artifact
evaluation committee.
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space because it yields equivalent or better speedups at smaller block
sizes.

6.3 Understanding Vectorized Performance
We now explore the various factors that affect vectorized perfor-
mance in detail. As mentioned, binomial and minmax are struc-
turally similar to fib and nqueens, respectively, so we omit their
detailed performance studies because of space constraints.

The most obvious parameter affecting performance is the size of
the thread blocks used by our code transformations. Larger thread
blocks clearly require more memory. More importantly, thread
block size determines the fundamental trade-off underlying the
performance results. Larger block sizes lead to more work that
can be vectorized, increasing SIMD utilization. However, large
blocks suffer from poor locality, increasing cache misses. Therefore,
to achieve robust performance, we want to achieve good SIMD
utilization with the smallest possible block size.

SIMD utilization: Figure 10 shows how SIMD utilization changes
with block size.7 SIMD utilization is the percentage of tasks that are
executed as part of full SIMD blocks. Other tasks, which are part of
the “epilog” of vectorized execution, lead to idle SIMD lanes. Higher
SIMD utilization means more effective use of SIMD resources and,
all else being equal, better performance. SIMD utilization for a
benchmark is determined by vector width and block size, so, for all
benchmarks except knapsack and uts, utilization with respect
to block size is the same for both platforms.

SIMD utilization increases rapidly with block size, and for all
benchmarks, with or without re-expansion. Given a sufficiently
large block, our transformations can achieve almost perfect uti-
lization. Crucially, however, with re-expansion, the block size re-
quired for perfect utilization shrinks on several benchmarks (notably,
nqueens and graphcol). To understand why, recall that without
re-expansion, we generate parallel work using breadth-first expan-
sion only at the beginning of the computation and the subsequent
blocked depth-first execution cannot generate additional parallel
work. Therefore, to achieve high utilization, we must generate a
large amount of parallelism (large blocks) in the initial breadth-first
expansion before we begin depth-first execution. Re-expansion’s
ability to generate additional parallelism later in execution allows
it to tolerate a smaller block size. Re-expansion has little effect on
utilization for some benchmarks, notably knapsack, fib, and
parentheses. For knapsack, re-expansion is never needed be-
cause of the perfectly balanced tree. The other two benchmarks have
more subtle behavior, which we investigate more carefully later.

E5 cache efficiency and speedup: SIMD utilization only affects
the amount of work that can be vectorized, which is not the
only factor that affects performance. Another crucial factor, which
militates against large blocks, is cache efficiency. It is the interplay
between utilization and efficiency that determines speedup. We next
investigate this behavior on the E5 platform.

Figure 11 shows both the L1 and last-level data cache misses
rates with varying block size, with and without re-expansion. As the
block size grows, cache misses increase. To understand why, note
that all of the threads in a thread block are accessed twice: once
when they are added to the thread block and a second time when
they are executed. If the thread block is too large, the thread data
will have been evicted by the second access. Unsurprisingly, we
see fairly sharp discontinuities, representing cutoffs when blocks no
longer fit in the cache. Different benchmarks have fairly different
cache behaviors as they have different computational patterns. Some
benchmarks, such as fib, do very little data access, while others,

7 In Figures 10–15, legends for knapsack apply to all graphs. “no reexp”
refers to vectorization without re-expansion, while “reexp” includes our
re-expansion technique.

including nqueens and graphcol, perform lots of lookups.
Nevertheless, the broad trend of increasing cache misses with
growing block size persists.

Our vectorization speedup stems from a combination of both
SIMD utilization and cache behavior. Figure 14 shows the overall
speedups of our techniques with varying block sizes. For all the
benchmarks except uts, we see a consistent pattern: speedup
increases with block size as SIMD utilization increases. Then,
at larger block sizes, cache misses begin to dominate, while we
encounter diminishing utilization returns, causing speedups to drop.

These results demonstrate the key advantage of our re-expansion
scheduling strategy. By generating more work throughout execu-
tion, re-expansion allows our transformed code to achieve high
SIMD utilization with smaller block sizes, affording large bene-
fits from vectorization before poor cache performance drags down
overall speedups. This effect is most noticeable for nqueens and
graphcol, where re-expansion achieves near-perfect SIMD uti-
lization at block sizes small enough to avoid the cache-miss cliff,
resulting in very high speedups. Even for benchmarks where re-
expansion is not as critical, such as fib and parentheses, re-
expansion achieves peak speedup at somewhat smaller block sizes,
reducing overall memory use.

The exceptions to these trends are knapsack and uts. The
former does not benefit from re-expansion because of its balanced
computation tree, and, as threads never die out, the block size never
gets small enough to trigger re-expansion. The latter has a relatively
narrow computation tree and is quite unbalanced. Hence, it performs
best when the block size is large enough to obviate the need for
doing depth-first execution in the first place (214 threads).

Xeon Phi cache efficiency and speedup: The relationship between
the SIMD utilization, cache efficiency, and overall speedup on the
Xeon Phi is consistent with that on the E5. Figure 13 shows the
memory system behavior of our benchmarks. Due to a complex L2
cache structure, it is impossible to collect accurate L2 cache miss
rates on the Xeon Phi using hardware counters.8 Instead, we use CPI
to characterize the overall memory performance. Figure 14 shows
overall speedup. The speedup on Xeon Phi is even better than that
on the E5 for most benchmarks, owing to the more powerful vector
processing unit (VPU) and rich SIMD intrinsics available on the
Xeon Phi. Benchmarks like nqueens and parentheses show
worse speedup mainly because they can fit better into the last-level
cache on the E5 and not on the Xeon Phi because of the data type
and cache size differences.

Re-expansion benefit: Figure 15 examines the benefits from
re-expansion in exposing data parallelism. For each level of the
computation tree, the figure shows two quantities: the number of re-
expansions performed at that level and the factor of increase in the
number of tasks at the next level due to re-expansion. Larger factors
denote greater benefit. A factor of 1 means that the block size did not
change after re-expansion. We do not show knapsack’s and uts
benchmarks because their execution never triggers re-expansion.
Among the other benchmarks, re-expansion has limited benefit for
fib and parentheses based on the fact that these computation
trees are also relatively balanced, and re-expansion is triggered fairly
late and does not generate much additional parallelism because
the trees are no longer expanding (getting wider). Re-expansion
is much more useful in adapting to tree structures with base cases
intermingled with recursive tasks at shallower depths. We observe
this for nqueens and graphcol, which can get re-expansion
factors as high as 8 and 3, respectively.

8 https://software.intel.com/en-us/articles/
optimization-and-performance-tuning-for-intel-
xeon-phi-coprocessors-part-2-understanding
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Figure 10: SIMD utilization. x-axis: block size; y-axis: percentage of tasks that can be vectorized.
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Figure 11: Xeon E5 cache miss rate. x-axis: block size; y-axis: miss rate for level 1 (d1) and last level (lld) caches.
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Figure 12: Xeon E5 speedup. x-axis: block size; y-axis: speedup relative to sequential baseline.

0 %

2 %

4 %

6 %

8 %

10 %

12 %

2
0

2
5

2
10

2
15

2
20

2
25

2
30

 0

 1

 2

 3

 4

 5

 6

 7

 8

no reexp d1
no reexp cpi

reexp d1
reexp cpi

(a) knapsack
0 %

2 %

4 %

6 %

8 %

10 %

2
0

2
5

2
10

2
15

2
20

2
25

2
30

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

(b) fib

0 %

2 %

4 %

6 %

8 %

10 %

12 %

2
0

2
5

2
10

2
15

2
20

2
25

2
30

 0

 2

 4

 6

 8

 10

 12

 14

(c) parentheses

0 %

2 %

4 %

6 %

8 %

10 %

12 %

14 %

2
0

2
5

2
10

2
15

2
20

2
25

 0

 2

 4

 6

 8

 10

 12

(d) nqueens

0 %

2 %

4 %

6 %

8 %

2
0

2
5

2
10

2
15

2
20

2
25

 0

 2

 4

 6

 8

 10

 12

(e) graphcol
0 %

0.2 %

0.4 %

0.6 %

0.8 %

1 %

2
0

2
2

2
4

2
6

2
8
2

10
2

12
2

14
 0

 0.5

 1

 1.5

 2

 2.5

 3

(f) uts

Figure 13: Xeon Phi miss rate. x-axis: block size; left y-axis: L1 cache miss rate; right y-axis: clock cycles per instruction (CPI).
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Figure 14: Xeon Phi speedup. x-axis: block size; y-axis: speedup relative to sequential baseline.
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Figure 15: Benefits of re-expansion. x-axis: task level; left y-axis: number of re-expansions; right y-axis: factor of block size improvement due
to re-expansion.

Benefits from stream compaction: We evaluate the benefits from
stream compaction on two representative benchmarks: fib, one of
the benchmarks with a small kernel, and nqueens, which has a
larger kernel. Figure 16 shows the speedups achieved by the best
block size configuration, compared to the sequential execution, when
the stream compaction is performed sequentially (as compared to our

table-lookup based compaction). We see that the table-lookup-based
compaction is faster in all cases with significant improvements for
smaller kernels. In fact, optimized stream compaction is crucial to
performance on the smaller kernels. Even for benchmarks with larger
kernels, we observe 5–10% overall performance improvement. We
also observe similar behavior for the other benchmarks considered.
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Figure 16: Speedup with and without stream compaction (sc) on E5
and Xeon Phi, normalized to sequential baseline.

Table 3: Estimated maximum vectorization speedup on E5.

Sequential Vectorized

Benchmark Vect non-Vect Vect non-Vect Speedup

nqueens 0.94 0.06 0.06 0.03 10.74
graphcol 0.99 0.01 0.06 0.01 14.28
uts 0.81 0.19 0.20 0.20 2.50
minmax 0.62 0.38 0.04 0.25 3.48

6.4 Opportunity Analysis
Various factors preclude us from achieving the perfect speedup (i.e.,
16 for 16-way SIMD) from vectorization. Here, we try to quantify
the theoretically maximum achievable speedup. Given that only the
kernel computation is vectorized, we compute the effect of Amdahl’s
law due to non-kernel overheads by looking at the number of non-
kernel instructions. While the number of instructions executed does
not strictly determine performance, this opportunity study provides
some insight into vectorization potential (assuming 1.0 CPI). As
it is difficult to isolate the core computations in benchmarks with
small tasks (fib, parentheses, knapsack, and binomial),
we focus on the remaining benchmarks.

Table 3 shows the fraction of vectorizable and non-vectorizable
instructions for the remaining benchmarks. The “Sequential”
columns indicate that a significant fraction of computation is vector-
izable. In our modeled vectorized code, we assume perfect speedup
for the vectorizable instructions (column 4), reducing the instruction
count by a factor of the vector width. We profile the re-expansion
version of the code to account for changes in the number of non-
vectorizable instructions based on our transformations (column 5).
Note that our transformations can occasionally reduce the number
of non-kernel instructions (e.g., nqueens and minmax) because
of the way they optimize stack management operations. The mod-
eled maximum speedup is the ratio of the total number of dynamic
instructions in the modeled vectorized version to the sequential
versions. Even with perfect vectorization, the anticipated speedup
for uts and minmax is only 2.5 and 3.48, respectively (due to the
large number of non-kernel instructions that are not vectorized).
nqueens and graphcol fare better. Compared with Table 2, our
vectorized implementations achieve a large fraction of this theoreti-
cal max speedup despite suffering from overheads, such as cache
misses.

7. Related Work

Parallelism for multicores: Many modern programming lan-
guages for multicores, such as Cilk family [4, 8, 10], Thread Build-
ing Blocks [31], Task Parallel Library [35], OpenMP [28], and
X10 [37], allow programmers to express task parallelism using
constructs like our spawn directive. Two important variants of
work-stealing schedulers are relevant to our work. As described in
Section 2, the work-first strategy [10] is similar to our depth-first
strategy: when a processor spawns a task, it places the continua-

tion on its local pool and immediately starts executing the newly
spawned task. In contrast, the help-first strategy [13] is similar to
breadth-first execution: a processor places the newly spawned task
on its local pool and immediately executes the continuation. Guo et
al. [13] propose using help-first scheduling to generate work quickly
and work-first scheduling thereafter to bound space usage. This
strategy is similar to the execution strategy adopted by our initial
code transformations that begin with breadth-first execution then
switch to depth-first execution, although a traditional work-stealing
scheduler would not provide the necessary structured execution for
vectorization.

Parallelism for vector units/GPUs: The relationship between
SIMD and multiple instruction multiple data (MIMD) parallelism in
the context of combinator reduction was considered by Hudak and
Mohr [16]. Modern vectorizing compilers attempt to automatically
perform vectorization for small loops in programs using various
techniques [23, 25]. However, they tend to target programs written
in a structured, data-parallel manner and cannot handle even moder-
ately complex programs [23]. In more restricted domains, there has
been some success in SIMDizing programs through synthesis [3]
and code generation from domain-specific languages [32] and other
restricted sets of problems [19, 21]. These approaches do not work
for more general programs. Most work in mapping complex appli-
cations to vector units has been done by hand [5, 7, 14, 15, 20].

GPUs offer a more programmable interface than vector units
on CPUs, but the most common programming models for GPUs
are fundamentally data parallel [26, 34]. In recent years, several
attempts have been made to take GPUs’ inherently data-parallel
execution model and adapt it to target task-parallel programs [1,
17, 36]. Perhaps most related to our work, Orr et al. [29] provide
a hardware implementation of the channels model proposed by
Gaster and Howes [12] and offer a mapping from simple Cilk-
style programs to their channels implementation. Interestingly, the
execution model imposed by channels on these programs resembles
the level-by-level breadth-first execution strategy of our initial code
transformation. To control space, they propose another hardware
modification that allows the execution of one level of computation
to be suspended—in essence, only processing part of each level of
the tree. A compelling avenue of future work would be to compare
Orr et al.’s scheduling strategy with our proposed strategies.

The key distinctions between our work and this work on GPUs
are: (1) GPUs provide hardware support for gather and scatter
operations and execution masking, so GPU approaches do not need
to consider data and computation organization as carefully, and (2)
the only GPU implementation that targets the similar fine-grained
task parallelism as our techniques requires custom hardware support
and is not suitable for targeting commodity vector hardware.

Stream compaction for vectorization: Ren et al. [32] first in-
troduced stream compaction as a general technique for managing
blocks of data operated on by vector operations by and performed
stream compaction for four-wide vector units, but did not describe a
general approach for arbitrary-length vectors. Mytkowicz et al. [24]
described a general permutation strategy for block management.
Permutation is a generalization of stream compaction. However,
because stream compaction is a simpler problem, our algorithm is
more efficient as it is linear in the stream size (rather than quadratic)
and can trade-off between the size of pre-computed tables and the
number of lookups.

8. Conclusions
Vectorizing task-parallel programs requires solving several critical
challenges: finding data-parallelism for vectorization, controlling
space usage, and ensuring that SIMD units stay fully utilized.
We present code transformations and scheduling strategies that
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address these problems, allowing recursive, task-parallel programs
to be mapped efficiently to commodity vector hardware. Moreover,
our stream compaction algorithm is applicable beyond our block
management code and could be integrated in production compilers.

Our results represent a first attempt at mapping task-parallel
programs to processors with SIMD units, and there are many oppor-
tunities for improved performance. For example, the next version of
the Xeon Phi will support character-level vector operations. With
our general stream compaction implementation, our scheme will
be automatically able to take advantage of the new hardware’s in-
creased vector widths. Moreover, while our current results focus on
improving single-core performance by leveraging SIMD units, our
programming model is a standard task-parallel language. It is feasi-
ble to integrate multicore parallelism with traditional work stealing
and our SIMDization technology. We plan to investigate this hybrid
further in future work.
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