
User-Assisted Storage Reuse Determination
for Dynamic Task Graphs

Mehmet Can Kurt
The Ohio State University
kurt@cse.ohio-state.edu

Bin Ren
Pacific Northwest National Laboratory

bin.ren@pnnl.gov

Sriram Krishnamoorthy
Pacific Northwest National Laboratory

sriram@pnnl.gov

Gagan Agrawal
The Ohio State University

agrawal@cse.ohio-state.edu

Abstract
Models based on task graphs that operate on single-assignment data
are attractive in several ways, but also require nuanced algorithms
for scheduling and memory management for efficient execution.
In this paper, we consider memory-efficient dynamic scheduling
of task graphs, and present a novel approach for dynamically re-
cycling the memory locations assigned to data items as they are
produced by tasks.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: [Concurrent Programming — Parallel Programming]

General Terms Algorithms, Performance

Keywords Memory management, dynamic task graphs

1. Introduction
This paper focuses on memory-efficient execution of programs
structured as task graphs and processed by a dynamic scheduler. To
motivate the problem, consider a data-flow or a single-assignment
task graph. The edges in such a task graph represent only the
true dependences as ordering constraints. Each task in such a task
graph produces a unique data item, which is not subsequently
modified by other tasks. This representation maximally exposes the
concurrency in the program and enables most effective utilization
of available hardware parallelism. However, naively scheduling
such task graphs can quickly overrun the memory available in a
parallel system. Given that the definition-use relationships in a
dynamically executing task graph are not known a priori, any given
data item might have a potential future use, and thus cannot be
garbage collected, until the task graph completes execution. Other
approaches to optimize memory usage often require additional
information about the number of uses or the last use of a given data
item [2, 5]. Also, many approaches to addressing the memory issue
require knowledge of the static task graph [1, 4, 6], a requirement
that can limit the attractiveness of the task model itself.

c©2016 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored
by an employee, contractor or affiliate of the United States government. As such, the United States Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes
only.

PPoPP ’16, March 12-16, 2016, Barcelona, Spain
Copyright c© 2016 ACM 978-1-4503-4092-2/16/03. . . $15.00
DOI: http://dx.doi.org/10.1145/2851141.2851180

A

D

C

B

E

F

Figure 1: A task graph example, in which task B can safely recycle
the store assigned to task A, but not the one assigned to task C.

We present a different approach for optimizing memory usage
when scheduling such task graphs. Specifically, to improve the
functionality and programmability of such programming models,
we address the problem of memory minimization when the task
graph is generated dynamically, and the information on last use (or
the number of uses) of a memory block is not available. We present
an approach to recycling the store across tasks in a task graph. We
address a number of issues related to realizing a recycling based
task graph execution. As a first step towards simplifying the pro-
grammer’s task, we present an algorithm to verify that a given store
recycling function is correct (e.g., the recycling does not cause any
overwrites to live data or lead to a data race). We have developed
mechanisms for such detection to be carried out with low overheads
during program execution and enable recovery from incorrect over-
writes within the same run. Thus, the programmer can execute an
application with a potentially incorrect recycling function, and still
obtain a correct execution without a large slowdown.

To further improve programmability, we present an approach to-
wards automatically deriving a correct recycling function. Specifi-
cally, we consider compositions of incoming dependences as poten-
tially valid recycling functions, determine which of them is correct,
assess the reuse facilitated by correct functions, and choose the one
that leads to the largest number of recycled stores. The correctness
determination can be done by execution on a smaller problem size.
While this does not ensure correctness of recycling function on a
different input dataset (since dependencies can be input dependent),
recall that we can further verify the correctness with low overheads
during a production run.

2. Our Approach: Store Recycling Functions
A store recycling function maps each task T in a directed acyclic
graph to another task such that T can reuse the memory segment
containing the mapped task’s output for its own output. For in-

stance, a specification Recycle(B) = A states that the output of
task B occupies the same memory region as the output of the task
A. Here, we refer to task A as a recycle predecessor of task B and
task B to be a recycle successor of task A. Several correctness and
efficiency considerations arise in choosing recycling function(s). A
recycling operation dictated by a store recycling function is correct
if and only if it complies with the causality relations among tasks,
and hence does not lead to a data race. As an example, consider the
store recycling function that maps task B to task A in the task graph
in Figure 1. A schedule that employs such a store recycling function
should order the execution of A to precede the execution of B. A
store recycling function is correct if and only if every valid schedule
for the task graph satisfies this ordering constraint. In other words,
any dependence induced by the store recycling function should be
already implied by the edges in the task graph.

In addition, there are correctness requirements to ensure that
we do not have an early overwriting of task outputs. Specifically,
store recycling should not cause a task’s output to be overwritten
before all of its uses are complete. Figure 1 shows that task A has
two immediate successors (D and E), which finish execution be-
fore B starts. Hence, B recycling A’s output would not cause early
overwriting of A’s output. We formulate the above requirements
and define the first constraint for a recycling operation to be cor-
rect as follows: Constraint 1: If task B recycles task A’s output,
then A and all of A’s immediate successors must causally precede
B. Note that this constraint can be ensured for a recycling opera-
tion by imposing additional dependences on the task graph. As an
example, consider the concurrent tasks B and C in Figure 1. Al-
though the recycling operation Recycle(B) = C violates the first
constraint, injecting an additional dependence edge from C to B is
potentially possible. However, introduction of such additional de-
pendences can lead to cycles and thus deadlock. They may incur
performance penalties, because the scalability achievable by task
graph schedulers is fundamentally limited by available parallelism,
or alternatively, the computation’s critical path length.

A store recycling function can potentially map two different
tasks onto the same task. As an example, consider the recycling
operation Recycle(C) = A, in addition to Recycle(B) = A. Ex-
isting dependences in the task graph indicate that A and A’s imme-
diate successors (again D and E) causally precede both B and C
satisfying the first constraint. Although these recycling operations
are individually correct, they cannot be both applied since B and C
are concurrent and can lead to a data race on A’s output. To prevent
this, we define the second constraint as follows: Constraint 2: Two
tasks B and C can recycle the same task A’s store only if B (or C)
can recycle the store associated with C (or B). As a correct recy-
cling scenario exemplifying the second constraint, one can consider
the recycling operations Recycle(B) = A and Recycle(F) = A.
Since F can potentially recycle B’s output, these recycling opera-
tions can be both applied in the same run.

3. Overview of Techniques
The two constraints in Section 2 imposed on a store recycling
function relate to causality relationships between tasks. A simple
scheme can be to execute the task graph and retain predecessor
and successor information for all tasks, and verify all recycling op-
erations on termination. However, this could incur high overheads.
Our idea is to perform on-the-fly checks, using vector clocks to con-
cisely represent causality [3].

Our next goal is to be able to automatically derive recycling
functions. Our approach here involves first generating a set of
candidate recycling functions and then verifying their correctness.
Our first observation is that the candidates that a given task can
recycle safely should be a subset of the tasks’s immediate and
transitive predecessors. In general, such candidates for a task can
be explored by traversing the task graph starting from the given task
and exploring the task graph towards the source tasks (tasks with

no incoming dependences) by using predecessor relations provided
by the user. Our procedure works as follows. First, we require
information on the dependence structure of the task graph from the
user. Dependence structure of a task graph consists of the number
of immediate predecessors for any task and a function to reach
each of them. Next, the paths are enumerated to a bounded depth,
referred to as hops, to limit the cost of verification.

Although we can detect incorrect recycling function using vec-
tor clocks, we remove vector clocks and related mechanisms dur-
ing normal execution to minimize performance impact. Instead, the
following two guarantees are maintained using other more efficient
mechanisms. A recycling function does not result in concurrent re-
cycling. and A data item recycled before all of its uses are done is
correctly computed again by re-execution of its producer task.

4. Summary of Experimental Evaluation
To evaluate the effectiveness of automated recycling, we compared
the performance of our scheme auto-recycle against hand-written
code that does recycling. The auto-recycle versions for these ex-
periments were generated by first exploring recycling functions au-
tomatically with a 2-hops traversal, and then employing the one
which leads to the most number of simulated recycling operations.
At 61 threads, our scheme leads to 4.6%, 1.8%, and 0.3% over-
heads over handwritten-recycle version, respectively for LCS, LU,
and Cholesky. These small overheads demonstrate that recycling
approach can be effectively automated. These overheads are be-
cause of synchronization required to detect concurrent and prema-
ture recycling in the automatic versions, and a more direct mapping
and avoidance of indirect references in the handwritten versions.

We evaluate the costs to verifiy a set of candidate recycling
functions. The overheads turn out to be minimal as long as we go
with either 1 or 2 hops, For the 3-hops case, there is an observable
increase in the execution time, especially in LU, where more than
70000 distinct recycling functions are checked for correctness. It
is a high relative cost for execution with a small problem size.
However, in absolute terms, the entire verification phase takes less
than 1 second for these benchmarks. The generation of recycling
functions is performed sequentially before verification begins, but
the time ranges from a few microseconds to 0.035 seconds.

For each benchmark, we evaluate the impact of all recycling
functions that are explored with 2 hops and determined to be in-
correct. We start the production phase with one incorrect recycling
function and switch to a correct function once an incorrect recy-
cle operation is detected at runtime. We divide possible recovery
overheads into 9 bins: <1%, 1-5%, 5-10%, . . . , 50-60%. Results
show that number of incorrect recycling functions that cause less
than 1% overhead turns out to be 50%, 100%, and 84% of the total
number of incorrect functions for LCS, LU, and Cholesky, respec-
tively. Remaining portion of evaluated incorrect functions result in
overheads between 1 and 5%.

References
[1] L. Gérard, A. Guatto, C. Pasteur, and M. Pouzet. A modular memory

optimization for synchronous data-flow languages: application to arrays
in a Lustre compiler. In LCTES, pages 51–60, 2012.

[2] M. C. Kurt, S. Krishnamoorthy, K. Agrawal, and G. Agrawal. Fault-
tolerant dynamic task graph scheduling. In SC, pages 719–730, 2014.

[3] V. Raychev, M. Vechev, and M. Sridharan. Effective race detection for
event-driven programs. In OOPSLA, pages 151–166, 2013.

[4] D. Sbirlea, Z. Budimlic, and V. Sarkar. Bounded memory scheduling of
dynamic task graphs. In PACT, pages 343–356, 2014.

[5] D. Sbirlea, K. Knobe, and V. Sarkar. Folding of tagged single assign-
ment values for memory-efficient parallelism. In Euro-Par, pages 601–
613, 2012.

[6] P. Schnorf, M. Ganapathi, and J. L. Hennessy. Compile-time copy
elimination. Softw., Pract. Exper., 23(11):1175–1200, 1993.

