
1

Securing SDN Infrastructure of IoT-Fog Networks
from MitM Attacks

Cheng Li, Zhengrui Qin, Ed Novak, Qun Li, Member, IEEE

Abstract—While the IoT is making our lives much easier,
managing the IoT becomes a big issue due to the huge number
of connections, and the lack of protections for devices. Recent
work shows that Software-defined Networking (SDN) has a great
capability in automatically and dynamically managing network
flows. Besides, switches in SDNs are usually powerful machines,
which can be used as fog nodes simultaneously. Therefore, SDN
seems a good choice for IoT-Fog networks. However, before
deploying to IoT-Fog networks, the security of the OpenFlow
channel between the controller and its switches need to be
addressed. Since all the controller commands are sent through
this channel, once compromised, the network will be completely
controlled by an attacker. This is a disaster for both the network
service providers and their customers. Previous works on SDN
security either protect controllers themselves or make a strong
assumption that the OpenFlow channel is already secured. Using
TLS to encrypt the channel is not a “silver-bullet” solution due
to the known TLS vulnerabilities. In this paper, we specifically
investigate the potential threats of Man-in-the-Middle attacks
on the OpenFlow control channel. We first introduce a feasible
attack model in an IoT-Fog architecture, and then we implement
attack demonstrations to show the severe consequences of such
attacks. Additionally, we propose a lightweight countermeasure
using Bloom filters. We implement a prototype for this method
to monitor stealthy packet modifications. The result of our
evaluation shows that our Bloom filter monitoring system is
efficient, and consumes few resources.

Index Terms—SDN, IoT, Fog Computing, MitM attack

I. INTRODUCTION

From smart homes to smart cities, the Internet of Things
(IoT) is becoming an increasingly important part of our daily
lives. According to [1], there will be 12.2 billion M2M connec-
tions by 2020. Managing such a huge amount of connections
is a big challenge for network administrators. Furthermore,
objects in the IoT are usually resource limited. Classical
computing-intensive security methods such as encryption and
anti-virus software cannot be directly deployed on them.
Therefore, it is necessary to secure IoT devices with the
help of the network infrastructure. Under such circumstances,
traditional networks are no longer suitable for the IoT. On
the other hand, Software-defined networking (SDN), which
brings many new features such as network programmability,
centralized control and so on, enables owners to automatically
manage the entire network in a flexible and dynamic way. With
these benefits, many believe that the future of the IoT will be
based on SDN. Therefore, several works [2] [3] are proposed
for the future IoT.

Together with the IoT and SDN, fog computing is also
drawing much attention. In fog computing, there are additional
fog nodes between the traditional cloud and user clients. Cloud

servers may offload tasks to these fog nodes and data from the
clients may be cached on the fog nodes. Fog computing can be
considered to be a feasible solution for an IoT implementation
for several reasons. First, because the IoT generates large
amounts of sensor data, sending all the data directly to the
cloud is unrealistic. The fog devices, which are much closer
to the sensors, can pre-process or aggregate the sensor data
before sending it out to the cloud. This saves upstream
network bandwidth. Second, since many IoT services are time
sensitive, the cloud is not suitable for such IoT tasks due to
the significant traffic latency. In this case, some lightweight
processes can be migrated to nearby fog nodes, moving the
computational resources closer to the IoT devices. This saves
processing time. Because both SDN switches and fog nodes
are relatively powerful nodes in a typical IoT deployment,
they are usually combined together, which is a perfect way to
integrate the functionality of both SDN and fog computing.

Though deploying IoT-Fog networks using SDN seems
promising, security issues are inevitable here. Take smart home
applications as an example. The fog nodes deployed in smart
homes may not be configured well due to the users’ lacks
of expert knowledge, which may introduce vulnerabilities to
the fog nodes. Furthermore, because fog nodes and SDN
switches are usually combined together, vulnerabilities in
fog nodes may be leveraged by attackers to compromise
the SDN switches they control. Therefore, it is necessary to
have security mechanisms to further monitor and enhance the
security of the SDN infrastructure in IoT-Fog scenarios.

In SDN, the controller controls all the switches through
“OpenFlow” channels. Commands and requests from the con-
troller, as well as status and statistics from the switches, are
transmitted through the OpenFlow channels. Therefore, the
security and reliability of OpenFlow channels between the
controller and switches are critical for proper SDN operation,
configuration, and management. If an attacker were to inter-
cept and/or modify the messages on these channels, he or she
could send fake messages to the switches and the controllers,
launching a wide variety of attacks such as denial of service
(DoS), or man-in-the-middle (MitM) attacks.

OpenFlow channels, once intercepted, may bring disas-
trous circumstances to both the network providers and their
customers. For example, an attacker can collect customers’
sensitive information (e.g. sensor data depicting a user’s daily
behavior) by commanding the switches to send copies of
packets containing such information to the attacker. In this
way, sensitive user information will be leaked to attackers.
With network infrastructure under such a threat, SDN has more
security concerns than a traditional network. Taking another



example, the attacker can send fake packets, on behalf of the
switches, to the controller, poisoning the controller’s global
view of the network topology. With the incorrect topology,
the controller may misconfigure other well-behaved switches,
which may cause the network connectivity outages. The result
is a horrible user experience, and substantial revenue lost. With
such potential threats still viable, SDNs will never fully replace
traditional networks. Even though it offers many new attractive
features, without solving these problems, all the flexibility is
meaningless. Therefore, work should be done to protect the
OpenFlow channels from interception.

One may leverage cipher techniques to encrypt the channel
after authentication. However, authentication and encryption
alone cannot guarantee the safety of the OpenFlow channels.
TLS, for example, is one of the most popular cryptographic
protocols. However, there are still works exploiting vulnera-
bilities in its cipher suites and the protocol itself [4]. In [5],
the attacker can compromise a TLS link by stealthily installing
a client certificate. Moreover, since smart embedded devices
in IoT have limited resources, some safe but computing
intensive protocols cannot be deployed on them. Without
secure communicating, these devices are more vulnerable
to be compromised, increasing the risks of attacks against
OpenFlow channel. Even assuming it were perfectly safe, fully
implementing TLS is very difficult. [6] indicates that most SSL
implementations are partially implemented, and contain poten-
tial vulnerabilities. Furthermore, if the attacker were to obtain
the credentials or passwords of the switches or controllers via
some other ways, there are limited approaches to detect and
defend against the attacks. In general, we cannot only rely
on cipher techniques. There should be other complimentary
systems to secure OpenFlow channels. To detect such attacks,
it may be possible to use a packet monitor to investigate those
packets in the OpenFlow channels. However, the attacker does
not necessarily change all the packets passing through the
channels. With only one or two packets inserted or dropped,
the attacker can easily change a switch’s behavior. Therefore,
monitoring the channel is not efficient. Besides, developing
another monitoring system could cost much time and money.

In this paper, we mainly focus on the security issues of
OpenFlow channels, especially MitM attacks. We propose
approaches to launching MitM attacks on OpenFlow channels
and investigate several subsequent attacks. We also implement
demos for such attacks. We show that an attacker can use a
small script to modify flow tables, collect information, and
poison the controller’s view. We also propose a countermea-
sure to detect MitM attacks by leveraging Bloom filter. We
extend the OpenFlow protocol to incorporate our Bloom filter
method and implement a prototype system which can serve as
a complementary system to a variety of cipher techniques, such
as TLS, to protect the OpenFlow channel from MitM attacks.
Compared with standard packet monitoring systems and TLS,
our system is lightweight and does not require additional
hardware or maintenance. The results of our evaluation show
that our system is efficient, accurate, and incurs only negligent
overhead. To the best of our knowledge, our work is the first
to fully investigate MitM attacks on OpenFlow channels and
develop a monitoring system based on SDN for such attacks.

In summary, our contributions are as follows:
• We build demonstrations of these attacks to show how the

attackers modify flow paths, collect sensitive information,
and poison the controller’s global view. Our implemen-
tations are relatively simple scripts with a few lines.

• Based on SDN features, we propose a lightweight coun-
termeasure to detect MitM attacks against OpenFlow
channel.

• We implement a prototype system to detect packet mod-
ification with Bloom filters based on SDN and extending
the OpenFlow protocol.

II. MITM ATTACK IN OPENFLOW CHANNEL

In this paper, we assume both the controller and the switch
are trusted. Both of them work correctly according to the
OpenFlow protocol. The OpenFlow channel, on the other
hand, is not trusted.

Figure 1 proposes one desirable SDN architecture in IoT-
Fog scenario. Each IoT LAN has a gateway switch and a fog
node. For efficiency concerns, the gateway and the fog node
are usually combined together. The gateway switch in each IoT
LAN is controlled by ISP controller. Since ISP Cloud is more
secure, we argue that it is safer to put the controller in ISP
cloud rather than IoT LAN. ISP offers its customers virtual
machines with controller software installed, giving them rights
to control their gateway switches and fog nodes. Usually, the
gateway switch and controller in ISP cloud communicates in
TLS. The goal of the attacker is to intercept this encrypted
communication channel.

As introduced in [5], the attacker can launch KCI attack to
intercept the communication channel between a client and a
server by stealthily installing a client certificate at the client
side. In order to successfully install client certificate at the
gateway switch, the attacker needs a helper inside the LAN.
Indicated by [7]–[11], there are a large amount of embedded
smart devices are vulnerable to firmware updating attack, in
which the attacker compromise a smart device’s firmware
through legitimate updating processes. If there is such a device
inside the IoT LAN, the outside attacker can take control of it
by launching firmware modification attack (1). Then the smart
device, ordered by the attacker, installs a client certificate at
the fog node (gateway), claiming that the fog node needs to use
this certificate to identify itself in their future communications
(2). After the gateway installs the client certificate, the outside
attacker breaks the connection between the controller and the
gateway (3) and performs KCI attack [5] to achieve MitM
attack on the OpenFlow control channel (4). After these steps,
the attacker has successfully intercepted the OpenFlow channel
and take control of the gateway.

III. ATTACK DEMO

Here we introduce three attack demonstrations. In the first
one, the attacker redirects flows in the data plane. The second
one exemplifies how the attacker can collect information from
the data plane. The last one shows how the attacker is able
to poison the controller’s view of the network. We present
only three attack scenarios out of many others. The complete
spectrum of possible attacks is currently unknown.



Fig. 1: Attacking model

A. Environment Set-up

We use Floodlight, an open source SDN controller, as our
SDN controller, and use Mininet to simulate a network in
our experiments. The controller and switches communicate
through OpenFlow v1.3. To simplify our demos, we assume
that the attacker, the controller, and the Mininet VM are
located on the same local network. This assumption does not
affect the result of our demos because the attacker can always
intercept OpenFlow channels with spoofing techniques such as
ARP spoofing. This is possible as long as the attacker exists
in the path between the switch and the controller.

Since Mininet is running on a virtual machine, all simulated
switches share the same IP address and remotely connect to
the controller. Our attack scripts attack only the Mininet virtual
machine, intercepting all simulated switches. Our configura-
tion does not affect the final result of the demos because
the technique to attack the switch’s interface is identical to
attacking the Mininet virtual machine.

Our attack scripts are written in Python v2.7 using the
popular scapy library, which is very convenient for crafting,
sending, and sniffing packets. We use this library to build fake
OpenFlow commands for the switches. In our demos, we use
ARP spoofing techniques to intercept the OpenFlow channel.

B. Traffic Flow Modification

The most straightforward attack is to stealthily modify
the victim switch’s forwarding table. In our experiment, the
attacker blocks a certain host’s traffic flow and redirects the
flow to another host. Figure 2 shows the idea of this attack. The
attacker inserts two OpenFlow packets, which contain flow
table modification commands, into the OpenFlow channel. The
first OpenFlow packet instructs the switch s1 to modify the
destination IP and MAC address of any packets originally
destined for host h4. The new IP address and MAC address
are that of host h3. The second OpenFlow packet commands
the switch to modify the source IP address of any packets
originating from h3, to the IP address of h4. As a result,
if h1 tries to communicates with h4, it will actually be
redirected to h3, leaving h1 unaware that it is communicating
with a different host. To test the attack, we let h1 ping h4
and capture the packets transmitted using Wireshark. Figure
3 shows the packet capture results (from all the interfaces
in s1). In the figure, the first entry shows that s1 receives
the ICMP packet from h1 (10.0.0.1) with the destination h4
(10.0.0.4). After being processed by the switch, the packet’s
destination IP address has been changed to h3’s (10.0.0.3) (the

Fig. 2: Traffic redirection attack

Fig. 3: Redirection attack: packet capture result of h1 ping h4

second entry). Though not shown in Figure 3, from the reply
of h3 (the third entry), the MAC address of the packet is also
changed. Passing through s1 again, the source IP address is
changed back to the IP address of h4 (the fourth entry). These
redirected paths cannot be inferred by h1. If h1 is a web
camera that tries to communicate with a cloud server h4 but
unexpectedly communicates with a malicious machine h3, all
sensitive information from h1 will be exposed to the attacker.

C. Information Collection

The attacker may also stealthily collect information by
modifying the switch forwarding table. Figure 4 illustrates the
basic idea of an information collection attack. The attacker
first forges an OpenFlow packet, which contains flow table
modification commands, and sends it to the victim switch.
The attacker instructs the switch to send a copy of each
packet targeting h4 to the ”controller”, which is actually the
attacker. Once the victim switch updates its forwarding table,
the attacker will receive all the packets originally destined for
h4. We let h1 ping h4 and again capture all packets from
all the interfaces of s1 using Wireshark. Figure 5 shows the
capture result. In this demonstration, we let the attacker simply
sends back the ping packet just for testing. Figure 6 shows the
ending point of h1’s ping packets. We can see that the host
receives two duplicate replies, one from h4 and the other from
the attacker. Similar as the previous demonstration, sensitive
information will be leaked to the attacker, but both the client
and the server will not be aware of the eavesdropper.

Fig. 4: Information collection attack



Fig. 5: Information collection attack: packet capture of h1 ping h4

Fig. 6: Information collection attack: h1 ping h4 in terminal

D. Topology Poisoning Attack

In SDNs, the controller learns the global topology through
LLDP packets. Suppose the controller commands switch s to
output an LLDP packet through port eth1. Another switch
s’receives this packet on port eth2. Switch s’ includes both
this packet and the port eth2 number in a packet in message
and sends it to the controller. From this message, the controller
knows that port eth1 in s connects with port eth2 in s’.
If the attacker modifies the LLDP packets, the controller will
have an incorrect view of the global topology.

Figure 7 shows the basic idea of this attack. The attacker
stealthily modifies both the output port and the max_len
field in the packet out message. The max_len field indicates
the maximum number of bytes the switch can send to the
controller. If this field is set to 0, and the output port is set to
the controller, s1 simply ignores this message. In this way, s2
has no chance to receive the LLDP packet, let alone forward
the packet back to the controller. If the attacker does the same
to s2, the controller will conclude that these two switches
are not connected. Figure 8 shows the topology generated by
the controller during the attack. Figure 8 shows the DPID of
each switch. The DPID of s1 is ”00:00:00:00:00:00:00:01”
while the DPID of s2 is ”00:00:00:00:00:00:00:02”. The third
switch, which is not shown in Figure 7, is not involved in
this attack. In reality, s1 and s2 are connected. However, the
controller is fooled into thinking that they are not. If there
is a packet inspection middle box along the s1-s2 link, the
attacker can use this method to circumvent inspection.

Fig. 7: Topology poisoning attack

Fig. 8: Topology poisoning attack: controller view

IV. COUNTERMEASURE

In this section, a countermeasure and its OpenFlow exten-
sion to detect MitM attacks on OpenFlow channel will be
proposed.

As mentioned in the previous section, the attacker can
stealthily modify packets in the data plane by changing one or
more switches’ forwarding table. To detect such a threat, one
straightforward idea is to let the controller query all the packets
that the switches forwarded, and then compare them one by
one. However, this naive method will dramatically increase
the burden of both the controller and the network, and also it
is not efficient. To ease the burden, we propose a method to
detect packet modifications using a Bloom filter. Bloom filter
is a space-efficient data structure, which is used for testing the
existence of an element in a set.

We let each switch along one flow locally put packets of
that flow into a Bloom filter. If they put the same packets into
the Bloom filter respectively, these Bloom filters should be the
same. Thus, the controller can detect any packet modifications
of this flow by collecting all these Bloom filters and checking
the difference between these filters. If there are any differences
between these filters, it is sure that the packets are modified
during its delivering. Besides all the switches’ Bloom filter, we
also need the origin packet sending from the sensor in case
the data packets are modified at the first switch. We put a
monitor process in the fog node. These processes do the same
as what the switches do, putting packets from a specific flow
into Bloom filters and sending Bloom filters to the controller
when requested. The only difference is that these monitor
processes interact with another instance in the cloud rather
than the controller. Then the instance forwards the Bloom
filter to the controller. The reason of using another instance
is to hide the interaction between the monitor process and the
controller. Because fog nodes frequently communicate with
the cloud and these monitor only interact with the could when
requested, the attacker has difficulties finding these monitor
processes.

To apply this idea, we extend OpenFlow by adding
three new message types: BF INITIAL, BF SUBMIT and
BF REPLY. The meanings of these messages are introduced
later. Figure 9 and 10 illustrate the protocol of initializing
and finalizing our Bloom filter method respectively. To start
detection, the controller first sends all switches an initializa-
tion command (BF INITIAL), which contains the following
information: 1) the examined flow f , represented by matching
fields used in OpenFlow; 2) a tag τ , which will be used later;
3) a set S of fields that should be omitted when computing the
hash values of packets (necessary for inserting into a Bloom
filter); and 4) the maximum number of packets inserted into
the filter n. If n is set to 0, there is no limit for inserting
packets into the Bloom filter. After receiving BF INITIAL,
each switch initializes itself according to the parameters and
replies with an acknowledgment (BF REPLY with no content)
to the controller. When the controller receives a reply from
every switch, it triggers the detection stage by modifying the
flow table of the first switch to tag flow f with τ .

Once the controller wants to collect the Bloom filters from



the switches, it first modifies the flow entry of the tagged
flow f in the last switch on the path by adding a packet in
action. In this way, the controller can track the last packet of
the procedure. After that, the controller commands the first
switch to stop tagging flow f . When there is no packet from
the last switch for a certain time, it sends out BF SUBMIT
messages to all the switches to submit their Bloom filters by
BF REPLY messages. The controller compares all the filters
to find whether there is any difference among them. If any
difference is found, the controller will warn the administrator
about the misbehaving switches.

Limitation of the countermeasure This approach works in
most cases in practice. However, in some extreme cases, for
instance, all the OpenFlow channels between the controller and
switches in one flow path has been intercepted, our method
will not work. Besides, if the attacker modifies fields that are
not in set S, our work will not work either.

Fig. 9: The initialization of generating Bloom filter

Fig. 10: The end of generating Bloom filter

V. IMPLEMENTATION

In this section, we will elaborate on the implementation of
our Bloom filter monitor system, which can detect packet mod-
ifications in SDNs. Specifically, we will present the overview
of the system and describe all components of the system.

A. System Overview

The monitor system, which we refer to as the “Bloom Filter
Monitor System,” consists of two parts. One is implemented
in Floodlight controller, and the other is implemented in Open
vSwitch (OVS). Figure 11 shows the architecture of our sys-
tem. The controller side has one module named ”Bloom Filter
Monitor”, which is responsible for sending out BF INITIAL
and BF SUBMIT messages to OVS, collecting replies from

Fig. 11: Architecture of Bloom Filter Monitor System

OVS, and comparing the switches’ filters. This module offers
two REST APIs for administrators or other applications to
conduct the Bloom filter detection phase.

The switch portion consists of two components. Generally
speaking, the switch has two tasks for each packet: 1) extract
examined fields (or data); and 2) insert extracted contents into
the Bloom filter. In OVS, all the packets are received and
forwarded in the datapath, a module that is running in kernel
space where extraction starts. However, any delay inside the
datapath can affect the forwarding speed. Thus, we put the
hash function and Bloom filter insertion code into the user
space. In this way, the switch can insert the extracted content
while forwarding packets in the datapath. The switch also has
one component to communicate with the controller, receiving
OpenFlow messages from the controller, triggering the Bloom
filter detection phase, and replying with the filled Bloom filter
to the controller.

B. Controller Side Design

1) Bloom Filter Monitor Module: The main part of the
Bloom Filter Monitor, as we mentioned previously, is a module
in the Floodlight controller, which is automatically loaded
during the initialization of Floodlight. The module has two
main functions, initializing and finalizing the Bloom filter
monitor method. Both of these functions can be invoked from
REST APIs. The workflow of these two functions is the same
as shown in Figure 9-10.

2) OpenFlow Library: To extend OpenFlow to support
our new message type, we modify the source code of the
OpenFlow protocol library in Floodlight. For each of our three
new OpenFlow messages, BF INITIAL, BF SUBMIT, and
BF REPLY, one interface and several implementation classes
(implemented under different OpenFlow versions) are inserted
into the source code. We also change the serialization and
OFType enum to support the serialization of these messages
so that they can be transmitted through the network.

3) Floodlight Core: To enable Floodlight to handle our
new messages as just another standard OpenFlow mes-
sage, we modify some core codes of Floodlight. Class
OFSwitchHandshakeHandler is responsible for receiv-
ing different types of messages and dispatching them to
different components. We inserted code here to let it dispatch
BF REPLY messages to a message listener. In this way, the



Bloom Filter Monitor is able to receive and parse BF REPLY
messages from switches through a message listener.

C. Switch Side Design

1) OpenFlow Extension: To extend OpenFlow in Open
vSwitch, we first insert the head structure of our three new
OpenFlow messages, in the OpenFlow head files, into Open
vSwitch. Then, we add new entries in enum OPTRAW and
OFTYPE for our new message type. We also implement a
message builder for BF REPLY and parsers for BF INITIAL
and BF SUBMIT, so that the Open vSwitch can understand
these new messages. Finally, we add our new message handlers
to the OpenFlow handler in Open vSwitch. The handler parses
the message with the parser and proceeds according to the
message contents. Several actions may be taken such as
configuring the datapath through netlink, modifying the flow
table to tag flows, and replying to the filters generated. With
these modifications, Open vSwitch is able to communicate
with Floodlight, which also has the OpenFlow extension.

2) Fields Extraction and Element Insertion: Open vSwitch
is mainly divided into two parts: vswitchd and datapath.
Vswitchd runs in the user space and is responsible for com-
municating with the controller and managing the flow table
along with some other features. Datapath runs in kernel space
and is responsible for forwarding packets. Because this part
runs in kernel space, the packets can be quickly forwarded.

All the packets received by Open vSwitch first come to the
datapath component where feature extraction is implemented.
Once the switch receives one tagged packet, it extracts fields
according to the configuration from vswitchd. After extraction,
it sends the result to vswitchd using upcall, which is a
mechanism used for datapath to send messages to vswitchd.
In our implementation, we leverage this to send the extracted
header fields to user space. Once user space receives the
extracted field information, it computes the hashes and inserts
them into the Bloom filter.

3) Filter Placement and Initialization: It is non-trivial to
decide where to place the Bloom filter. Usually, there are
several bridges inside one Open vSwitch entity. Each bridge
may be connected to several different VMs. If we put the filter
in the global domain, (i.e., all bridges share one filter), then the
traffic flowing between VMs will not be covered. Therefore,
each bridge should be treated as a switch entity and given their
own Bloom filter.

In our implementation, we put the Bloom filter inside the
structure ofproto, which is for OpenFlow protocol in OVS,
since each bridge has only one such data structure, and this
structure can be accessed during the processing of the upcall,
where messages of extracted contents are received. When a
bridge connects with the controller, it will initialize its own
ofproto structure. The filter spaces are allocated at the same
time. Once the filter has been submitted to the controller, the
bridge will reset the filter for the next collection.

4) Hash Function: The hash algorithm is implemented
with Murmur3 32-bit [12]. It is independent and uniformly
distributed, which is apt for use in a Bloom filter. Furthermore,
it is simple and efficient. For each packet, we compute

the Murmur3 hashes with different seeds (to generate the k
necessary hashes used in the Bloom filter) and the hash output
is truncated according to the filter size. The decision of k will
be discussed in next section.

VI. EVALUATION

In this section, we first evaluate the performance of our
Bloom filter method and delay it introduces. Then, we will
test the accuracy (false positive rate) of this method.

The experimental settings are the same as the ones used
in our attack demo, except that the number of switches and
hosts. We use Mininet to simulate more switches and hosts to
generate more traffic flows. The Floodlight controller connects
with all the switches remotely. An attacker stealthily injects
commands in the OpenFlow channels. There is no flow path in
the data plane that consists solely of compromised switches.

A. Performance

The performance evaluation includes three parts. First, we
evaluate the time cost for detecting an attack. Then, we focus
on the time cost of inserting packets into filters. Finally, we
investigate the introduced delays in the data plane.

1) Time cost for detecting: We only measure the time cost
between the controller sending out a BF SUBMIT message,
and the controller finally finding inconsistency among the
replied Bloom filters. We ignore the time interval between the
BF INITIAL and BF SUBMIT messages since it is solely
depended on the administrator.

In our first experiment, we select several flows in the data
plane and let the attacker send commands to the corresponding
switches to modify the destination IP address of packets
(in order to keep communicating, for the purposes of the
experiment, the modified IP address will be modified back
by another experimenter controlled switch). To generate the
selected flows, we let the two end hosts ping each other.

The number of hops along the path in the selected flows
are 20, 40, 60, 80 and 100. Figure 12 shows the time interval
between sending out BF SUBMIT and when the system
correctly detecting the attack. The detection time mainly
contains two parts: network communication, and time for the
controller to compare all the collected filters. The network
communication contributes most of the delay. Additionally,
we can also see that as the number of hops along the path
grows, the detection time increases linearly. One more hop
in the path will introduce about 0.125 ms delay in detection.
Therefore, the increased rate is acceptable. The total time for
detecting an attack is also relatively short. Examining flows
with 100 hops takes less than 7 ms. In summary, the detection
is achieved in a timely manner.

2) Time cost in OVS: As we mentioned in the previous
section, our Bloom filter method has codes in both user space
and kernel space. We conduct experiments to investigate the
time cost in both phases, that is, the extraction and the hash
computation.The experiments are repeated 30 times and the
average costs are shown in Table I. From the table, we can
see that the time spent in kernel is about 0.005 ms, which
does not have a significant effect on the other non-selected



Switches in Path

20 40 60 80 100

T
im

e
 (

m
s
)

0

2

4

6

8

networking

computing

Fig. 12: Time costs for detection
TABLE I: Average time costs in each phase in OVS

Feature Extract(ms) Hash Generation(ms) Total(ms)
0.005 0.17 0.175

packets’ forwarding. For the hash generation phase, the time
measured is less than 0.2 ms, which is negligible in regards
to user experience.

3) Introduced Delay: To evaluate the delay introduced by
our method, we compare the round-trip time (RTT) of a ping
sent between two hosts with and without our method enabled.
Figure 13 shows the experiment results. We measure the RTT
of flows while varying the number of hops. The RTTs under
these different conditions are nearly the same. It is obvious
that our method introduces negligible delays in the traffic. This
makes sense since, as we mentioned in Table I, our method
introduce very little delays in kernel space, and therefore has
little impact on the forwarding time of other packets.

B. Accuracy

In this subsection, we evaluate the accuracy of our method.
Since Bloom filters introduce false positives (but not false
negatives), we only measure the false positive rate. Here,
“false positive” means that some Bloom filters are actually
generated from different sets of packets, but they appear to
be identical. As the number of inserted packets increases, the
false positive increases. This is expected because Bloom filters
have a limited number of bits to store information. In this
experiment, all the hosts of the network ping each other with
a predetermined amount of ping packets. The experiments
are repeated with different amounts of ping packets and
the attacker commands the switches to modify parts of the
data and destination IP addresses of all the generated flows.
Switches insert ping packets flowing through them to filters
and send to the controller once they receive submit requests
from the controller. Based on the number of detected attacks,
we compute the false positive rate. Since the size of the Bloom
filter, and the number of hash functions, are two key factors

Switches in Path

20 30 40 50 60 70 80 90 100

R
T

T
 (

m
s
)

0.1

0.2

0.3

Origin

BF

Fig. 13: Ping delay comparison

TABLE II: Parameters in accuracy evaluation

Parameter Meaning Default value
s Bloom Filter size in bits 128
k Number of hash functions in Bloom filter 5

Fig. 14: False positive with different filter size

that affect the false positive rate, we mainly focusing on these
factors. Table II introduces the meaning and default value of
parameters in the following experiments.

1) Filter Size: We first use different filter sizes (s) to test the
false positive rate with different numbers of inserted packets.
Here we make s = 1024, 512, 256, 128 and k = 5. Figure
14 shows the false positive rate with different filter sizes. We
can see that a larger filter can have more packets inserted
into it while keeping its false positive rate at 0. For a 1024-bit
filter, about 1100 packets can be inserted into the filter without
introducing any false positives. However, for a 128-bit filter,
if more than 100 packets are inserted, the false positive rate
will dramatically increase to a very high level. Therefore, it is
better to use a larger filter. However, larger filters require more
space and introduce more burden to the network. Therefore, it
is a trade-off between efficiency and accuracy. We use 1024-bit
filters in our implementation.

2) The Number of Hash Functions: Our next experiment
varies the number of hash functions (k) to investigate the false
positive rate when the number of inserted packets changes.
Here we make k = 1, 2, 5, 10 and s = 128. Figure 15 shows
the relationship between the false positive rate, and the number
of hashes used. We can see that when only one hash function
is used, the filter can at most have 400 packets inserted without
introducing false positives. However, for the scenario with 10
hash functions, false positives begin occurring when about 40
packets have been inserted, and it increases dramatically when
more packets are inserted after this point. When many hash
functions are used (k is large), the false positive rate tends to
be higher as more packets are inserted into the filter.

Fig. 15: False positive with different number of hashes



VII. RELATED WORK

SDN security issues draw more attentions to researchers
[13]. Seugwon et al. propose FRESCO [14], a development
framework for fast developing OpenFlow security applications.
In [15], a security enforcement kernel is added as an extension
of Floodlight controller. Fleet [16] is another similar con-
troller that protect the data plane forwarding from malicious
administrators. [17] proposes a security invariant checking
method with Yices SMT solver. All these works focus on the
inner logic check of the controller rather than the misbehaved
switches. With the finding of topology poising attack [18],
SPHINX [19] is proposed to inspect packets from switches to
the controller. Thourgh the problem it tries to solve is very
similar to ours, SPHINX assumes the communication from
controller to switches is trustworthy, which is not the case in
our scenario.

As a promising new field, there are lots of works in Fog
computing field [20]–[22]. [23] proposes a storage system for
fog computing, which supports user-specified synchronization
policies on the data objects. [24] presents a software architec-
ture that eases the development of fog applications.

VIII. CONCLUSION

In this paper, we focus on the potential threat of MitM
attacks targeting on OpenFlow channels in IoT-Fog scenario.
We introduce an attack model to show how to perform such
attack on our proposed SDN architecture. We also implement
three attack demos to reveal how the attack works in detail. To
detect such attacks, we also propose a countermeasure using
Bloom filter to detect MitM attack. A prototype of this Bloom
Filter Monitor is implemented by extending the OpenFlow
protocol. The evaluation result shows that the Bloom filter
method is both lightweight and efficient.

REFERENCES

[1] Cisco, “11th annual visual networking index: Global ip traffic forecast
update.”

[2] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “Scotch:
Elastically scaling up sdn control-plane using vswitch based overlay,” in
Proceedings of the 10th ACM International on Conference on emerging
Networking Experiments and Technologies, 2014, pp. 403–414.

[3] D. Wu, D. I. Arkhipov, E. Asmare, Z. Qin, and J. A. McCann, “Ubiflow:
Mobility management in urban-scale software defined iot,” in IEEE
INFOCOM, 2015, pp. 208–216.

[4] Y. Sheffer, R. Holz, and P. Saint-Andre, “Summarizing known attacks
on transport layer security (TLS) and datagram TLS (DTLS),” Tech.
Rep., 2015.

[5] C. Hlauschek, M. Gruber, F. Fankhauser, and C. Schanes, “Prying open
pandora’s box: Kci attacks against tls,” in 9th USENIX WOOT, 2015.

[6] SSL Labs, “Survey of the ssl implementation of the most popular web
sites,” https://www.trustworthyinternet.org/ssl-pulse/.

[7] A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications
attack: A case study of embedded exploitation.” in NDSS, 2013.

[8] K. Chen, “Reversing and exploiting an apple firmware update,” Black
Hat, 2009.

[9] S. Hanna, R. Rolles, A. Molina-Markham, P. Poosankam, J. Blocki,
K. Fu, and D. Song, “Take two software updates and see me in the
morning: The case for software security evaluations of medical devices.”
in HealthSec, 2011.

[10] C. Miller, “Battery firmware hacking,” Black Hat USA, pp. 3–4, 2011.
[11] B. Jack, “Jackpotting automated teller machines redux,” Black Hat USA,

2010.
[12] Austin Appleby, https://sites.google.com/site/murmurhash/.

[13] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in
software defined networks,” IEEE Communications Surveys & Tutorials,
2015.

[14] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and
M. Tyson, “Fresco: Modular composable security services for software-
defined networks.” in NDSS, 2013.

[15] P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran,
“Securing the software-defined network control layer,” in NDSS, 2015.

[16] S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending SDNs from
malicious administrators,” in ACM Proceedings of Workshop on Hot
Topics in Software Defined Networking, 2014.

[17] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Model checking
invariant security properties in OpenFlow,” in IEEE ICC, 2013.

[18] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility in
software-defined networks: New attacks and countermeasures,” in NDSS,
2015.

[19] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX: Detecting
security attacks in software-defined networks,” in NDSS, 2015.

[20] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts,
applications and issues,” in ACM Proceedings of the 2015 Workshop
on Mobile Big Data, 2015, pp. 37–42.

[21] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing:
A survey,” in WASA. Springer, 2015, pp. 685–695.

[22] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and
applications,” in IEEE HotWeb, 2015, pp. 73–78.

[23] Z. Hao and Q. Li, “Edgestore: Integrating edge computing into cloud-
based storage systems,” in Proceedings of IEEE/ACM Symposium on
Edge Computing, 2016.

[24] Z. Hao, E. Novak, S. Yi, and Q. Li, “Challenges and software architec-
ture for fog computing,” IEEE Internet Computing, 2017.

Cheng Li is a PhD candidate in the Department
of Computer Science at the College of William and
Mary. His research interests include SDN, NFV,
machine learning and network security.

Zhengrui Qin is an assistant professor in the School
of Computer Science and Information Systems at
Northwest Missouri State University. He holds a
PhD degree in computer science from the College
of William and Mary. His research interests include
cyber security and mobile computing.

Ed Novak is currently serving his first year as
Assistant Professor of computer science at Franklin
and Marshall College in Lancaster, PA. He recently
finished his Ph.D. in May of 2016 at the College
of William and Mary under the advisement of Dr.
Qun Li. His research area is focused on security and
privacy of smart mobile devices, and the Internet of
Things.

Qun Li is a professor in the Department of Com-
puter Science at the College of William and Mary.
He holds a PhD degree in computer science from
Dartmouth College. His research interests include
wireless networks, IoT, edge computing, pervasive
computing, and security & privacy. He received an
NSF Career award in 2008.


