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Abstract—Internet of Things (IoT) technologies are revolu-
tionizing healthcare, providing many so-called “smart health”
opportunities, ranging from remote monitoring of health statistics
to chronic condition self-management. This paper describes an
IoT-based approach to the intervention of type 1 diabetes (T1D),
which is a major chronic disease with significant economic and
social impact worldwide. Specifically, we focus on the structure,
functionality, and development process of MyDay, which is an
IoT-based, multifaceted self-management problem solving tool
for pediatric T1D patients. Empowered by IoT technologies,
MyDay can connect with various devices to integrate traditionally
paper-documented physiological data (e.g., blood glucose values)
in real time with psychosocial and contextual data, such as
mood, stress, and social activities. By integrating relevant—but
heterogeneous—data sources, MyDay can create personalized
feedback for self-awareness of factors associated with diabetes
self-management patterns and promote data sharing and problem
solving.

Iterative user-centered design cycles were used throughout the
development of MyDay to document and/or troubleshoot feasibil-
ity and technical stability, optimize feedback for effective health
communication through data visualization, identify barriers to
app use, optimize assessment, and evaluate capability of the app
as a problem solving tool. Each iterative design round identified
technical and design issues that were addressed in subsequent
rounds by incorporating user input and expertise. An in-vivo
case study and one-month pilot study of the system indicated
high feasibility and use of our IoT-based tool.

Index Terms—Type 1 diabetes; ecological momentary assess-
ment; user-centered; iterative design; feedback; data visualiza-
tion; mHealth; IoT in healthcare

I. INTRODUCTION

Emerging trends in IoT-based healthcare. Internet of
Things (IoT) technologies are becoming a pervasive means of
enabling the communication of computing devices embedded
in everyday objects (such as smartphones, wearables, and
sensors) with themselves and humans over the Internet to
achieve useful objectives, such as improving traffic control,
monitoring food safety, and evaluating allergic reactions to
new medications [1], [2]. IoT technologies are increasingly
applied in domains like smart cities, supply chains, and health-
care [2] to enable better decision making and to enhance safety
and productivity. For example, IoT is driving the evolution of
healthcare, providing many smart health opportunities from
remote health statistics monitoring to chronic condition self-
management [1], [3].

As personal mobile and wearable devices, as well as smart
sensors (such as motion sensors for activity tracking and
implantable biosensors for chronic disease monitoring [4])
become ubiquitous and adopted in the healthcare domain,
various types of data related to an individual’s health status
(such as heart rate, step counts, eating patterns, and psy-
chosocial behavior) is more accessible than ever in the form
of IoT-based apps [3]. When these apps are integrated with
cloud computing services, it has become feasible to amass
heterogeneous data for analyses and to communicate insights
gleaned from the analytic results back to end users, such as
patients and healthcare professionals. As a result, IoT-based
healthcare apps are providing insight into treatment options
specific to an individual or a cohort with similar traits, leading
to lower cost of care and improved disease self-management.

Our focus → IoT-based type 1 diabetes management.
Type1 diabetes (T1D) is a major chronic disease with world-
wide impact, e.g., annual healthcare costs associated with T1D
are as much as 14.4 billion dollars [5]. In the U.S. alone,
T1D affects over 1.25 million people, including nearly 200,000
children and adolescents younger than age 20 [6]. By 2050,
T1D diagnoses are projected to triple, with an estimate of
600,000 youth cases [7].

Patients with T1D must perform many self-management
tasks several times each day to avoid or delay complications.
Despite extensive (and costly) healthcare efforts, less than one-
third of T1D patients achieve target blood glucose control
levels, which are essential in reducing the risk of diabetes
complications, such as hyperglycemia and kidney disease [8].
As a consequence, T1D patients incur an estimated loss of
life-expectancy of up to 13 years [9].

Driven by the advent of IoT in healthcare—and more
importantly the need for automated insulin administration
systems—researchers have explored various applications of
smart devices in T1D intervention, such as subcutaneous
sensors for continuous glucose monitoring [10], [11], mobile
devices for self-management gamification and education [12],
[13], wearables for physical activity tracking [14], [15], and
Bluetooth devices for cheaper data transmission [16], [17]. Ex-
isting research, however, mainly focuses on monitoring phys-
iological characteristics (such as blood glucose and HbA1c
values) that are directly associated with T1D. In contrast,
little research focuses on non-physiological traits, such as



psychosocial behavior and contextual factors, that may also
be relevant in identifying diabetes self-care phenotypes.

Our prior work on T1D [18]–[20] suggests that studying
non-physiological traits is important, especially in a young
population with T1D. This population is at particularly high
risk of inadequate adherence to their diabetes regime and is
also susceptible to negative emotions, e.g., from difficulties
in coping with society and interacting with peers, which could
result in blood glucose excursions [21]. Due to the relatively
broad adoption of IoT-based devices by this population, how-
ever, a promising approach is to leverage IoT technologies to
create a system that targets the needs of this particular patient
group.

Our contribution → the MyDay IoT-based self-
management problem solving app. IoT-based devices (such
as Bluetooth-enabled glucose meters) have become common in
T1D management protocols. Key challenges remain, however,
with respect to (1) integrating real-time physiological data
(e.g., blood glucose) with behavior data and (2) communicat-
ing behavioral patterns to young diabetic patients in a manner
that integrates sensibly and seamlessly with their usage of IoT-
based devices. To address these challenges, we have developed
MyDay [22], [23], which is an IoT-based self-management
problem solving mobile app designed to provide personalized
behavioral treatments (e.g., a just-in-time adaptive reminder
for insulin administration) for adolescents with T1D.

As shown in Figure 1, we apply IoT concepts to connect
human expertise with smart devices, creating a user-centered
system for adolescents with T1D. By combining IoT com-
munication protocols, Bluetooth glucose meters, and mobile
device software/hardware components, MyDay integrates real-
time blood glucose values into multimedia stories created
by teenagers, psychosocial (such as mood and stress) and
contextual (such as location) data that may be relevant in iden-
tifying self-care phenotypes. This app also creates personalized
feedback for self-awareness regarding (1) patterns of diabetes
self-management and (2) how those patterns relate to different
aspects of adolescents’ daily experiences, promoting data
sharing and problem solving. In addition, by describing the
iterative development process we applied to develop MyDay,
we also demonstrate how MyDay addresses the challenges
outlined above.

The MyDay app was written in Java for Android and
Objective-C for iOS. The MyDay server was written in Ruby
On Rails (v4.1) with a firewall-protected PostgreSQL database
backend and provided an administrative web interface for man-
aging users and content, as well as an API for serving requests
to users’ mobile devices. To collect blood glucose data, each
mobile device was paired with an iHealth’s BG5 Bluetooth
Low-Energy glucometer [16] via a short-range Bluetooth
connection and the meter’s accompanying app. The MyDay
server used iHealth’s open API to communicate with iHealth’s
secure cloud data storage, thereby automating the data col-
lection process as new BG measurements were collected in
real-time. All communications were handled through secure
SSL communications with mobile connections managed with

Fig. 1. Integrating IoT Concepts, Technologies, and Human Expertise to
Create a User-Centered Self-Management App for Adolescents with T1D

temporary authorization tokens.
Paper organization. The remainder of this paper is orga-

nized as follows: Section II provides background information
on type 1 diabetes and IoT-based related research in this space;
Section III describes the user-centered development methods
and process of MyDay that incorporates human intelligence
into technical decisions; Section IV discusses key design
considerations and technical challenges faced, focusing on data
collection and integration with IoT-based devices and person-
alized feedback approach; Section V examines the design and
results from a case study that systematically documented user
experience with the app; Section VI summarizes the results
and feedback from a pilot study that applied MyDay to 31
participants over a one-month period; and Section VII presents
lessons learned, clinical implications, and future work from
our research and application of MyDay.

II. BACKGROUND AND RELATED RESEARCH

This section provides an overview of T1D and discus-
sions of three important aspect to T1D, including barriers to
maintaining treatment adherence, the importance of problem
solving skills for adolescent patients, and the ecological mo-
mentary assessment data collection method. Related work on
applying IoT technologies in T1D intervention research is also
presented.

A. Overview of Type 1 Diabetes

T1D is an autoimmune disease where the body produces
little or no insulin, necessitating multiple daily injections of
insulin or insulin pump therapy for survival. A key issue
for individuals with T1D is glycemic control, where T1D
patients monitor their blood glucose (BG) levels multiple
times per day using BG meters and less frequently with the
addition of continuous glucose monitoring devices. A 2-3-
month average of glycosylated hemoglobin is assessed in clinic
via the HbA1c test, which is indicative of overall BG control.



In-target glycemic control is critical in delaying or avoiding
complications, both short-term (e.g., hypo- or hyperglycemia,
diabetic ketoacidosis) and long-term (e.g., retinopathy, kidney
disease, neuropathy, cardiovascular disease) [8].

In addition to monitoring BG, other related tasks performed
daily by individuals with T1D include counting carbohydrates
and insulin self-dosing and administration. Support of self-
management behaviors that increase in-target BG values is
especially important in adolescents with T1D. These behaviors
are important not only because of the long-term health impacts
of inadequate glycemic control, but also because this popula-
tion is at particularly high risk of struggling with adherence
to their diabetes treatment regimen [24].

Barriers to adherence. Maintaining diabetes adherence is
hard due to the frequency and complexity of self-management
and also because tasks must be performed around meals,
snacks, and exercise. Psychosocial and environmental factors,
such as location, emotional state, social context, and other
surrounding activities, can create barriers to diabetes treat-
ment adherence. Moreover, disrupted self-management may
be associated with daily living patterns, such as time pressures
during certain times of day, social context, or around specific
activities like sports practice [19]. Adolescents with T1D are
also susceptible to negative emotions and difficulties in dealing
with society and interacting with others, which could also
result in poorly controlled symptoms [21].

Importance of problem solving skills. Problem solving
interventions have shown success in helping adolescents with
T1D improve their self-management practices and health
outcomes through reducing barriers to adherence [18], [19].
Successful problem solving is predicated upon accurately
identifying those barriers and patterns of behavior. Problem
identification or problem awareness is the first step in the
problem solving cycle. Based on previous research [18], [25]–
[27], improved recognition of how self-management is related
to situational, contextual, and psychosocial factors should
provide a data-based means to address the first step in problem
solving, known as problem orientation, problem identifica-
tion, or problem awareness. Through pattern recognition and
problem awareness, the MyDay app was designed to improve
diabetes self-management skills, providing IoT-enabled per-
sonalized real-time feedback and behavioral problem solving
support. Behavioral pattern recognition and problem awareness
are cognitively difficult for adolescents due to their normative
developmental stage of higher-order executive functions, the
multifactorial nature of causation, and the repetitiveness of
self-management.

Ecological Momentary Assessment (EMA). EMA is a
method used to provide more accurate data for problem
solving by systematically studying an individual in real-
time or near real-time to more accurately assess and relate
the experiences and environment of the individual to health
behaviors and outcomes [28]. EMA can help identify novel
behavior patterns through data collection at either random
or critical specified points over time [20], [28]–[30]. EMA
assessments are collected close in time or at the time of

events of interest, which helps minimize response bias that
may otherwise occur using retrospective methods [28]. Given
the penetration of smartphone use in adolescents and emerging
adults, momentary assessment can be feasibly implemented
via smartphones and wireless technologies and completed
assessments streamed to research associates.

Adolescents with T1D perform virtually all their self-
management practices outside of a medical setting (e.g., they
are expected to check their BG, count carbohydrates, and dose
insulin while at home, school, or out with friends). To discern
and address factors that interfere with appropriate diabetes
self-management, potential barriers must be identified where
and when they occur. EMA is an ideal tool for studying the
interaction between person variables and the natural environ-
ment of health behaviors [31] and has been successfully used
in studying diseases, such as asthma, cancer, eating disorders,
and diabetes [32]–[35].

B. Related Work

A number of other studies that have applied IoT technolo-
gies in T1D intervention research are described below and
compared with our research on MyDay.

IoT-based clinical interventions. Many efforts have been
associated with clinical interventions that study the effect of
therapy and overall patient’s lifestyle on glucose metabolism.
Philip et al. [11]surveyed various types of sensors used in
real-time continuous glucose monitoring (RT-CGM) in youth
with T1D across different clinical studies. They observed that
RT-CGM can potentially help patients improve in metabolic
control of T1D, provided that there is adequate education and
support on sensor therapy and the devices used.

Biester et al. [36] proposed the use of SmartGuard technol-
ogy in a sensor-augmented insulin pump to trigger an auto-
matic stop of insulin delivery based on predicted low glucose
levels. Their study documented reduced risk for hypoglycemia
in pediatric T1D patients without increasing HbA1c. Patients
must be educated, however, against extra carbohydrate intake
in response to an alarm associated with low BG prediction to
avoid rebound hyperglycemia.

Prototype portable artificial pancreas (AP) [37], [38] have
been developed using glucose sensors, insulin pumps, and
radio-bluetooth connections. More advanced AP systems, such
as presented by Kovatchev et al. [39], also integrated smart
phones with a wireless network for data transmission and
remote monitoring. Short-term clinical studies of these new
systems conducted safety of use in young people with T1D,
but longer-term studies are needed to monitor their full func-
tionality.

IoT-based self-management improvement. Another cate-
gory of related T1D research focuses on health monitoring
systems to provide patients with effective means for tracking
and displaying important T1D self-management variables,
such as BG, food intake, and physical activity, as seen in
[40]–[42]. More recent work has involved more personalized
approaches, such as individually-tailored notifications and
educational support. For example, Li et. al. [43]proposed a



predictive model by capturing patient similarities of pooled
population data to personalize blood glucose prediction for
an individual. Using a mobile-based approach, they collected
pertinent daily events including insulin, meals, exercise, and
sleep, and implemented the proposed prediction model as a
prototype mobile application to create personalized notifica-
tions.

Boulos et al. [12] presented a class of digital intervention in
diabetes that gamifies disease management using the Internet
and affordable mobile and tablet devices. Digital games utilize
social cognitive theory to increase healthy behaviors and
psychological outcomes, promoting better self-care.

The following three aspects distinguish our research on
MyDay from prior work described above:

• Our research does not reply on sensor therapy, which is
not accessible to many adolescents with T1D.

• Our IoT-based tool is the first to collect and integrate
Bluetooth-transmitted BG data with other relevant health
and behavioral data from young people with T1D all
in real-time and provide personalized feedback based
on individual blood glucose patterns, psychosocial, and
contextual settings.

• Our tool engages health communications via feedback
with insightful and graphical visualizations to help ado-
lescents with problem solving and improve T1D self-
management.

III. ITERATIVE DESIGN PROCESS FOR THE MYDAY
IOT-BASED APP

This section describes our user-centric design cycles to
provide a detailed example workflow of connecting IoT tech-
nologies with humans in an actual clinical study setting.
This workflow actively engages human intelligence by incor-
porating feedback, suggestions, and observations (regarding
what worked or did not work in each cycle) from our multi-
disciplinary research team, adolescent participants, and parents
into the subsequent cycle. Our research team consisted of ex-
perts in pediatric psychology, pediatric endocrinology, health
communication, biomedical informatics, childrens media, and
computer science, collaborating to create the initial specifi-
cations for the tool, select feasible IoT-based devices to use,
prioritize and incorporate adolescent feedback.

Table I presents an overview of the five design cycles, each
of which provides the technical and behavioral support for later
experimental evaluation of MyDay. Results of the iterations
and lessons learned related to assessment and feedback are
summarized separately in the next section.

A. Design Iteration 1: On Paper

Before the MyDay app was developed for use on mobile
devices, the team conducted several design iterations on paper
that were reviewed by the research team, who suggested
changes to the app. Mock ups of the main data entry home
page and examples of assessment questions are shown in
Figure 2. Several feedback graphics were explored to integrate

many influences or factors simultaneously. These more com-
plex graphics were abandoned as too complicated and replaced
with simpler and more intuitive feedback graphics to enable
rapid understanding of the depicted relationships.

To date, few assessments of psychosocial constructs have
been validated for EMA. Self-reported psychosocial assess-
ment instruments are often multifactorial and include a num-
ber of items that would be burdensome within a momen-
tary assessment. Assessment items, however, were crafted
based on previous validated approaches to the extent pos-
sible. For example, mood was assessed using the vali-
dated two-dimensional valence (negative/positive) and arousal
(high/low) [44].

B. Design Iteration 2: A Working Prototype

Before committing time and resources on the software and
database, the general format for the assessment, response
options, and feedback graphics were tested in wireframes
with adolescents. A group of six adolescents (67% male; Age
(years): M = 15.0, SD = 1.1; HbA1c not obtained for this
sample) with T1D were recruited within a pediatric diabetes
clinic. Depending on which mobile platform teens typically
used, they were shown an iOS- or Android-version of the
assessments, which are shown in Figure 3. Each teen was
then led through a semi-structured interview about the overall
interface design, item language, types of feedback and data
visualizations they would like, app data sharing (how and with
whom), and their perceptions of how they could use the data
to solve diabetes-related problems. Adolescent participants’
feedback was incorporated into the design and used to create
functional prototypes of the MyDay app.

C. Design Iteration 3: In Vivo Testing

The first functional version of the MyDay app was tested
by four adolescents (50% male; Age (years): M = 15.5, SD =
1.7; HbA1c: M = 8.0%, SD = 2.9%) recruited from the same

TABLE I
OVERVIEW OF FIVE MYDAY DESIGN CYCLES.

Design
Cycle Goal Feedback Obtained from

1 Conduct rapid design feedback it-
erations on paper before develop-
ment on mobile devices

Research team

2 Obtain feedback on the assessment
items, response options, and feed-
back graphics before database and
API development

Adolescent participants

3 Obtain feedback on usability, com-
prehension of the intent of the
questions, engagement, and sug-
gestions for how to improve

Adolescent participants

4 Obtain feedback on experiences us-
ing the app and an infographic-
style feedback summary of data

Adolescent participants

5 Test on-demand real-time visual
feedback that integrated BG and
psychosocial-behavioral-contextual
data

Research team



Fig. 2. Initial Data Entry Screen Design of the MyDay App

pediatric diabetes clinic described above via clinician referral
and interest cards. Each adolescent was given a Fitbit wearable
activity tracker [45] and asked to place it around their wrists to
measure their physical activity. The goal was to link their activ-
ity patterns to BG changes and self-management behaviors via
Bluetooth, but these activity tracker data were not integrated
into the MyDay system due to concerns regarding feasibility
of wearable tracker use as described later in Section IV-A.

Research staff first met with each adolescent to help them
install the MyDay app. Research staff initially used the
adolescent’s Unique Device Identifier (UDID), a 40-character
value that is iOS- device-specific, to create an installation link
for iPhone. During subsequent rounds of testing, iPhone and
Android users could install MyDay via their respective app
stores. Participants were then shown how to use the app, and
after a use period of 8-9 days the participants discussed their
experiences using the app with research staff.

Data from this round of in vivo testing were primarily qual-
itative; while the responses entered for each of the four daily
EMA entries were recorded, the main interests in this round
of feedback were (1) MyDay’s usability, (2) comprehension
of the content, (2) understanding feedback, (3) engagement
with the app, and (4) suggestions for how the app could
be improved. Modifications from the first round of prototype
testing were implemented rapidly to allow a new round of field
testing to begin as soon as possible.

D. Design Iteration 4: In Vivo Testing

For this next iteration, eight adolescents (50% male; Age
(years): M = 15.3, SD = 1.7; HbA1c: M = 9.6%, SD = 3.2%)
were recruited using the same method. Each participant used
the MyDay app between 7-14 days, and Fitbit activity trackers

were given to the first five participants enrolled to wear during
their participation. As in the previous round of testing, research
staff met with participants at the start of their time using the
MyDay app to introduce the study. The participants were then
interviewed by the staff again at the end of their period of use
to record their experiences.

To test a range of feedback graphics simultaneously, each
participant was shown an infographic-style feedback summary
of their data from the app during their interview. This draft
summary, called ”All About Me,” was a visual representation
of aspects surrounding their diabetes self-management, such
as where they were when their blood sugar was high, the
number of discussions they had about diabetes that week, or
what barriers were in place when they missed a blood sugar
check. A sample of an All About Me infographic is shown in
Figure 4.

E. Design Iteration 5: Intensive Internal Testing

The remaining development of the MyDay app consisted
of (1) implementing the complete suite of on-demand real-
time visual feedback that integrated BG and psychosocial-
behavioral-contextual data, (2) integrating the iHealth [16] API
to incorporate Bluetooth BG meter data with meal and bedtime
data collected from MyDay, (3) creating a system for matching
BG data from the meter to the correct MyDay assessment, and
(4) implementing a method for users to share their data and
graphical feedback. To provide rapid feedback on the validity
of the BG data going into the system, an internal testing cycle
was conducted with staff testing their BG levels and utilization
of test solutions created to indicate high and low glucose.
Moreover, the research team wanted to test the broadest range



Fig. 3. Data Collection Elements and Assessment Types

Fig. 4. Initial Draft of All About Me Infographic

of mobile phone types and operating system versions within
a controlled testing environment.

Seven research team members, each using a different com-
bination of mobile device type, mobile platform, and operating
system version, were given the Bluetooth blood glucose meters
and asked to submit data on a regular basis using the MyDay
app and the meter. Submitted values were intentionally varied
to test different patterns of emotional states and environmen-
tal factors, and standardized glucose solutions were used to
simulate out-of-range blood sugars. Using Bluetooth and Wi-
Fi technologies, submitted data entries were retrieved from
the heterogeneous IoT-based devices and securely transmitted
to our research staff for analysis. These entries were also
recorded manually in a paper form so the data being displayed
in the feedback could easily be compared to what should have
been there.

During this evaluation process, the team continuously tested
the accuracy of the data being returned from our IoT-based
system, the clarity and ease of understanding of its provided
graphical feedback, and the stability of the system performance
under different potential use situations. Complex scenarios
were tested to ensure the feedback graphs were updated as
intended. For example, some research system testers did not
upload meter data for several days to see how graphs updated
after the time delay. Others neglected to submit a meal time or
skipped items within an assessment to test out various displays.
The result of this internal testing process was a final prototype
of the MyDay system that was deemed ready for a larger-scale
pilot test, as discussed in Section VI.

IV. TECHNICAL CONSIDERATIONS AND KEY CHALLENGES

This section presents detailed design modifications based on
results from the iterations and lessons learned from the itera-
tive design process described in Section III. We also identify
key challenges faced and mitigation solutions attempted as
we applied IoT concepts in adolescent T1D intervention via
MyDay and experimented with different visualizations to pro-
mote adolescents’ interactions with the tool. The discussions
focus on three aspects of the system: (1) data collection of
EMA assessment, (2) real-time blood glucose integration, and
(3) providing personalized real-time feedback. The technical
specifications of the system are descried at the end of this
section.

A. Data Collection of EMA Assessment

The MyDay administration interface provides flexible cre-
ation of data collection content, format, frequency, and timing.
Data collection based on photos, rewards for data entry in the
form of points, and data entry notifications were administrative
features we modified based on research and implementation
needs.

All daily assessments were available for data entry before
or after a notification time for a full calendar day, from
midnight to midnight; early rounds of testing showed that
adolescents have highly variable daily schedules, even during
the school year. Users received four reminder notifications on



their devices per day to submit the assessments. The timing
of each notification was tailored to each individual’s indicated
approximate mealtimes and bedtime. This daily assessment
entry deadline was problematic for some users, especially over
winter and summer school breaks when they were awake past
midnight more often. During the initial 2-3 days of the proto-
col these data were monitored, and the case study participant
described in Section V was contacted for troubleshooting if
there were apparent missing data.

Each mealtime assessment asked the same set of questions.
The assessment was kept as brief as possible with the goal
of completing an assessment in less than one minute to
help maintain engagement and minimize response burden.
The fourth assessment, at the end of day, contained more
retrospective items that considered the day as a whole and
attempted to promote positive psychology.

A question was added to each mealtime assessment about
the time of the meal, to allow the system to link the correct
blood glucose meter reading to each meal. For the bedtime
assessment, the system used the last glucose value of the day
after 8:00 p.m. If a bedtime value also matched a mealtime
value (e.g., a check at dinner after 8:00 p.m. with no later
checks), the BG value was recorded as a mealtime glucose
value and the bedtime assessment for that day recorded as a
missed glucose check.

The MyDay system scanned for matches any time new
data, EMA or BG, were added to the server or when a
new MyDay assessment was added. The system looked for
unmatched glucose values that would fit the data entry criteria,
and when new glucose data were added, it searched for MyDay
assessments that did not currently have an associated glucose
reading. This process is shown in Figure 5.

Fig. 5. Process of Blood Glucose Data Integration

An on-demand “Snack” assessment, which is an abbreviated
version of a mealtime assessment, could be completed an
unlimited number of times per day to gain information on
non-mealtime BG and ecological factors. An “I did not eat”
option was added to encourage participants to complete a
mealtime assessment even when a meal was not actually eaten.
In general, habitually skipped meals are a risk factor for worse
glycemic control.

Young participants were frequently unable to use the Fitbit
at the very times when they were most active. For example, a
dance instructor would not allow one adolescent to wear the
tracker during class, and a football player’s Fitbit frequently
fell off during practice. Though physical activity plays an
important role in BG patterns, the research team decided to
stop asking participants to use a Fitbit activity tracker, focus
on other potential issues that influence self-management and
glycemic control, and revisit how to better integrate exercise
issues in subsequent versions.

B. Real-time Blood Glucose Integration

A key challenge faced by technology designers, researchers,
people living with diabetes, and their families is the lack of
simple and direct access to BG data from devices [46]. Self-
reported BG logs have been shown to be inaccurate, with
individuals often misreporting values, forgetting to enter data,
omitting undesirable readings, or making up values [47]. Real-
time BG data integration into MyDay was made possible by
the iHealth BG5 Bluetooth glucometer [16], a commercially-
available Bluetooth Low-Energy meter. This glucometer elim-
inates the need for self-reported BG data by automating the
BG logging process, and is therefore a feasible smart sensor
for us to integrate into our IoT-based system.

Using the most recent version of the system, iHealth’s
relatively new meter with an open API was incorporated to
our secure server that integrated real-time BG data to provide
feedback in the MyDay app. The glucose meter connected
to an Android phone or iPhone via a short-range Bluetooth
connection. By pairing the meter to our test users’ mobile
device via Bluetooth, the accompanying meter’s app service
automatically pushed de-identified data to the iHealth secure
cloud site via a cellular or Wi-Fi data connection. When
a BG test was performed while the meter was synced to
the smartphone, the meter’s accompanying app automatically
uploaded the value to the company secure cloud server.

The Bluetooth meter did allow for standalone BG monitor-
ing and caching when the meter was not paired to a mobile
device. Those cached values were pushed to the company
cloud site the next time the user paired the meter. Every time
new values were updated, our system requested the meter API
to securely send the value to our MyDay server that recorded
the data to the MyDay database.

All glucose values were collected, although the MyDay as-
sessment focused on mealtimes and bedtime. To be considered
a mealtime glucose value, the MyDay system looked for the
most recent glucose reading within one hour before the user-
reported time of the meal. This window was based on the
recommendation of diabetes clinicians on the research team.
The iHealth API was used to acquire glucose readings in real
time and subsequently integrate the data into the MyDay app’s
graphs and logbook.

C. Personalized Real-Time Feedback

Upon collecting and integrating the heterogeneous data
sources, personalized feedback was created to close the loop of



TABLE II
DESCRIPTIONS OF GRAPHICAL FEEDBACK DOMAINS.

Feedback Menu Description of Graphical Feedback
Home Overall summary and week by week compar-

isons of low, in range, and high BGs
Good News Badges for meeting the criteria for BGs in range,

low stress, high app use, good BG average, and
high number of BG checks; best things from the
past 7 days

Highs Overall high BGs and by day of the week and
time of day

Lows Overall low BGs and by day of the week and
time of day

People + Places Top 3 most frequently reported people and
places displayed with BG highs, lows, missed
BG checks, or skipped meals

Stress, Energy, Mood High stress, low energy, and bad mood displayed
with BG highs, lows, missed BG checks, or
skipped meals

Whats Going On Top 3 most frequently reported barrier icons dis-
played with BG highs, lows, missed BG checks,
or skipped meals

Missed BG + Meals Meals eaten with no BG check, skipped meals,
and missing app entries

the IoT system by providing intelligence back to users. MyDay
created personalized feedback to communicate patterns of BG
and how they relate to the adolescents’ behavior. The ultimate
goal is to help these diabetics become aware of how and where
they could improve problems in their self-management.

In earlier rounds of testing adolescent participants were
shown a sample of a draft summary “All About Me” in-
fographic during enrollment and were told that they would
receive a custom version using their own data. In obtaining it-
erative feedback from adolescents, however, the asynchronous
graphical feedback was viewed as limited in promoting en-
gagement because it was too far removed from actual events.
Individuals who used the MyDay app for more than one
week reported losing interest in submitting EMA assessments
because they could not see how their data trends were changing
over time. The original intention was to provide an All About
Me data summary to each user on a weekly or biweekly
basis. User feedback prompted thinking about ways to pro-
vide more immediate feedback within the app via graphical
communication. Moreover, participants repeatedly commented
that they would benefit from more types of immediate and real-
time feedback regarding their data from the MyDay app. For
example,

1) “It would be cool if you could (see different graphs by
day).”

2) “Show (graphs) by day and kind of just scroll down to
each meal?”

3) “It would be kind of interesting to see how many times
when I was rushing, how many times I was high versus
in range versus low. Compare those contexts.”

Due to the participant feedback received, substantial
changes were made to MyDay’s approach to graphical feed-
back by integrating a greater variety of feedback that was
viewable through the app itself. A menu with the following

eight tabs was introduced: Home, Good News, Highs, Lows,
People + Places, Stress + Energy + Mood, Whats Going
On, and Missed BG + Meals. Integration of BG values with
psychosocial and emotional data was provided as feedback
within feedback in the app, and all BG values were recorded to
the MyDay logbook. After the data from different sources were
matched, the app provided immediate feedback on various
combinations of BG data and relevant factors such as time
of day, day of the week, social context, physical context, and
mood and stress, as described further in Table II and shown
in Figure 6.

All available BG values, as opposed to only mealtime BGs,
were used in the data visualizations when possible. Some
graphs depended on self-reported mealtime data, however, so
they were limited to those time points with self-report. With a
few exceptions (e.g., missed app entries and skipped meals),
the feedback focused on integration with BG data because it
was the most salient data to help users identify patterns in their
diabetes self-management. In particular, the BG data helped
users see where they were, who they were with, how they
were feeling, or what was going on around them when they
missed BG checks or when their blood sugars were out of
target range.

MyDay graphical feedback was a major focus for the
architecture of the app’s assessment questions and design.
The graphical information within the feedback was organized
to facilitate best practices in personalized feedback: rapid
understanding, reveal novel patterns and associations, provide
meaningful information, and provide real-time updates [48].
Participants also received feedback on how many entries they
completed in the form of points and could look at a gallery of
photos they had taken at any time. Any of the eight feedback
pages and the points, logbook, and gallery pages could be
spontaneously shared via text, email, or social network.

V. CASE STUDY

This section describes the design and results of a case study
conducted to provide in-depth in vivo data and user feedback
on the MyDay app. The analytic goals of the case study were
to

• examine the feasibility of data collection and behavioral
sampling schedule (at each meal and bedtime) over the
course of four weeks and

• explore engagement with the app and its features such as
the graphical feedback and sharing.

A 14-year-old male with T1D agreed to use the app to help
identify technical, communication, behavioral, and implemen-
tation issues for one month. Multiple relevant patterns were
identified in his use of the app and in his graphical feedback
that indicated protective and risk-related patterns.

By the end of the one-month study period, the case study
user had completed 87% (95/109) of expected entries. Eleven
of the fourteen missed entries were missed at bedtime. This
individual reported going to bed after midnight most nights
and forgot to enter bedtime information before the next
calendar day.



Fig. 6. Screenshots of Personalized Graphical Feedback Derived from IoT Device Collection and Analysis

He checked his BG 70 times over one month for an average
of 2.3 checks per day and missed 42% of his expected meal-
time BG checks. The case study took place during summer,
and not surprisingly his data patterns did not change from
weekday to weekend and indicated that he was at home
for every entry. Most (58%) of his high BG values were
at nighttime. Eighty percent of his morning BGs were low,
which is over three times more often than any other time of
day. He also reported skipping most meals at breakfast (8/27)
compared to lunch (5/27) or dinner (0/27).

Regarding feedback about the app itself, this participant
reported he liked seeing the overall BG feedback on the home
page with his low, in range, and high blood sugar percentages
combined. He thought the icons used throughout the app were
easy to understand. The feedback helped him identify self-
management patterns such as he was ”always low in the
morning” and “high at dinner.” Another data pattern relevant
for problem solving was that he missed his mealtime BG check
9/28 times when he had low energy. He reported that the Stress
+ Energy + Mood feedback page was the most interesting page
because he realized stress affected his numbers and thought
the feedback in general was ”really cool.”

Research staff also interviewed the case study participant’s
parent to obtain general feedback and insights regarding her
son’s use of MyDay and to explore ways that a parent and teen
spontaneously interacted about the data and app. The mother
reported that MyDay was “awesome” because it was used
on the phone, something her son always has with him, and
is a discrete way to keep his information close by. She also
reported that the MyDay app could be helpful for her son’s
awareness of self-management and problem solving around
diabetes because it was personalized and worked with his data.

After analyzing the graphical feedback in the app, the
parent and teen reported discussing how his BG values were

higher than expected and how it helped him adjust his self-
care to address that issue. The parent reported that she was
“somewhat” involved in her son’s use of the MyDay app in
the past month; they looked at the graphical feedback twice,
and she reminded him to complete entries some in the first
week. When asked what she would tell another parent whose
child is going to use the app, she replied they would like it
and that it is the “the way of the future.”

VI. PILOT STUDY

After digesting the detailed feedback from the case study
reported in Section V, we enhanced the app and then con-
ducted a more comprehensive pilot study, which is described
in this Section. This pilot consisted of 31 adolescents users
of MyDay who participated in this study for one month.
After the study period, adolescents and their parent completed
interviews about the MyDay. Adolescents reported positive
experiences with using the app overall but suggested changes
to the feedback visualizations. Eighty percent of parents
found the app helpful in creating diabetes awareness for their
child. Likewise, 93% of parents found the trackers in the
app useful in encouraging parent-child collaboration about
diabetes. Only 20% of teens shared their tracker information
with their parents, but 90% of the parents expressed their
desire to automatically receive their child’s tracker data.

Most parents observed that their teens considered the BG
logbook and graphical visualizations of data trends to be the
most valuable components of the app. Parents also provided
suggestions for improving MyDay in terms of its data visu-
alizations and data sharing capability. The research team then
evaluated the technical feasibility of gathered feedback and
made corresponding changes to enhance the MyDay app.

Figure 7 presents example screenshots of data collection
inputs based on user feedback in the latest version of MyDay.
The example inputs in the figure capture the psychosocial



Fig. 7. Example Screenshots of the MyDay App Updated in the Pilot Study

barriers that contributed to an adolescent’s pre-meal missed
BG measurement and their mood at breakfast.

Figure 8 shows example feedback screens in MyDay. Using
illustrative bar charts with corresponding statistics, MyDay
provides clear and collective feedback to indicate the lo-
cation and social contextual factors associated with missed
BG checks. By integrating Bluetooth BG meter data, MyDay
also provides overall BG monitoring and enables weekly
comparisons of BG values, motivating the development of
problem solving skills in adolescents with T1D.

VII. CONCLUDING REMARKS

Initial feedback and data from iterative design cycles and a
case study showed how our IoT-based MyDay app integrated
bio-behavioral information for real-time personalized feedback
to help adolescents with T1D. The MyDay app represents
an example of an IoT-based, hybrid human-reported and
automated data collection system. This app enabled users to
predictably and regularly schedule multiple daily momentary
assessments and provided useful insights for adolescents with
T1D about their self-management patterns.

The case study and initial pilot study described in Sec-
tions V and VI, respectively, confirmed initial acceptability,
feasibility, and the utility of MyDay in identifying novel
behavioral targets for problem solving. The user-centric design
process described in Section III yielded a readily accessible
and comprehensive app to help young people with T1D
identify personally relevant data patterns and behaviors that
can positively impact their self-management practices and
blood glucose values.

Based on our experience applying IoT concepts and
technologies to create the MyDay adolescent T1D self-
management tool, we learned the following lessons:

• Integrative physiological and behavioral feedback using
real-time IoT technology enhanced the potential impact
of MyDay’s feedback on health behaviors

• IoT technology allowed MyDay to support just-in-time
communication, thereby enhancing awareness and be-
havior change. Ultimately, these capabilities will help
(re)invigorate the science of human feedback in health-
care

• The evidence base for, and potential of, momentary
assessment is growing rapidly. With the adoption of
ubiquitous IoT computing devices (e.g., mobile, wearable
devices and smart sensors) and Internet connections (e.g.,
Wi-Fi and Bluetooth), these data are becoming much
more accessible and affordable.

Our work with MyDay is ongoing and we are in the process
of developing a means to offset the self-report burden by using
background data collection, proxy variables or physiological
assessment for some relevant factors such as stress, GPS
for location, more unobtrusive sensors for physical activities
tracking, or inference of social context using multiple time-
location variables. The validity and reliability of many proxy
variables have not been well established. It is also likely that
a relevant core set of human experiences will never lend
themselves to accurate assessment using unobtrusive proxy
variables or triangulation using background data from mobile
devices.

Future development and evaluation work planned for My-
Day include (1) integration and experimental testing of the
app and data within a problem solving system to support data
interpretation and implementation of goals identified from the
EMA, (2) collaboration with clinicians to explore clinical util-
ity and associated modifications needed for clinical workflow
implementation [19], [49], and (3) advanced learning of the
data to produce an intelligent model that can autonomously
provide more adaptive communications, such as a just-in-time
reminder for insulin administration. Integration into clinical
practice will require additional clinic-based design cycles and
integration of data valued by clinicians.
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[41] M. Rusin, E. Årsand, and G. Hartvigsen, “Functionalities and input
methods for recording food intake: a systematic review,” International
journal of medical informatics, vol. 82, no. 8, pp. 653–664, 2013.

[42] J. Tran, R. Tran, and J. R. White, “Smartphone-based glucose monitors
and applications in the management of diabetes: an overview of 10
salient apps and a novel smartphone-connected blood glucose monitor,”
Clinical Diabetes, vol. 30, no. 4, pp. 173–178, 2012.

[43] J. Li and C. Fernando, “Smartphone-based personalized blood glucose
prediction,” ICT Express, vol. 2, no. 4, pp. 150–154, 2016.

[44] J. Ressel, “A circumplex model of affect,” J. Personality and Social
Psychology, vol. 39, pp. 1161–78, 1980.

[45] F. Inc. [Online]. Available: https://www.fitbit.com/home
[46] Y. Kumah-Crystal and S. Mulvaney, “Utilization of blood glucose data

in patient education,” Current diabetes reports, vol. 13, no. 6, pp. 886–
893, 2013.

[47] S. M. Guilfoyle, N. A. Crimmins, and K. K. Hood, “Blood glucose
monitoring and glycemic control in adolescents with type 1 diabetes:
meter downloads versus self-report,” Pediatric diabetes, vol. 12, no. 6,
pp. 560–566, 2011.

[48] W. H. Polonsky and L. Fisher, “When does personalized feedback
make a difference? a narrative review of recent findings and their
implications for promoting better diabetes self-care,” Current diabetes
reports, vol. 15, no. 8, pp. 1–10, 2015.

[49] S. A. Mulvaney, R. L. Rothman, K. A. Wallston, C. Lybarger, and M. S.
Dietrich, “An internet-based program to improve self-management in
adolescents with type 1 diabetes,” Diabetes Care, vol. 33, no. 3, pp.
602–604, 2010.

https://www.fitbit.com/home

	Introduction
	Background and Related Research
	Overview of Type 1 Diabetes 
	Related Work

	Iterative Design Process for the MyDay IoT-based App
	Design Iteration 1: On Paper
	Design Iteration 2: A Working Prototype
	Design Iteration 3: In Vivo Testing
	Design Iteration 4: In Vivo Testing
	Design Iteration 5: Intensive Internal Testing

	Technical Considerations and Key Challenges
	Data Collection of EMA Assessment
	Real-time Blood Glucose Integration
	Personalized Real-Time Feedback

	Case Study
	Pilot Study
	Concluding Remarks
	References

