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Abstract
Making informed decisions about applying large lan-

guage models (LLMs) in the domain of software devel-
opment requires thoroughly examining their advantages,
disadvantages, and associated risks. This paper extends
our prior work by comparing multiple LLMs, including
ChatGPT-4, AutoGen, and the recently released ChatGPT-
4o, to evaluate their performance in code generation tasks.
We conduct a systematic analysis of the best-performing
code solutions generated by these LLMs against the highest-
rated human-produced code on Stack Overflow. Our find-
ings reveal that the top solutions generated by ChatGPT-4o
are competitive with—or superior to—the best human so-
lutions across a spectrum of problems, whereas AutoGen
demonstrates distinct strengths in handling complex tasks.

We next delve deeper into AutoGen, which harnesses
multiple LLM-based agents to tackle tasks collaboratively.
We employ prompt engineering to generate test cases dy-
namically for 50 common computer science problems and
then (1) analyze the solution robustness of Autogen vs.
ChatGPT-4o and (2) quantify AutoGen’s effectiveness in
complex tasks and ChatGPT-4o’s proficiency in basic tasks.
Our findings evaluate the suitability of LLMs in computer
science education and underscore their problem-solving ca-
pabilities, as well as their potential impact on the evolution
of educational technology and pedagogical practices.

Keywords: LLMs, Automated Code Generation, Per-
formance of ChatGPT-4o vs. AutoGen, Software Develop-
ment Efficiency, Prompt Engineering.

1 Introduction
Emerging trends, challenges, and research foci. Large

language models (LLMs) [4], such as ChatGPT [3], can
generate complex code to meet a range of natural language
requirements [6]. Software developers use LLMs to gen-
erate descriptions of desired functionality or requirements,
as well as synthesize code in a variety of languages ranging
from Python to Java and Clojure. These tools are being inte-
grated into popular Integrated Development Environments
(IDEs), such as IntelliJ [16] and Visual Studio.

Now that LLMs are easily accessible via the Internet and
IDEs, developers are increasingly leveraging them to guide
their programming tasks. In many cases, the questions and
code samples to which developers apply these LLMs are
the same questions and code samples they would previously
have sought help with via online discussion forums. For ex-
ample, Stack Overflow (stackoverflow.com) is a pop-
ular online forum where developers ask questions and ob-
tain guidance on code samples.

Significant research and development has focused on
applying LLMs to generate quality code from a security
and defect perspective. First-generation LLMs (such as
ChatGPT-3.5) often produced poor quality code due to their
tendency to “hallucinate” convincing text or code that was
fundamentally flawed, although it appeared correct [14].
In addition, LLMs trained on human-produced code in
open-source projects initially incurred vulnerabilities or es-
chewed best practices [2]. Much research on the code qual-
ity generated by LLMs has thus focused on functional cor-
rectness and security [20].

Although it is risky to use LLMs before fully compre-
hending their capabilities and limitations, developers obtain
clear productivity benefits in certain areas. For example,
LLMs help automate repetitive and tedious coding tasks and
perform these tasks faster—and often better—than develop-
ers [8]. This productivity boost is particularly evident when
coding tasks involve APIs or algorithms that developers are
unfamiliar with and thus require detailed study to master be-
fore performing the tasks. Moreover, when these APIs and
algorithms are included in an LLM’s training set it often
generates code for them swiftly and accurately [11].

In addition, a key benefit related to code performance is
how to employ LLMs via prompting and prompt engineer-
ing for many different potential solutions and then bench-
mark them dynamically to identify the most efficient so-
lution(s). A prompt is the natural language input to an
LLM [17, 26]. Prompt engineering is an emerging disci-
pline that structures interactions with LLM-based computa-
tional systems to solve complex problems via natural lan-
guage interfaces [13, 25].
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This paper expands our prior work [9] that compared the
runtime performance of code produced by humans vs. code
generated by ChatGPT-4 in the following ways:

• We extend our earlier experiments by replacing
ChatGPT-4 with the recent ChatGPT-4o [10] release,
which consistently performed better in our experi-
ments. In particular, ChatGPT-4o demonstrated a
marked improvement in understanding complex prob-
lem statements and generating more efficient code.
These improvements are attributed to ChatGPT-4o’s
enhanced training data and refined algorithms, which
enable it to interpret prompts more accurately and gen-
erate more efficient code.

• We also incorporated ChatGPT-4o into our comparison
of AutoGen [22] and the ChatGPT family of LLMs.
This addition offers insights into how these AI tools
differ in terms of accuracy, scalability, and their ability
to handle diverse programming challenges. In particu-
lar, our comparative analysis of ChatGPT-4o and Au-
toGen show they exhibit slightly different success rates
and error handling capabilities, e.g., ChatGPT-4o’s so-
lutions achieve a (92.8%) pass rate with a (7.2%) fail-
ure rate, while AutoGen’s solutions reach a (93.6%)
pass rate and a (6.4%) failure rate.

• We broadened the scope of our analysis by incorpo-
rating new coding problem domains and datasets, as-
sessing how both AI tools perform with larger and
more complex tasks. This scalability analysis pro-
vides new comparative data, highlighting performance
trends across a range of input sizes and complexities.

• A thorough analysis of specific errors encountered by
each AI tool is provided, including their root causes
and potential mitigations. This analysis enables a more
nuanced understanding of the strengths and weak-
nesses of each AI tool than our prior work.

• Our prior work [25] showed how prompt wording in-
fluences the quality of LLM output. We extend that
analysis by focusing on how prompt wording affects
not only code quality but also runtime performance
and scalability. In particular, we investigate whether
varying prompt wording consistently produces faster
and more efficient code across different LLMs.

Paper organization. The remainder of this paper is or-
ganized as follows: Section 2 summarizes the open research
questions we address and outlines our technical approach;
Section 3 explains our testbed environment and analyzes re-
sults from experiments that compare the top Stack Overflow
coding solutions against solutions generated by ChatGPT-
4o; Section 4 examines the effectiveness of applying Au-
toGen to generate programming solutions and compares its
performance with ChatGPT-4o; Section 5 compares our re-
search with related work; and Section 6 presents lessons
learned from our study and outlines future work.

2 Summary of Open Research Questions and
Technical Approach

This section summarizes the open research questions we
address in this paper and outlines the technical approach
applied to each question.

Q1: How does the most efficient LLM-generated code
from GPT-4o compare with the top human-produced
code in terms of runtime performance? This question is
addressed in Section 3, particularly Sections 3.2 (Analysis
of Experiment Results) and 3.3 (Threats to Validity). Sec-
tion 3.2 provides a detailed analysis of the runtime perfor-
mance of code generated by GPT-4o and human-produced
solutions, including comparing their performance across
different input sizes and coding tasks. Likewise, Section
3.3 discusses potential factors that influence runtime per-
formance results, including the limitations in sample size
and problem selection.

Q2: What is the range and reliability of code gener-
ated by GPT-4o in terms of runtime efficiency and prac-
tical application compared to a diverse set of human-
produced code? This question is explored in Section 3,
specifically Sections 3.1.3 (Prompting Strategies) and 3.2
(Analysis of Experiment Results). Section 3.1.3 examines
how different prompting techniques affect the range of solu-
tions generated and their applicability in real-world scenar-
ios, providing a more refined view of LLM performance.
Section 3.2 analyzes the variability and reliability of GPT-
4o solutions across a broad spectrum of tasks.

Q3: Against which human-produced solutions should
LLM outputs from GPT-4o be benchmarked and what
represents the “average” developer’s capability? This
question is addressed in Section 3, specifically Sections
3.1.1 (Overview of Our Approach) and 3.1.2 (Overview of
the Coding Problems). Section 3.1.1 outlines the method
used to select representative human-produced solutions, fo-
cusing on selecting code samples that reflect a broad range
of developer skills, from highly optimized solutions to those
of average programmers. Section 3.1.2 describes the coding
problems chosen for benchmarking, ensuring that the se-
lected human solutions are appropriate for comparing LLM
outputs to software developer capabilities.

Q4: How does AutoGen, with its systematic and
structured LLM prompting, compare with the more
flexible and generalized approach of ChatGPT-4o in
terms of efficiency, accuracy, and adaptability in code
generation? We explore this question in Section 4, specif-
ically Sections 4.1 (Problem Statement) and 4.3 (Method-
ology and Experiment Design). Section 4.1 provides the
context and goals of comparing ChatGPT-4o and Autogen,
emphasizing their different approaches to code generation.
Section 4.3 outlines our experiment design, explaining how
systematic prompting in AutoGen contrasts with ChatGPT-
4o’s more flexible approach, particularly for tests on in-
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creasingly complex problems. The results assess both ef-
ficiency and accuracy in code outputs.

When addressing these four questions, we consider fac-
tors like the stochastic nature of LLMs and the variance
in human-provided coding solutions with respect to qual-
ity and efficiency. This paper also introduces a new fac-
tor—scalability of LLMs—that explores how well these
AI tools perform as problem complexity increases, which
was absent in our previous work. The comparison between
ChatGPT-4o and Autogen in Section 4 further extends this
investigation by analyzing the impact of different technical
approaches on the quality of generated code.

3 Comparing Stack Overview and ChatGPT-
4o-generated Solutions

This section analyzes the results from our comparison of
top human-provided Stack Overflow coding solutions and
the corresponding ChatGPT-4o-generated solutions.

3.1 Experiment Configuration

Below we explain the configuration of our testbed envi-
ronment and analyze the results from experiments that com-
pare the top Stack Overflow coding solutions against solu-
tions generated by ChatGPT-4o.

3.1.1 Overview of Our Approach
Our analysis was conducted on code samples written in
Python since (1) it is relatively easy to extract and ex-
periment with stand-alone code samples in Python, (2)
ChatGPT-4o generates better code in Python than in less
common languages like Clojure, and (3) Python is a popu-
lar language in domains like Data Science where developers
are often familiar with LLMs.

We manually curated our problem set from Stack Over-
flow by browsing questions related to Python. We searched
for categories like “array questions” since they are readily
testable for performance at increasing input sizes. We next
analyzed each question and its candidate solutions to select
question/solution pairs that were isolated and inserted into
our test harness (see Section 3.2).

We avoided questions that relied heavily on third-party
libraries to minimize complexities, such as version discrep-
ancies and dependency issues. These complexities can ob-
scure the assessment of the core algorithmic efficiency of
the code (which is a potential threat to validity, as discussed
in Section 3.3). Instead, we focused on solutions built into
Python’s core libraries and language capabilities.

Wherever possible, we selected the top-voted solution
for comparison. In some cases, multiple programming lan-
guages were present in the solutions, so we selected the
first Python solution, mimicking developers looking for
the first solution in their target language. These decisions

and related methodology considerations are covered in Sec-
tion 3.3.4.

For each selected question, we extracted the question’s
title posted on Stack Overflow and used it as a prompt
for ChatGPT-4o, leveraging OpenAI’s ChatGPT-4o API for
this process. This API automated sending prompts and re-
ceiving code responses, thereby facilitating a consistent and
efficient analysis of its code generation capabilities. This
decision meant that ChatGPT-4o was not provided the full
information in the question, however, which may handicap
it by providing less optimial solutions.1

Figure 1. Experiment Approach for Comparing
Stack Overflow and ChatGPT-4o Solutions

Figure 1 visualizes our experiment approach for com-
paring Stack Overflow and ChatGPT-4o solutions, which is
described below:

1. Problem Selection –

• Manual curation from Stack Overflow
• Select Python questions (e.g., array questions)
• Avoid third-party Python libraries

2. Prompting Strategy –

• Use question titles as prompts
• Leverage ChatGPT-4o API for code generation
• Generate up to 100 solutions per prompt

3. Code Benchmarking –

• Measure runtime performance using Python’s
timeit package

• Small (1,000), medium (10,000), and large
(100,000) inputs

• Generate 100 random inputs per size

4. Data Analysis –
1Our rationale for only using question titles as prompts for ChatGPT-

4o both (1) reflects common real-world scenarios faced by developers and
(2) assesses its ability to generate solutions based on limited information.
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• Compare human and ChatGPT-4 solutions
• Assess efficiency, correctness, and scalability

5. Results Sharing –

• Results repository: Github
• Encourage reproduction and improvements

We measured the runtime performance of each code
sample via Python’s timeit package. Code samples were
provided with small (1,000), medium (10,000), and large
(100,000) inputs, which we progressively increased in size
and measured the effects of scaling on generated code effi-
ciency. For each input size, we generated 100 random in-
puts of the given size and tested the given code 100 times
on each input using Python’s timeit package.

The original Stack Overflow posts, human-produced so-
lutions, and ChatGPT-4o-generated code solutions—along
with our entire set of questions and generated answers—
can be accessed in our Github repository at https://
github.com/elnashara/GenAI-CodeEval. We
encourage readers to replicate our results and submit issues
and Git pull requests with suggested improvements.

3.1.2 Overview of the Coding Problems
Seven problems from Stack Overflow pertaining to array
operations were selected for our analyses. These problems
covered the following array-related challenges:
PA1-Find Missing Number – Identify missing number(s)

in an unsorted array. This task involves determining
which number(s) are absent from a sequence of inte-
gers within a given range.

PA2-Single Duplicate Finder – Detect a single duplicate
number in an unsorted array. The challenge here is to
find one number that appears more than once, without
sorting the array first.

PA3-k Smallest Indices – Find the indices of the k smallest
numbers in an unsorted array. This problem requires
efficiently locating the positions of the smallest values
in the array without sorting the entire array.

PA4-Sum Pairs – Count pairs of elements in an array with
a given sum. The goal is to identify all unique pairs of
numbers whose sum matches the target value, which is
a common problem in algorithmic challenges.

PA5-Multiple Duplicate Finder – Find all duplicates in an
array. This procedure involves scanning the array to
identify and list all elements that occur multiple times,
without sorting the array first.

PA6-Duplicate Remover – Remove all duplicates from an
array. The solution eliminates any repeated values,
leaving only distinct elements while maintaining the
original order as much as possible.

PA7-Quicksort Implementation – Implement the Quick-
sort algorithm, which sort elements efficiently by se-
lecting a pivot and recursively partitioning the array
with respect to this pivot.

3.1.3 Prompting Strategies
In this experiment we applied the following prompting
strategies to generate Python code via ChatGPT-4o:

1. Naive approach, which used only the title from Stack
Overflow as the prompt, e.g., “Generate a Python al-
gorithm to find the indexes of the k smallest number in
an unsorted array.”

2. Ask for speed approach, which added a requirement
for speed at the end of the prompt, e.g., “Generate a
Python algorithm to find the indexes of the k smallest
number in an unsorted array, where the implementa-
tion should be fast.”

3. Ask for speed at scale approach, which provided
more detailed information about how the code should
be optimized for speed as the array size grows, e.g.,
“Generate a Python algorithm to find the indexes of
the k smallest number in an unsorted array, where the
implementation should be fast as the array size grows.”

4. Ask for the most optimal time complexity, which
prioritized achieving the most optimal time complex-
ity, e.g., “Generate a Python algorithm to find the in-
dexes of the k smallest number in an unsorted array,
where implementation should have the most optimal
time complexity possible.”

5. Ask for the chain-of-thought [29], which generated
coherent text by providing a series of related prompts,
e.g., “Please explain your chain of thought to create a
solution to the problem: Python algorithm to find the
indexes of the k smallest number in an unsorted array.
First, explain your chain of thought. Next, provide a
step-by-step description of the algorithm with the best
possible time complexity to solve the task. Finally, de-
scribe how to implement the algorithm step-by-step in
the fastest possible way.”

6. Ask for the detailed chain-of-thought, which guides
ChatGPT-4o to follow a structured chain of thought,
step-by-step, to achieve the best possible runtime per-
formance, e.g., “How can we approach the problem of
Python algorithm to find the indexes of the k smallest
number in an unsorted array with a time complexity
O(1) runtime? We can follow the steps below in our
chain of thought: (1) What is the problem statement?
(2) What is the naive approach to Python algorithm to
find the indexes of the k smallest number in an un-
sorted array? What is its time complexity? (3) Can
we improve the time complexity to O(1)? If yes, how?
(4) Can you provide an algorithm to Python algorithm
to find the indexes of the k smallest number in an un-
sorted array? in O(1) time complexity? (5) Can you
explain how the algorithm works step-by-step? (6) Are
there any edge cases that must be considered for the
algorithm to work correctly? (7) Can you provide an
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example to demonstrate how the algorithm works? (8)
How does the O(1) algorithm compare to other algo-
rithms in terms of time? (9) Can you think of any po-
tential limitations or drawbacks of the O(1) algorithm?
(10) Then, describe how to implement the algorithm
step-by-step in the fastest possible way in Python.”

We prompted ChatGPT-4o 100 times with each prompt
per coding problem, yielding up to 100 different coding so-
lutions per prompt. In practice, fewer than 100 unique cod-
ing solutions were sometimes produced since ChatGPT-4o
often generated logically equivalent programs. However,
we tested the performance of all ChatGPT-4o-generated
code and removed no duplicate solutions. If two different
prompts had identical solutions, we benchmarked each and
included the results with the expectation that 100 timing
runs on 100 different inputs would average out any negli-
gible differences in performance.

3.2 Analysis of Experiment Results
Figures 2, 3, and 4 depict our experiment results from

evaluating the performance of code obtained from Stack
Overflow and generated by ChatGPT-4o 100 times for all
seven coding problems with three different input sizes:
small (1,000), medium (10,000), and large (100,000). Fig-
ure 5 shows the average performance across all input sizes.

Figure 2. Number of Solutions within X% of the
Best Runtime (Input Size 1,000)

These figures show the number of problems for each
prompt where the best of the 100 solutions generated by
each prompt was within 1%, 5%, 10%, etc. of the best solu-
tion found across all prompts and the human solution from
Stack Overflow. Up to 601 solutions (6 prompts * 100 so-
lutions per prompt + 1 human solution) were benchmarked
for each problem. The “Best Runtime” solution shown in
the figures was compared against the other solutions.

Figures 2, 3, 4, and 5 show how ChatGPT-4o selected
the best-performing solution out of 100 attempts when em-
ploying detailed chain-of-thought reasoning in response to
prompt #6. These solutions were competitive with—and of-
ten surpassed—the human solutions from Stack Overflow.

Figure 3. Number of Solutions within X% of the
Best Runtime (Input Size 10,000)

Figure 4. Number of Solutions within X% of the
Best Runtime (Input Size 100,000)

This finding underscores the potential of LLMs in gener-
ating efficient solutions, especially when prompted using
chain-of-thought reasoning.

The human solution was the best when we used the
GPT-3.5 Turbo and GPT-4 models. However, the GPT-4o
model outperformed the human solution for the problem
PA2-Single Duplicate Finder, as shown in Figure 6. We
used the title of the question as the input to ChatGPT-4o.
All code samples produced code with respect to the title of
the Stack Overflow post. However, since we directly trans-
lated the titles into prompts for ChatGPT-4o there may have
been additional contextual information in the question that
ChatGPT-4o used to further improve its solution, as dis-
cussed in Section 3.3.2.

Our results also reveal GPT-4o’s significant performance
improvement compared to its GPT-3.5 Turbo and GPT-4
predecessors, which underscores progress in AI-driven cod-
ing solutions. The human-crafted solution outperformed
both GPT-3.5 Turbo and GPT-4 but was surpassed by GPT-
4o in solving the PA2-Single Duplicate Finder. These re-
sults suggest recent LLMs are reaching a level of sophisti-
cation that can surpass human capabilities in certain coding
tasks, particularly in terms of speed and efficiency.

Similarly, when evaluating the PA1-Find Missing Num-
ber problem, a distinct change in the hierarchy of solu-
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Figure 5. Number of Solutions within X% of the
Best Runtime (All Input Sizes)

Figure 6. Comparison of Average Execution Time
for Different Prompts in PA2 Single Duplicate
Finder

tion efficiency was evident. As shown in Figure 7, the hu-
man solution was the least efficient in terms of execution
time, which highlights scenarios where LLMs exceed hu-
man performance. GPT-4o outperformed all other mod-
els, including GPT-3.5 Turbo and GPT-4, showcasing its
advanced LLM capabilities. Interestingly, when structured
prompt engineering is applied—especially chain-of-thought
reasoning—GPT-3.5 Turbo’s capability to devise effective
code solutions improves significantly.

In general, however, the most pronounced enhancement
is seen with GPT-4o, which out-performs human solutions,
GPT-4, and GPT-3.5 Turbo when applied using the same
structured prompting techniques. This finding indicates re-
cent advances in LLMs, especially in the realm of program-
ming and problem-solving. The findings presented in Fig-
ure 7 confirm the superior performance of GPT-4o in opti-
mizing code execution time and setting a new threshold in
AI-assisted coding, which in turn will likely be surpassed
with new releases of ChatGPT and other LLMs.

These results show GPT-4o consistently outperforms
both humans and other AI models, which offer insights into

Figure 7. Comparison of Average Execution Time
for Different Prompts in PA1 Find Missing Number

the evolution of LLMs for coding solutions. However, al-
though LLMs like ChatGPT-4o can outpace human coders
in certain instances, the creativity and specialized skill of
human programmers remain invaluable in complex scenar-
ios. This dynamic highlights the benefits of a synergistic ap-
proach, wherein human expertise is enhanced by the evolv-
ing capabilities of LLMs, thereby elevating the process of
developing efficient coding solutions.

3.3 Threats to Validity
The threats to the validity of the experiment presented in

this section are discussed below.

3.3.1 Sample Size
Although the results presented in Section 3.2 are promising,
they are based on a relatively small sample size since our
study considered a total of seven computer science prob-
lems, each subjected to 100 test iterations. While this num-
ber of problems and iterations was sufficient to demonstrate
initial trends, it does not capture the performance char-
acteristics and potential edge cases encountered in larger
datasets. More work on a larger sample size is therefore
needed to increase the robustness of our findings.

In general, the software engineering and LLM commu-
nities benefit from benchmarks that associate

• Code needs (expressed as natural language require-
ments), questions, specifications, and rules with

• Highly optimized human code, as well as associated
benchmarks and interfaces.

These communities can then apply the benchmarks to mea-
sure and validate LLM coding performance over time to en-
sure research on optimizing LLMs is maturing.

3.3.2 Prompt Construction
Prompt construction posed an additional threat to validity
since our tests relied only on Stack Overflow question titles.
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Incorporating no additional details from question bodies
thus prevented ChatGPT-4o from using further context to
inform its responses. Although we did not want ChatGPT-
4o completing/improving fundamentally flawed code, this
prompt design choice risked depriving ChatGPT-4o of in-
formation it could have used to generate better solutions.

3.3.3 Problem and Solution Scope
Another risk was the variety of coding problems we ana-
lyzed, which were relatively narrow in scope, data struc-
tures, and programming language. A wider range of prob-
lems are thus needed to ensure hidden risks regarding spe-
cific problem structures do not occur. In particular, we may
not be aware yet of classes of problems that trigger LLMs
to generate inefficient code. This risk is particularly prob-
lematic when generalizing our results to a wider range of
algorithms and programming languages. In addition, focus-
ing only on the ChatGPT family of LLMs limits our ability
to apply our findings to other LLMs.

3.3.4 Selection Bias
Another threat to validity was the inherent question and
code sample selection bias in our study. We selected these
questions and answers manually to focus on problems and
code samples that could be tested and benchmarked readily.
However, we may have inappropriately influenced the prob-
lem types selected and not chosen samples representative of
what developers would ask in other domains.

4 ChatGPT-4o vs. AutoGen: A Comparative
Study in Programming Automation

Computer science and its application domains evolve
continuously, motivating the need for more efficient and re-
liable automated systems capable of solving increasingly
complex problems. To evaluate candidate solutions sys-
tematically, this section compares AutoGen version 0.3.1
and ChatGPT-4o, which are two generative AI-based tools
that enable automated problem-solving. Our comparison
evaluates the capability of ChatGPT-4o and AutoGen to (1)
generate accurate solutions for a set of predefined computer
science problems and (2) successfully pass rigorous tests
designed to validate the correctness of these solutions.

ChatGPT-4o is a recent addition to OpenAI’s GPT fam-
ily of LLMs and is adept at a range of natural language
tasks, catering to diverse users from various domains. Its
flexibility and interactivity make it suitable for general in-
quiries, creative writing, and educational support. In con-
trast, AutoGen excels in automated code generation through
structured and systematic prompting methods that harness
predefined patterns and algorithms to craft solutions opti-
mized for accuracy, performance, and readability.

4.1 Problem Statement
Both ChatGPT-4o and Autogen support automated

problem-solving and algorithm generation. Little research

has been conducted, however, to determine their efficiency
and accuracy in producing viable solutions under varying
conditions and constraints, especially when tests are gen-
erated dynamically as part of the problem-solving process.
Addressing this knowledge gap raises a critical question
(stated as Q4 in Section 2): How does AutoGen, with its sys-
tematic and structured LLM prompting, compare with the
more flexible and generalized approach of ChatGPT-4o in
terms of efficiency, accuracy, and adaptability in code gen-
eration?

The study presented in this section aims to fill the current
gap regarding the adaptability and precision of ChatGPT-
4o and Autogen in dynamic testing environments. The
absence of predefined tests means the evaluation of these
AI tools must account for their ability to interpret problem
statements, generate corresponding tests, and produce so-
lutions that satisfy these tests. What is needed, therefore,
is a method that assesses the quality of the generated so-
lutions, as well as the appropriateness and thoroughness of
dynamically-created tests.

This section addresses these challenges to provide
deeper insights into the capabilities of ChatGPT-4o and Au-
toGen. We also explore whether these AI tools can au-
tonomously generate both problems and their correspond-
ing tests, which is common practice in continuous inte-
gration pipelines and automated software development pro-
cesses [1]. Our comparative analysis results evaluate the
potential of these AI tools to enhance the field of automated
software testing and development.

4.2 Dataset Overview and Analysis
Our dataset comprises a collection of 50 computer sci-

ence problems, each characterized by a unique sequence
number, a difficulty level (category), a problem type, and
a detailed problem statement. These problems are classi-
fied into various categories that reflect different computer
science fields, such as algorithm design, data structures,
and computational theory. The problems are categorized
by difficulty levels, ranging from easier to harder prob-
lems. The dataset and related information are available
on our GitHub repository: https://github.com/
elnashara/GenAI-CodeEval.

This dataset includes a broad spectrum of test cases for
each problem, ensuring a comprehensive skill evaluation
from basic functionality to intricate scenarios. For example,
test cases for “Calculating the average of an array of num-
bers” vary in array sizes and types, while “Graph traversal”
problems test diverse graph structures. As with the array
study in Section 3, this method showcases dataset range,
from fundamental algorithms like “Binary Search” to ad-
vanced techniques like “Depth-First Search.”

The analysis of the distribution of computer science
problems by type indicates the wide range of topics encom-
passed within the dataset. The pie chart shown in Figure 8
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(adapted from [9]) depicts the percentage of problems in

Figure 8. Distribution of Problem Types

each type, providing a visual representation of which areas
are emphasized. This distribution is crucial for understand-
ing the breadth and focus areas of our dataset.

The pie chart shown in Figure 9 (also presented in [9])
depicts the distribution of problems across different diffi-
culty levels (i.e., easy, medium, and hard) within the dataset.
This chart visualizes the proportion of problems in each cat-

Figure 9. Distribution of Problems by Difficulty
Level

egory, thereby elucidating the distribution pattern. It accen-
tuates the prevalence of specific categories and offers in-
sights into the relative emphasis placed on each difficulty
level in our dataset.

4.3 Methodology and Experiment Design
Our experiment covers the evolving landscape of auto-

mated problem-solving and algorithm generation, focusing
on ChatGPT-4o and AutoGen. We employ a consistent
structured prompting strategy to harness the capabilities of
these AI tools by conveying problem requirements and con-
text uniformly. In particular, this prompt facilitates direct

comparison of ChatGPT-4o and Autogen in terms of their
problem-solving efficiency, accuracy, and adaptability.

By employing this standardized prompt strategy across
all tests, our study compares and contrasts the performance
of these two AI tools in a controlled and comparable man-
ner. Our problem-solving environment is dynamic, i.e., tests
are not static but generated in response to each unique prob-
lem. This study therefore evaluates the efficiency and accu-
racy of these AI tools under varying conditions.

4.3.1 Problem-Solving and Test Generation Approach
We apply prompt engineering [7] to guide ChatGPT-4o and
AutoGen to interpret problem statements and generate cor-
responding solutions and tests. Figure 10 , as presented in
[9], illustrates the structured prompt given to both AI tools,
which enabled them to understand the given problem(s).

Figure 10. Structured Prompts for LLM-based
Solution Generation in CS Problems.

This prompt was crafted to outline the problem statement,
solution development requirements, script necessities, test
case execution and preparation, and execution process. Our
approach enables a fair comparison between ChatGPT-4o
and Autogen, focusing on their ability to generate solutions,
as well as create relevant and comprehensive test cases.
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4.3.2 Evaluating ChatGPT-4o and AutoGen
The evaluation of ChatGPT-4o and AutoGen involved the
following two phases:

1. We assessed these AI tools’ ability to interpret problem
statements accurately and generate viable solutions.

2. We examined the appropriateness and thoroughness of
the autonomously created test cases.

These test cases were vital to our evaluations since they rep-
resented the dynamic criteria that generated solutions were
measured against. Our assessment compared the solutions
and tests generated by each AI tool under identical problem
conditions. This comparative analysis evaluated the adapt-
ability, precision, and reliability of ChatGPT-4o and Auto-
Gen in a dynamic testing environment where problems and
their tests were both generated autonomously.

This study provided a nuanced understanding of
ChatGPT-4o and AutoGen’s capabilities in terms of auto-
mated problem-solving and test generation. Our work is
particularly relevant in contexts like continuous integration
pipelines and automated software development processes
where the ability to autonomously generate and test solu-
tions is vital. Our study findings provide insight into the
potential role of AI tools in enhancing automated software
testing and development.

4.4 Analysis of ChatGPT-4o Experiment Results
This experiment used ChatGPT-4o’s solution generation

capabilities to provide a systematic view of its performance
across a range of computer science problems. To ensure a
fair and accurate comparison, the tests used the same set of
50 distinct problems and identical prompts were used for
both ChatGPT-4o and AutoGen. Figure 11 summarizes the
effectiveness of the generated solutions. This figure shows

Figure 11. ChatGPT-4o: Pass Rate of Solutions

the number of pass and fail test cases for each of the 50
problems evaluated using ChatGPT-4o. Each bar represents
a problem, with the orange sections indicating the number
of test cases that passed and the blue sections representing
the number of test cases that failed. Variation in the height
of the bars varies indicates the different number of test cases
run for each problem.

Figure 11 visualizes the success rate of ChatGPT-4o
across a range of problem types. Most problems had more

passes than failures. However, certain problems (e.g., prob-
lem 29, 33, and 35) encountered a higher proportion of fail-
ures.

4.4.1 Overall Success Rate
ChatGPT-4o’s overall success rate was 92.8%, as shown in
Figure 12. This success rate indicates its ability to solve a

Figure 12. ChatGPT-4o: Pass Rate of Solutions

broad spectrum of computational tasks accurately. The high
percentage of correctly-solved problems demonstrates the
effectiveness of ChatGPT-4o’s generated solutions in vari-
ous contexts.

4.4.2 Error Analysis
Distinct patterns emerged when examining ChatGPT-4o’s
failed cases, highlighting areas where it faced challenges.
The most frequent error encountered was related to “Invalid
input. Please provide valid numeric values,” followed by is-
sues like “The sum of weights must not be zero.” and “item
’E’ is not in list” These errors indicate that while ChatGPT-
4o was proficient in many areas, improvements were needed
in specific scenarios, particularly those involving input val-
idation and handling exceptional cases.

4.4.3 Problem Difficulty vs. Success Rate
An interesting aspect of ChatGPT-4o’s behavior is the cor-
relation between problem difficulty and success rate. Sur-
prisingly, ‘medium’ difficulty problems had a lower suc-
cess rate (83.78%) compared to ‘hard’ (94.74%) and ‘easy’
(97.48%) difficulties, as shown in Figure 13. This find-
ing suggests either (1) a potential discrepancy in the per-
ceived versus actual complexity of the problems or (2) a
higher adaptability of ChatGPT-4o in solving easy com-
plexity tasks.

4.4.4 Problem Type Analysis
ChatGPT-4o’s success rate also varied significantly across
different problem types, as shown in Figure 14. Types such
as Binary Search, hard and Calculating the average of an
array of numbers, easy demonstrated a notably high suc-
cess rate (over 94%), whereas Graph traversal, medium
and Sorting algorithms, medium exhibited lower success
rates. This variation highlighted ChatGPT-4o’s strengths
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Figure 13. ChatGPT-4o - Problem Difficulty vs.
Success Rate

Figure 14. ChatGPT-4o - Success and Failure
Analysis by Problem Type and Category

and weaknesses in different computational domains and
provided opportunities for targeted improvements in spe-
cific areas of problem-solving.

4.4.5 Insights and Future Directions
Overall, ChatGPT-4o’s experiment results revealed that it
was highly effective in solving a wide range of computer
science problems. However, insights gained from error
analysis and variation in success/failure rates across prob-
lem types suggest areas for further enhancement. Improv-
ing input validation, error handling, and adapting strate-
gies for specific problem types could yield even higher suc-
cess rates and more robust problem-solving for ChatGPT-
4o. These findings help inform future efforts to optimize
the solution generation capabilities of ChatGPT-4o.

4.5 Analysis of AutoGen Experiment Results
This experiment conducted on AutoGen 0.3.1 for com-

puter science problems provided a wealth of data, allowing
in-depth analysis of its performance. The dataset comprises

results from tests conducted on 50 different computer sci-
ence problems shown in Figure 15, where each test was
evaluated across multiple parameters. Once again, the same

Figure 15. Number of Pass and Fail Test Cases for
Each Problem Using AutoGen

set of tests was used for both ChatGPT-4o and Autogen to
ensure a fair comparison of their performance.

4.5.1 Overall Success Rate
AutoGen achieved an overall success rate of 93.6%, as
shown in Figure 16. This high percentage indicates that

Figure 16. AutoGen: Pass Rate of Solutions

AutoGen solved the majority of the problems correctly by
its auto-generated solutions. It thus reflects AutoGen’s pro-
ficiency in handling a range of computational tasks and its
effectiveness in producing accurate solutions.

4.5.2 Problem Difficulty vs. Success Rate
Understanding the relationship between problem difficulty
and success rate is crucial to assess the effectiveness of so-
lution generation methods. Figure 17 visualizes the suc-
cess rates of solutions across different problem difficulties
in our dataset and distinguishes problem difficulties, such
as ‘easy’, ‘medium’, and ‘hard’, represented by individual
bars. The height of each bar signifies the percentage of
successful solutions within that specific difficulty category,
which enables explicit comparison of success rates across
different levels of problem complexity.

AutoGen’s approach, characterized by structured LLM
prompting, is highly effective for problems of varying com-
plexity. We initially hypothesized that AutoGen would per-
form equally well in solving both ‘easy’ and ‘hard’ prob-
lems, leveraging its deep learning capabilities. We an-
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Figure 17. AutoGen - Problem Difficulty vs. Suc-
cess Rate

ticipated a relatively higher success rate for ‘hard’ prob-
lems, based on the belief that the structured nature of LLM
prompting would help mitigate their difficulty.

Contrary to our initial assumption, however, Figure 17
shows that the success rate for ‘easy’ problems was
(98.08%), while ‘hard’ problems had a lower success rate
of (77.78%). Surprisingly, ‘medium’ problems achieved a
perfect success rate of (100.00%). These results suggest
AutoGen is highly proficient in handling moderately com-
plex problems but may incur challenges with harder tasks.
Nonetheless, AutoGen still performs well across all prob-
lem categories, with relatively high success rates.

These findings offer insights into AutoGen’s capabilities,
showcasing its strength in managing ‘medium’ difficulty
problems, with near-optimal performance on easy’ prob-
lems. Although AutoGen’s success rates for ‘hard’ prob-
lems are somewhat lower, it is generally effective, making
it an effective tool for complex problem-solving scenarios.

4.5.3 Failed Cases Analysis
Two distinct patterns were identified in our analysis of
failed cases, shedding light on specific challenges faced by
AutoGen, as shown in Figure 18. One issue occurred with
binary search, where AutoGen struggled to provide correct
results consistently. This problem was primarily seen in the
‘hard’ difficulty category. The complexity of the algorithm
and potential edge cases likely contributed to higher failure
rates in this area.

Another challenge was observed in problems involving
calculating the average of a list of numbers. AutoGen in-
curred errors in cases where it encountered ‘NoneType’ val-
ues in the dataset, leading to a mismatch in expected output
types (e.g., when a floating-point number was expected, but

Figure 18. AutoGen - Success and Failure Analy-
sis by Problem Type and Category

‘NoneType’ was found). This issue was prevalent in easier
problems involving basic numerical operations.

Despite these specific challenges, AutoGen performed
exceptionally well in other categories, achieving a perfect
(100.00%) success rate in problems involving sorting algo-
rithms, depth-first search, and simpler tasks like checking if
a number is prime or finding the sum of two numbers. These
results indicate that AutoGen is highly reliable in handling
both simple and moderately complex problems, with diffi-
culties mainly arising in highly specialized cases, such as
binary search and specific numeric operations.

These results suggest that while AutoGen excels in most
problem categories, future improvements should focus on
enhancing its performance in handling binary search and
certain numerical data processing edge cases. Addressing
these issues will improve AutoGen’s robustness and accu-
racy in generating solutions for broad range of problems.

4.6 Comparative Analysis of ChatGPT-4o and
AutoGen Experiment Results

Conducting a detailed comparative analysis between the
ChatGPT-4o and AutoGen experiment results revealed sev-
eral key distinctions and similarities, as well as offered in-
sightful perspectives on the performance and application of
each system. Our analysis begins by examining the overall
success rates of both AI tools shown in Figure 19.

Figure 19 shows that AutoGen achieved a slightly higher
success rate (93.6%) compared to ChatGPT-4o (92.8%).
Although the difference is minimal, it indicates that Auto-
Gen outperforms GPT-4o in terms of its overall ability to
generate correct solutions. This result suggests that while
both AI tools are reliable, AutoGen has a slight edge in han-
dling the problem set in this experiment.

Figure 20 shows that differences with error analysis be-
come more pronounced between AutoGen and GPT-4o.
AutoGen recorded (21 out of 329) failed test cases, while
GPT-4o encountered (18 out of 250) failed cases. This find-
ing indicates that the total number of test cases generated by
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Figure 19. Success Rate Comparison

AutoGen was higher than those generated by GPT-4o, de-
spite both AI tools using the same prompts. This result also
implies that AutoGen generated more complex test cases,
which in turn resulted in a higher number of errors.

Conversely, AutoGen’s errors were less detailed, with
most errors not providing specific exception information.
In contrast, GPT-4o provided more informative error mes-
sages, including specific exceptions like input validation er-
rors. This added transparency in error handling gives GPT-
4o an advantage with respect to debugging and understand-
ing the root causes of failures.

We also analyzed the complexity of problems and the
handling of solutions by both AI tools. Although tasked
with similar problems, ChatGPT-4o’s solutions demon-
strated more advanced capabilities in error handling and in-
put validation, particularly in scenarios involving complex
logic or edge cases. Conversely, AutoGen’s strength lies in
basic programming tasks and educational use cases, where
it performed exceptionally well with a perfect (100.0%)
success rate.

Overall, AutoGen exhibited a higher total success rate
(93.6%) and proved quite effective for basic programming
challenges, as shown in Figure 21. However, it recorded
more errors (21 failed cases) compared to GPT-4o (18 failed
cases). This difference suggests that while AutoGen is suit-
able for educational purposes, it may need improvements in
error handling and detailed exception reporting.

In contrast, GPT-4o excelled in handling complexity,
particularly in advanced error handling and input validation,
making it a better candidate for comprehensive testing en-
vironments and more advanced learning scenarios. These
differences highlight the specific strengths of each AI sys-
tem and their potential use cases, depending on the context

Figure 20. Number of Errors Comparison

Figure 21. Comparative Analysis of ChatGPT-4o
and AutoGen

and complexity of the given programming tasks.

5 Related Work
This section compares our research with related work.

The Venn diagram in Figure 22 categorizes existing re-
lated work in LLM research across three main dimensions:
Prompt Engineering, Security and Reliability, and Impact
on Development Workflows. Each circle represents one of
these research areas, with the overlaps highlighting studies
that integrate two or more areas. The following breakdown
details the overlaps between the three research areas, pro-
viding examples of studies that fall within each intersection:

• The overlap between Prompt Engineering and Security
and Reliability includes research on AI-driven code re-
liability, e.g., how well LLMs can generate secure code
based on prompts.

• The intersection of Security and Reliability and Impact
on Development Workflows features studies that focus
on secure code deployment practices and their effect
on developer workflows.
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Figure 22. Overview of Related Work in LLM Re-
search.

• Similarly, the overlap between Prompt Engineering
and Impact on Development Workflows shows how
prompts can improve coding efficiency.

• The center area where all three circles intersect repre-
sents comprehensive studies that consider all three as-
pects of prompt quality, security concerns, and work-
flow efficiency.

The Venn diagram in Figure 22 also visualizes the inter-
connectedness of related work. Moreover, this diagram
shows how our research not only builds on each individual
dimension but also contributes to the growing body of work
that integrates all three aspects to provide a more holistic
understanding of LLM impacts on code development.

5.1 Advances in Prompt Engineering
The evolution of LLMs in code generation has been piv-

otal, particularly in the discipline of prompt engineering.
This discipline focuses on crafting effective natural lan-
guage inputs for LLMs, enabling them to solve complex
problems across diverse domains [7]. Recent studies em-
phasize the importance of prompt structure and leverage
external tools and methods to enhance the capabilities of
LLMs in coding tasks.

For example, Yao et al. (2022) [28] showed how integrat-
ing LLMs with coding frameworks can improve their utility.
Likewise, Van et al. (2023) [24] maximized the inherent ca-
pabilities of LLMs to generate more complex and efficient
code structures. These prompt engineering advances pro-
vide promising results in domains like mathematics, where
straightforward prompting often falls short, necessitating
more sophisticated approaches for better outcomes [12].

Our work explores the impact of refined prompt design
on LLM-generated code performance, building on related
work that primarily applies direct queries, such as those

found on Stack Overflow. Our approach serves as a baseline
for comparison, but we focus on investigating how refined
techniques can yield more efficient and accurate solutions.
The field of prompt engineering offers immense potential
for improving LLM performance and our work contributes
to this area by showcasing the benefits of structured and nu-
anced prompting strategies.

5.2 Security and Reliability of LLM-Generated
Code

The reliability and security of LLM-generated code have
emerged as critical areas of focus. Recent studies, includ-
ing those by Borji et al. (2023) [5] and Frieder et al.
(2023) [12], identified various bugs and vulnerabilities in-
herent in AI-generated code. Comparative analyses, such
as those by Asare et al. (2022) [2], explored the security
profiles of human-written versus AI-generated code, reveal-
ing significant insights into the strengths and weaknesses of
both approaches.

Jalil et al. (2023) [15] focused on how LLMs like
ChatGPT can be applied to software testing education, dis-
cussing both the promises and potential pitfalls related to
the security of generated code. They emphasized that while
LLMs can automate testing tasks, they can also introduce
vulnerabilities if not monitored carefully. Similarly, Nair et
al. (2023) [18] examined the process of generating secure
hardware using LLMs and highlighted specific challenges,
such as common weaknesses and exposures (CWEs), that
can arise when LLMs are tasked with producing code for
security-sensitive applications.

The findings in this related work are essential for under-
standing the trade-offs involved in using LLMs for software
development, particularly in contexts where code security
and reliability are paramount.

5.3 Impact on Software Development Workflows
and Productivity

The impact of LLMs on software development work-
flows and productivity is an emerging area of interest.
Research is examining how LLMs influence the software
development lifecycle—from design to deployment—and
their potential to accelerate development processes while
maintaining or enhancing code quality. For instance, Chen
et al. (2021) [11] evaluated the effectiveness of LLMs in
automating code generation, showing how developers can
leverage AI tools to handle repetitive tasks, thereby free-
ing up time for more creative problem-solving. Their find-
ings aligned with Nair et al. (2023) [18], who showed how
LLMs can integrate seamlessly into development pipelines
to streamline testing and debugging processes, further im-
proving workflow efficiency.

Peng et al. (2023) [21] examined the use of AI tools
(such as GitHub Copilot [14]). They highlighted how these
tools can boost developer productivity by suggesting code
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snippets in real-time, which accelerates development with-
out sacrificing code quality. These AI tools also helped
reduce cognitive load on developers by handling tedious
tasks, allowing them to focus on higher-level system design
and architecture concerns.
5.4 Studies on LLM Applications in Software De-

velopment
Recent studies are integrating multiple research areas to

provide a holistic view of LLM applications in software
development. For example, Pearce et al. (2022) [20] ex-
plored security and ethical implications of LLM-generated
code, focusing on the challenges posed by AI-driven sys-
tems in maintaining code security and reducing vulnerabil-
ities. Their study highlighted the need for more robust vali-
dation and verification techniques when using LLMs in crit-
ical software applications to ensure reliability is maintained
throughout the software development lifecycle.

Similarly, Bommasani et al. (2021) [4] provided a broad
analysis of foundation models like GPT-3, examining their
capabilities and limitations across various domains, includ-
ing software development. Their work underscored the po-
tential for LLMs to enhance productivity and efficiency in
coding tasks. However, they also cautioned about the risks
of relying too heavily on AI for code generation, especially
in complex, safety-critical systems.

These studies emphasized the need for a balanced ap-
proach to LLM integration, acknowledging both opportu-
nities and challenges. As LLMs continue to evolve, re-
search is pushing the boundaries of AI-driven code genera-
tion, with further studies required to investigate their long-
term impact on software development practices and the in-
tersection of AI and software engineering. For example,
Terragni et al. (2024) [23] explored how LLMs are trans-
forming various aspects of software engineering, including
requirements gathering, code generation, and software de-
sign. They viewed LLMs as tools that can assist developers
by automating tasks, offering code suggestions, and helping
with error handling, thereby improving productivity and ef-
ficiency throughout the software lifecycle.

6 Concluding Remarks
In this paper we analyzed programming automation tech-

niques and tools by evaluating top Stack Overflow solutions
against those generated by ChatGPT-4o and comparing the
capabilities of ChatGPT-4o with AutoGen. This section
summarizes lessons learned from our work thus far and out-
lines future work on this topic.

Key lessons learned from our research include:

• ChatGPT-4o produced solutions competitive to hu-
mans. We observed that ChatGPT-4o could produce
solutions competitive with—and sometimes superior
to—human-crafted ones. Our holistic approach en-
hanced ChatGPT-4o’s existing problem-solving and

code generation capabilities. While AutoGen achieved
a slightly higher overall success rate (93.6% vs.
92.8%), ChatGPT-4o exhibited greater versatility, es-
pecially in more complex tasks involving error han-
dling and detailed input validation, which makes it an
ideal candidate for environments requiring advanced
programming solutions.

• Effective prompting was crucial for solving com-
plex problems. Our analysis showed that ChatGPT-
4o generated solutions competitive with—or superior
to—top Stack Overflow answers when prompted ef-
fectively, especially when prompts apply chain-of-
thought reasoning. This finding underscored the po-
tential of LLMs in complex coding tasks, but also
revealed limitations when minimal context, such as
Stack Overflow titles, was used in isolation. Effective
prompt patterns [26] and prompt engineering [25] are
thus essential to fully leverage LLM code generation
capabilities. Our results in Section 3 also showed that
prompting multiple times and selecting the best solu-
tion was a promising means for software developers to
optimize performance-critical code sections via LLMs.

• Choosing between AI tools depends on applica-
tion needs. Application-specific requirements should
guide the choice between ChatGPT-4o and AutoGen.
ChatGPT-4o’s robust (92.8%) success rate showcased
its ability to handle complex programming tasks, such
as advanced error handling and input validation, mak-
ing it suitable for testing environments or scenarios
involving intricate logic and edge cases. However,
its error diagnosis and reporting need further refine-
ment. In contrast, AutoGen recorded a slightly higher
overall success rate (93.6%) and excelled in basic pro-
gramming tasks and educational use cases. How-
ever, its error messages lacked detailed exception re-
porting, which limited its transparency in debugging.
ChatGPT-4o may thus be more suitable for applica-
tions needing robust error handling and debugging ca-
pabilities, while AutoGen may be better suited for edu-
cational scenarios or basic programming tasks that pri-
oritize simplicity and high success rates.

• Advanced data analysis enables broader solution
exploration. A key attribute of ChatGPT-4o-based
code generation was its ability to search many cod-
ing solutions. Developers will likely use LLM-based
tools like Advanced Data Analysis (ADA) [19] and
Auto-GPT [27] to generate and analyze multiple solu-
tions per query, as discussed in Section 4. Future AI
tools should therefore enable defining metrics and au-
tomatically prompting until a quality threshold is met,
a prompt limit is reached, and/or time runs out.

Our future work will explore the potential of leverag-
ing LLM-based tools for full stack software development.
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Rather than focusing solely on individual modules or com-
ponents, we plan to investigate how LLMs perform at gen-
erating complete end-to-end systems encompassing front-
end, back-end, database, and infrastructure elements. Ex-
amining the effectiveness of LLMs across the entire soft-
ware lifecycle may reveal new capabilities and limitations.
Key areas of analysis include correctness, security, scalabil-
ity, maintainability, and modularity of auto-generated sys-
tems. In addition, studying integration with human devel-
opers in a blended workflow rather than as a wholesale re-
placement will provide important insights.

Our future work will also consider if/how other code
quality metrics can be integrated to allow considering multi-
ple dimensions of code quality beyond performance. In par-
ticular, security and functional correctness are clearly im-
portant points of consideration, but must be supplemented
with additional analyses. Likewise, other quality attributes,
such as memory consumption, long-term maintainability,
and modularity, should also be analyzed. As LLMs con-
tinue to mature, understanding their role in higher-level
software creation and complementing human programmers
offer promising new frontiers for CS education and profes-
sional software development.
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