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Abstract—BACKGROUND: The Personal Health Record
(PHR) and Electronic Health Record (EHR) play a key role in
more efficient access to health records by health professionals
and patients. It is hard, however, to obtain a unified view of
health data that is distributed across different health providers.
In particular, health records are commonly scattered in mul-
tiple places and are not integrated. OBJECTIVE: This article
presents the implementation and evaluation of a PHR model that
integrates distributed health records using blockchain technology
and the openEHR interoperability standard. We thus follow the
OmniPHR architecture model, which describes an infrastructure
that supports the implementation of a distributed and interop-
erable PHR. METHODS: Our method involves implementing a
prototype and then evaluating the integration and performance of
medical records from different production databases. In addition
to evaluating the unified view of records, our evaluation criteria
also focused on non-functional performance requirements, such
as response time, CPU usage, memory occupation, disk and
network usage. RESULTS: We evaluated our model imple-
mentation using the data set of more than 40 thousand adult
patients anonymized from two hospital databases. We tested the
distribution and reintegration of the data to compose a single
view of health records. Moreover, we profiled the model by
evaluating a scenario with 12 superpeers and up to 512 client
nodes, resulting in an average response time below 500 ms.
The blockchain implemented in our prototype achieved 98%
availability. CONCLUSION: Our performance results indicated
that data distributed via a blockchain could be recovered with
low average response time and high availability in the scenarios
we tested. Our study also demonstrated how our OmniPHR
model implementation effectively integrated distributed data into
a unified view of health records.

Index Terms—Personal Health Record (PHR), Blockchain,
Software Architecture, Distributed Systems.

I. INTRODUCTION

THE adoption of the Electronic Health Record (EHR)
has evolved as a consolidated technology for recording

patient health data [1, 2]. A key difference between an EHR
and a Personal Health Record (PHR) is that a PHR enables
patients to access and control their own data [3]. PHR is an
emerging trend with growth potential in the health care domain
[4]. Improving the management and sharing of health records
is a key focus of our work reported in this article.
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Although initiatives to adopt PHR have evolved in recent
years, they face barriers to adoption [5]. One barrier faced by
both EHR and PHR is the distribution and limitations of health
record integration. Other barriers relate to security issues, such
as confidentiality and privacy of health records [6, 7].

Patient health data are conventionally stored in health care
provider repositories [8, 9]. Often, however, these data are
not shared between providers or with patients. Moreover, even
where there is an intention to share data, there are barriers to
achieving this goal [10], including

(a) Interoperability stemming from the lack of common
health data standards [7].

(b) The difficulty of integrating large amounts of data con-
tained in medical records [11].

As a consequence, patients must often re-inform their health
history, repeat laboratory exams, or even perform unnecessary
tests when they are attended by different health providers
[12]. Although some countries have initiatives to integrate
personal health history, this integration often occurs only at
the organizational level, without patients having access to their
digital records [13]. In such cases, therefore, only the data
reported in the health organizations are integrated, regardless
of factors like patient wellness data, nutrition, data collected on
wearables, or collected on monitoring equipment at home [14].
Moreover, patient care often comes from health providers who
are not part of an integrated network of health organizations,
e.g., if patients are treated in a foreign country [9].

Blockchain technologies [15, 16] are a promising means to
address the barriers with distributed PHRs described above by
forming a unified view of PHRs. Blockchain technology has
been researched and implemented in various domains, initially
in the financial domain with virtual currencies and more
recently in the health domain [17, 18]. Various approaches
to applying blockchain to health data have been proposed,
centered largely around composing a distributed ledger of
health records [19] and providing useful tools to preserve
patient privacy [20].

The performance of distributed PHRs and integration of
health data among health organizations are crucial factors to
ensuring the adoption of blockchain technologies. In prior
work we have devised an architecture model named Om-
niPHR [21, 22] and characterized its key components and
interoperability features. This article extends our prior work
using a prototype implementation of the OmniPHR model in
production scenarios by evaluating health records from two
health organizations.
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TABLE I
RELATED WORK - COMPARISON OF WORK WITH BLOCKCHAIN-BASED IMPLEMENTATIONS.

Model & Year 1 Health Data Std. 2 FW 3 EHR PHR Results
[23] Invisible Ink, 2015 E X Built Certified Mail service as sensitive user-data management platform.

[24] FairAccess, 2016 E X X Established an initial implementation with IoT and local blockchain.

[25] Healthbitt, 2016 HL7/FHIR, ISO13606 X X Stores patient data in a distributed ledger allowing sharing with doctors.

[26] HGD, 2016 X X Potential way to house and share health care data.

[27] MyData, 2016 X X Provides useful information on business models and ecosystems.

[28] CBTi, 2017 H X X Data update and evaluation process worked normally.

[29] D-CAM, 2017 Adds a modest overhead and can be scaled for large networks.

[30] MedRec, 2017 HL7/FHIR E X X Describes the technical design and early-stage prototype.

[31] MeDShare, 2017 Comparable to solutions for data sharing between cloud services.

[32] Patientory, 2017 HL7/FHIR E X X Potential to eliminate friction and the costs of third-party intermediaries.

[18] Ancile, 2018 HL7 E X X Discusses interactions with patient’s needs, providers and third parties.

[33] FHIRChain, 2018 HL7/FHIR E X X Demonstrates a case study of collaborative app for remote cancer care.

1 Models in ascending order by year.
2 Health data standards.
3 Platforms used in the solution, where E: Ethereum and H: Hyperledger Fabric.

A key aspect of our work involves evaluating a model for
distributed PHR integration based on blockchain technology.
The research gap that our work addresses involves determining
how to develop a distributed and interoperable PHR implemen-
tation using blockchain technology to integrate patient health
records. In particular, this article

(a) evaluates the distribution and reintegration of health
records via blockchain technologies to compose a unified
PHR view,

(b) analyzes the assessment of non-functional performance
requirements, such as measure response time, CPU usage,
memory occupation, disk and network usage of a varied
number of superpeers and client nodes, and

(c) discusses best practices for deploying blockchain tech-
nologies in healthcare.

Our OmniPHR approach is innovative since it promotes the
integration of health data through the use of a distributed, pri-
vate, and customizable platform, along with interoperable and
standards-based protocols. Likewise, we integrate distributed
health records in a unified, safe, and interoperable manner for
use by health providers and patients. In particular, the key
contribution is that OmniPHR promotes the sharing of PHRs
among health care providers, with the possibility of knowledge
and consent of the patient.

The remainder of the article is organized as follows: Section
II summarizes the terminology and platforms used in this
paper; Section III explains the methods used in our OmniPHR
prototype, evaluation, and results collection; Section IV de-
scribes the OmniPHR architecture and the application model,
as well as key aspects of the OmniPHR implementation and
scenarios applied in our evaluation environment; Section V
analyzes the results obtained from our empirical evaluations
and compares our results with related work; and Section VI
presents concluding results and future work.

II. TERMINOLOGY AND PLATFORMS

This section summarizes the terminology and platforms
used in this article.

Personal Health Record (PHR) can be considered an evo-
lution of an Electronic Health Record (EHR). According to
ISO/TR 18638:2017 [3], PHR is a “representation of infor-
mation regarding or relevant to the health, including wellness,
development, and welfare of a subject of care, which may be
stand-alone or integrating health information from multiple
sources, and for which the individual, or their authorized
representative, manages and controls the PHR content and
grants permissions for access by and/or sharing with other
parties.”

Blockchain is a linked list of datablocks chained together
in a distributed ledger by pointers, represented by a hash
code that identifies each block, and where each datablock has,
beyond the content, the pointer to the previous datablock in
the chain [15, 34]. In a blockchain, each node in the peer-
to-peer (P2P) network acts as a recorder of datablocks and
as a evaluator of appropriate access and permissions of the
content. Each node can add new blocks in the list and execute
evaluation rules every interaction. These checks are performed
in conjunction with the other nodes, forming the consensus
protocol [35, 36].

Smart contractsare another concept applied in blockchain
technology to incorporate business rules or scripts to the
processing performed on the platform. According to [37],
smart contract is a “set of promises, specified in digital form,
including protocols within which the parties perform on these
promises.” In many cases, smart contracts are used to verify
the validity of contracts between two or more participants in
a contract.

One way to make health records interoperable is to use
recognized data standards or protocols [38, 39]. Several health
data standards are defined around the world, with different
purposes. Two internationally recognized standards used for
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electronic medical records are HL7 [40] and openEHR/ISO
CEN13606 [41]. The openEHR standard has the differential
to treat health records semantically through ontology [42]. In
the openEHR standard, instances of datablocks can be serial-
ized in either archetypes (RDF/XML or JSON) or ontology
(OWL) format, where RDF stands for “Resource Description
Framework” and OWL stands for “Web Ontology Language.”

III. METHODS APPLIED IN OUR STUDY

This section explains the methods used in our OmniPHR
prototype, evaluation, and results collection. Due to the bar-
riers to adoption of distributed health records across different
health providers discussed in Section I—and in accordance
with the background underlying PHR and Blockchain tech-
nology discussed in Section II—we researched the state-of-
the-art regarding open issues in this area. Below we explain
how we researched and analyzed related work and then outline
the steps used to evaluate our OmniPHR model. Section IV
then describes the OmniPHR architecture in detail and shows
how we integrated it with blockchain technologies.

We first reviewed the state-of-the-art by analyzing articles
related to OmniPHR, which implements blockchain solutions
applied to health records. For this review, we used strings
combining the PHR and EHR definitions with blockchain. We
then submitted these strings to PubMed, Medline, CiteSeerX,
Cochrane, HealthStar, Elsevier and Google Scholar, which are
common portals that index scientific studies in the area of
Health and Information Technology.

The selected related work studies are listed in Table I,
which lists the model name and reference, year of publication,
health data standards, used framework, and if study meets
only organizational (EHR) or personal (PHR) health records.
Table I underscores the fact that few studies dealt with the
implementation of blockchain technology applied to health
records. Moreover, even fewer articles presented results with
systematic quantitative evaluations.

We analyzed the studies returned from these searches and
selected only those studies that demonstrated blockchain im-
plementations involving health records in actual databases. We
discarded studies that only conducted simulated evaluations, as
well as those that only dealt with surveys or proposed solu-
tions, i.e., without implementations that processed real data.
Although the related work we examined was not restricted by
date, we found relevant publications only from the year 2015
onwards since blockchain technologies have just recently been
explored in the context of healthcare.

In addition to verifying the correct reunification of patients’
scattered data, we evaluated non-functional requirements [43,
44]. The requirements and statistical formulas used to collect
the data are described below.

Initially, we counted the Mean Time Between Failures
(MTBF):

MTBF =
TotalWorkingT ime− TotalBreakdownTime

TotalBreakdownIncidences
(1)

and Mean Time To Repair (MTTR):

MTTR =
TotalBreakdownTime

TotalBreakdownIncidences
(2)

to compose the Availability (A):

A =
MTBF

MTBF +MTTR
(3)

Finally, we evaluated the Performance (P) extraction arith-
metic mean:

P =
1

n

n∑
i=1

ai (4)

through the accounting of main memory, storage occupation,
response time and throughput, where a compose the values
and n the total of observations.

IV. BLOCKCHAIN MODEL FOR OMNIPHR

This section describes the OmniPHR architecture and our
application model. It also discusses key aspects of our Om-
niPHR implementation and scenarios applied in our evaluation
environment. Our prototype follows the definitions proposed
in the OmniPHR model [21, 22] and uses a distributed P2P
network architecture with superpeers [45].

Our first article on this subject [21] dealt with the OmniPHR
model in a broader context [21]. In contrast, the current
study expands OmniPHR’s blockchain-based architecture and
implementation, as well as evaluates our OmniPHR prototype
in two other production health organization scenarios. In
particular, this article deals with aspects focused on Om-
niPHR’s blockchain architecture and the impacts arising from
the replication of health data.

OmniPHR’s blockchain architecture model is comprised of
the following two architectural layers:
(a) Client modules, which are installed in the health

providers and in patient devices;
(b) Server layer, which is distributed in superpeers on a

platform based on blockchain technology.
This architecture is formed via a private P2P network, where

health records are organized into datablocks comprising a
linked list and a distributed ledger of health data [46]. Figure
1 depicts the architecture of our OmniPHR prototype. This
figure shows how clients communicate with the underlying
blockchain platform via pull and push messaging [45]. This
format enables all clients connected in the network to update
their data proactively, i.e., datablocks can be sent and received
automatically.

On the server, the blockchain platform is installed on a
set of distributed superpeers. This private network stores
datablocks within a KnowledgeBase, which is a non-relational
NoSQL database based on a Graph or RDF DBMS. The
KnowledgeBase itself is implemented using the openEHR
ontology to store the data in a non-relational database based
on graphs. By storing datablocks in ontology format, i.e.,
in the Ontology Web Language (OWL), the KnowledgeBase
enables the creation of semantic rules that allow inferences
about possible patient health problems.
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Fig. 1. The Architecture of Our OmniPHR Prototype

Fig. 2. PHR Blockchain in OmniPHR

Our OmniPHR prototype also uses a parallel database in
an entity-relationship (ER) model to store the datablocks
in the format of archetypes, which is a relational DBMS.
These archetypes follow the openEHR health data standard,
which we adopt for communication and data storage in our
blockchain network. The compositions of archetypes are the
units that comprise the openEHR medical record structure
[47]. The chained health datablocks in this database are used
in forming the PHR smart contract.

Figure 2 shows how OmniPHR prototype chains health
datablocks together. Each datablock consists of (a) content
formed by an archetype containing the health record, (b) a field
containing the hash code representing the digital signature of
the content of the archetype, and (c) a pointer with hash code
that set the previous datablock. The first datablock is named

the ’genesis block’ and the ’previous hash’ field points to no
other datablock since it is the first node in the linked list.

Our OmniPHR prototype applies the blockchain smart con-
tract feature [37] to verify and prevent violations of PHR
data. In particular, smart contracts are used to evaluate the
permissions granted on the PHR. For example, a smart contract
can specify who can access PHRs and what permissions each
client can get on the data. A smart contract on the PHR
therefore maintains the security and privacy of health records.

Another highlight of our OmniPHR prototype involves the
role of each node in the blockchain network of health records.
In particular, our prototype only allows superpeers located in
the private network to evaluate the correctness of datablocks.
Client nodes therefore only consume microservices provided
by superpeers. Moreover, clients also produce content that is
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Fig. 3. OmniPHR Application Ecosystem

evaluated and distributed on the blockchain by superpeers.
Datablocks in our OmniPHR prototype can be stored in the

following two ways:
(a) Replicated in all nodes, following the approach adopted

by the crypto-currency Bitcoin [48] or
(b) Using a replication algorithm, such as Chord [21], to

replicate records only on certain nodes in the private
blockchain network.

The OmniPHR model can be configured to support both
forms of replication, because when using the Chord algorithm
we can set up to how many nodes we want to replicate the data
blocks. The Chord algorithm was used to make this decision
flexible. This flexibility is one of the main characteristics of
the model, since it may not be desirable or even performative
to replicate health blocks for all nodes in the network.

A. The Structure and Functionality of OmniPHR Prototype

A distinguishing characteristics of our OmniPHR prototype
is its modular and distributed architecture based on com-
ponents and microservices. We support the use of different
components, as shown by the ecosystem in Figure 3.

This figure should be viewed from the inside ring outwards.
The core ring is PHR, which focuses on the integration
of patient records. The second ring is based on a private
blockchain network and data protocol following the openEHR
or ISO 13606 standard. The third ring used supports and
implements the blockchain network via a distributed streaming
platform, as well as a graph-based database or RDF. This
streaming platform enables the distribution and integration of
health records, whereas the database in Graph or RDF format
forms the KnowledgeBase ontology.

To support OmniPHR, we evaluated several blockchain
platforms that have been applied to support health records,
including Hyperledger Fabric (www.hyperledger.org)
[28] and Ethereum (www.ethereum.org) [49]. To gain
greater control, however, we developed our own blockchain
platform based on open APIs. This platform applies a private
blockchain format, i.e., a trusted network, where only clients
who are authorized to participate in the network can access
health datablocks [50].

Table II summarizes all the platforms and tools employed in
the OmniPHR prototype. We use the Apache Kafka platform
to distribute the datablocks in the superpeers network [51].
Kafka abstracts application concerns about data replication by
extending its producer and consumer classes, which represent
client nodes sending and receiving datablocks, respectively.

TABLE II
ARCHITECTURAL CHOICES

Option Potential benefits
Apache Kafka1 Distributed platform to store data safely in the

distributed, replicated and fault-tolerant network.
Apache Zookeeper2 Configuration and synchronization services
Apache Storm3 Real-time computing for data stream distribution
Apache Spark4 Engine for large-scale data processing
OpenLink Virtuoso5 Multi-model DB, supporting KB and ER store

1 Apache Kafka - https://kafka.apache.org/
2 Apache Zookeeper - https://zookeeper.apache.org/
3 Apache Storm - http://storm.apache.org/
4 Apache Spark - https://spark.apache.org/
5 OpenLink Virtuoso - http://sourceforge.net/projects/virtuoso/

The Apache Kafka platform also acts as the message broker
in the OmniPHR architecture, which uses its messaging and
queuing features to exchange data between nodes. Its high-
performance partitioning and replication capabilities are also
used to support real-time processing systems. Apache Storm
is a real-time distributed computing system associated with
Apache Kafka. In contrast, Apache Spark supports large-scale
data processing, making the OmniPHR architecture scalable
and fault tolerant when distributing messages with health
records.

We also use Apache Zookeeper in conjunction with the
network resources provided by Apache Kafka. In particular,
we use Zookeeper as an microservice interface to perform
distributed configuration and synchronization of the messages
that circulate in the blockchain network [52]. Apache Storm
and Apache Spark services [53, 54] are also applied to support
scalable and responsive processing needs.

Our OmniPHR prototype contains classes that serve as an
interface to access the blockchain, as well as store and remove
content from the ledger. These classes enable the creation and
maintenance of the PHR smart contract. Health data is stored
in the open-source edition OpenLink Virtuoso database, which
can store both relational storage (archetypes) and triple store
(ontology) [55].

The Virtuoso database enables data querying via the SQL
or SPARQL (RDF) query languages. The OmniPHR proto-
type applies the Docker platform (www.docker.com) as
the network container to provide a layer that abstracted and
automated the virtualization [56]. To automate the building
and deploying of code we use Gradle (gradle.org) [57].

To verify the transactions that circulate in the platform and
to check with the content transmitted in the prototype, we
exposed some microservices through RESTful web services
and we used the HTTP client SoapUI (www.soapui.org)
to test the unification of health records. Finally, we used the
Apache JMeter tool (jmeter.apache.org) to represent
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the concurrent load of client nodes by performing insertions
of new datablocks in the network or queries of existing blocks
on the network.

B. Environment for Evaluation Methodology
To help load the KnowledgeBase of health data, we used

the CaboLabs EHRServer [58] platform. This platform im-
plements the openEHR standard in a relational database.
Using data stored in archetypes—and following the openEHR
standard—we distributed the records into datablocks in the
blockchain.

To evaluate if the datablocks comprised a unified view of the
health records, we evaluated the response time, the amount of
memory occupied and the CPU usage, in a private blockchain
network with 10 superpeers and up to 512 client sessions. Each
superpeer node consisted of Intel(R) Core(TM) i5, 3.30 GHz
CPU, 4 cores, and 8GB RAM. We also profiled the OmniPHR
prototype behavior by submitting different types of queries
from an increasing series of client nodes.

Our evaluation environment used EHR and PHR for data
query and health record manipulation [59]. As a load test sce-
nario, therefore, we shared the use of the network blockchain
by having half the client nodes query blocks of registers
and the other half insert blocks into the blockchain network.
For comparison purposes, we created the following two test
scenarios that performed an increasing number of queries and
inserts operations:
(a) Light scenario, which had a smaller load of datablocks

triggered in the network
(b) Heavy scenario, which had a larger load of blocks of

records transmitted on the network.
In both load test scenarios, the number of users accessing the
network was the number of sessions connected to the network,
with an increasing number of requests to the network [60].

We chose a private blockchain to restrict the management
and access of network participants, thereby avoiding unautho-
rized sharing. This approach used mining resources and data
evaluation more effectively by limiting access only to members
of the network. In particular, evaluation in our private network
was only performed by superpeers rather than burdening client
nodes (which only produce and consume datablocks registered
in the blockchain).

Two other factors justified our use of a private blockchain
network: (a) to facilitate the traceability of updates and (b) to
reduce intermediaries in data exchanges since the superpeers
concentrate the execution of operations on health records.
Moreover, we applied the openEHR standard since it stored
data in meta-data blocks, which integratds seamlessly into the
blockchain model. Our OmniPHR prototype accepts JSON
and XML, though we applied XML predominantly within the
blockchain and for the evaluation tests since XSD is useful to
evaluate content and typing.

This study just focused on private blockchains instead of
public blockchains due to data security and privacy issues, as
well as due to the specific domain of healthcare targeted by
OmniPHR. We therefore did not allow access to other nodes
since we handled sensitive health data that should only be
shared by health providers and patients.

V. RESULTS OF PERFORMANCE EXPERIMENTS

This section analyzes the results obtained from our empir-
ical evaluations and compares the results of our performance
experiments with related work.

A. Summary of Our Performance Experiments

After configuring the settings to start each test scenario,
we ran the network for nearly a week. During this period of
∼160 hours, we performed several load tests to evaluate the
Light and Heavy scenarios described in Section IV.B. These
load tests obtained the necessary values for the MTBF and
MTTR calculations discussed in Section II, obtaining results
of 7,2283 and 0,0761, respectively.

Based on these results we calculated the Availability (A),
where we obtain the value of 0.98958. The number of users ac-
cessing the network during the execution of the Light scenario
was increased gradually, starting from 64 initial concurrent
sessions until reaching the number of 512 users, as shown in
Figure 4, which depicts the Light scenario results.

The average load of blocks transmitted in the blockchain
during the load test period is represented in Megabytes. The
average response time (i.e., the average time a client node
requests to query a block or insert a new data in the blockchain
and obtain the response) is represented in milliseconds. Figure
4 shows the number of users accessing the network in the
Light scenario is increasing, as is the average load of records
and the average response rate obtained. In this scenario, the
load tests start from 64 users accessing the network, with a
load of 3MB and an average response rate of 92ms, reaching
512 users (sessions), with 26MB of average load in use of the
network and one average response rate of 184ms.

In contrast, Figure 5 presents results from the Heavy sce-
nario. This scenario also shows an increasing numbers of
users, average load of records blocks and response rate, as
well as the load tests started from 64 clients. However, the
initial load was 26MB with response time of 193ms, until 512
concurrent sessions were reached, with 278MB of average load
of the network and an average response rate of 556ms.

The variations of data obtained from our tests were not
significant for other non-functional requirements we evaluated,
as shown in Table III. This table presents data collected in the
load test profiling. The items analyzed were (a) CPU Usage,
(b) Memory, (c) Disk throughput, (d) Network throughput
(Sender) and (e) Network throughput (Receiver), for each of
two scenarios evaluated (Light and Heavy).

TABLE III
PERFORMANCE SCENARIOS (AVERAGE USAGE VALUE PER NODE)

Rated item Light Load Heavy Load
CPU usage average 0,09 GHz (3%) 0,7 GHz (21%)
Memory 400 MB (5%) 1,2 GB (15%)
Disk throughput 0,1 MB/s (0,1%) 0,5 MB/s (0,5%)
Network throughput (Sender) 0,1 MB/s (0,1%) 0,5 MB/s (0,5%)
Network throughput (Receiver) 0,3 MB/s (1,4%) 1,5 MB/s (7%)
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Fig. 4. Light Load Scenario

Fig. 5. Heavy Load Scenario

B. Analysis of Our Results

After we applied the methods presented in Section III, the
results from the MTBF and MTTR calculations comprised and
demonstrated a 98% solution availability during load tests.
These results were obtained by subjecting the model to two
scenarios: one light with 64 concurrent sessions accessing the
network and one heavy with up to 512 sessions. Both scenarios
used the same amount of patient data.

Although there were some periods with communication
problems in the network (i.e., some nodes were not accessible),
these periods were generally short. Our blockchain solution
ensured that superpeers knew about the distribution of others
nodes connected to them. In particular, since the Chord
algorithm provided access to nodes with replicated content,
superpeers could access other nodes with replicated data even
though some nodes had communication problems. As a result,
the overall operation of our solution was not impeded.

One difficulty faced in evaluating the OmniPHR prototype
stemmed from the challenge of submitting data to the model.
To test the prototype we had to submit a considerable volume
of health records to evaluate its performance. However, the
results from the load tests shown in Figure 5 indicated that

in the heavy scenario response times stabilize around 500ms.
In general, the OmniPHR prototype demonstrated average
responses below one second. Although average response times
grew with the load and number of users, response times re-
mained low even as the loads increased. In particular, response
times are nearly instantaneous with smaller loads and few
simultaneous accesses. The network still responded quickly,
however, even with larger simultaneous loads and accesses.

C. Limitations with Our Performance Experiments

Our performance experiments did not cover the execution
of business rules, such as specific evaluations of the content
of patients’ health records. Instead, we limited our OmniPHR
prototype to joining datablocks that formed a unified view
of patient data. In particular, our load tests only focused on
evaluating the distribution and traffic of the blocks of records
based on blockchain technology and the openEHR standard.
We made this provision to isolate the performance evaluation
of the blockchain solution without the interference of the usual
business rule validations that health information systems have.
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D. Comparison with Related Work

Table I summarizes results obtained by related work.
Although these studies espouse the benefits of applying
blockchain technologies to the healthcare domain through
qualitative evaluations, few studies present empirical results
to substantiate their claims. We therefore focus on qualitative
analyses that evaluate the performance and efficacy of inte-
grating health records via blockchain technologies. Although
all projects use some blockchain technology in their imple-
mentations, only Healthbitt [25], MedRec [30], Patientory [32]
and FHIRChain [33] applied at least one health data standard
and focus on providing access to both health providers and
patients.

Among the related work efforts presented in the Table I,
seven used at least one of the two cross-industry platforms:
Ethereum or Hyperledger. Most of these studies used Ethereum
[18, 23, 24, 30, 32, 33] as their blockchain platform and only
one used Hyperledger Fabric [28]. The Ethereum platform uses
the Ether (ETH) crypto-currency, whereas Hyperledger is not
associated any crypto-currency.

Related work focuses largely on describing how models can
utilize blockchain technologies. In contrast, our research pre-
sented in this article focuses on demonstrating the viability of
blockchain technologies by evaluating the behavior of the Om-
niPHR prototype in production health record scenarios. More-
over, unlike related work that use conventional blockchain
platforms like Ethereum or Hyperledger, OmniPHR uses the
Chord algorithm, which supports replication.

Conventional blockchain platforms generally follow the
original blockchain concept applied to crypto-currencies,
which replicate data to all nodes in the network. In contrast,
the Chord replication algorithm enables finer-grained control
over how much, how, and where to replicate the data, thereby
enabling more granular control of replications. Our results in
Section V.A above show that Chord optimizes performance,
although data redundancy is reduced.

VI. CONCLUDING REMARKS

This article presented the prototype implementation and
evaluation of the OmniPHR architecture model that integrates
distributed health records using blockchain technology and the
openEHR interoperability standard. The OmniPHR prototype
comprises a novel blockchain-based design that optimizes
health data replication across computing nodes. We evaluated
the performance of our OmniPHR prototype by subjecting it to
a load of up to 512 client nodes on a network of 10 superpeers.
We also evaluated implementation strategies related to the
replication of health-oriented blockchain solutions to promote
the unification of patient health data.

The following are a summary of the lessons learned from
conducting our research on OmniPHR:
(a) Combining the openEHR standard with blockchain tech-

nologies created a unified and interoperable view of
health data. Even with some limitations, such as not
executing business rules on the prototype (since it is not
a complete system), we observed promising results of the
architectural model using our private blockchain platform.

(b) Applying the Chord algorithm for directed and limited
data replication is a more scalable alternative than con-
ventional crypto-currency platform replication models,
where all nodes receive all data. Chord’s scalability
is a critical factor to effectively support health data.
In particular, it enables data replication with restricted
access, providing control and management by patients
and healthcare professionals.

(c) The results of our empirical evaluations showed that
the OmniPHR blockchain architecture provided adequate
network level performance. It therefore appears that pa-
tient health records can be integrated effectively via a
blockchain network using technologies applied to the
treatment of large masses of data and an interoperable
health data standard.

In future work we plan to evolve our OmniPHR prototype
to incorporate additional databases and conduct additional
tests to evaluate its performance in even more scalable and
realistic production environments. Other evaluations we plan
to conduct involve data security and privacy, especially in the
case of external access to private blockchain networks.
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